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SEPARATED SEQUENCES IN ASYMPTOTICALLY UNIFORMLY
CONVEX BANACH SPACES

BY

SYLVAIN DELPECH (Lyon)

Abstract. We prove that the unit sphere of every infinite-dimensional Banach space
X contains an α-separated sequence, for every 0 < α < 1 + δX(1), where δX denotes the
modulus of asymptotic uniform convexity of X.

1. Introduction. Elton and Odell [2] proved that the unit sphere SX

of every infinite-dimensional normed linear space X contains a (1 + ε)-
separated sequence, for some ε > 0 depending on the space X. Recall that
a sequence (xn) in (X, ‖ · ‖) is said to be α-separated, for some α > 0, if
‖xn−xm‖ ≥ α for every n 6= m. Diestel [1, p. 254] asked whether this ε can
be quantified. Kryczka and Prus [4] answered this question for the class of
non-reflexive Banach spaces, proving that the unit sphere of such a space
contains a 41/5-separated sequence. Van Neerven [6] studied the class of uni-
formly convex Banach spaces and connected together ε and the modulus of
convexity (see comments below).

In this note, we are interested in the class of asymptotically uniformly
convex Banach spaces. We connect ε and the modulus of asymptotic uni-
form convexity. This modulus has been introduced by Milman [5] and inves-
tigated by Johnson, Lindenstrauss, Preiss and Schechtman [3]. The modulus
of asymptotic uniform convexity of an infinite-dimensional Banach space X
is given for t > 0 by

δX(t) = inf
‖x‖=1

sup
H⊂X

codim H<∞

inf
h∈H
‖h‖≥t

‖x+ h‖ − 1.

The Banach space X is said to be asymptotically uniformly convex if δX(t)
> 0 for all 0 < t < 1. If X is a subspace of `p, 1 ≤ p < ∞, then δX(t) =
(1+ tp)1/p−1, and X is asymptotically uniformly convex. If X is a subspace
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of c0 then δX(t) = 0 for every t ∈ (0; 1], so that X is not asymptotically
uniformly convex.

2. Statement and proof of the main result

Theorem 1. The unit sphere of every infinite-dimensional Banach space
X contains an α-separated sequence for every 0 < α < 1 + δX(1).

Proof. Fix 0 < α < 1 + δX(1) and x1 ∈ SX . Write X = H0. There ex-
ists a finite-codimensional subspace H1 ⊂ H0 such that for every h ∈ SH1 ,
‖x1− h‖ = ‖x1 + (−h)‖ > α. Take x2 ∈ SH1 . It is easy to see that δH1(1)
≥ δX(1). As before, there exists a finite-codimensional subspace H2 ⊂ H1

such that for every h ∈ SH2 , ‖x2 − h‖ > α. Take x3 ∈ SH2 . As SH2 ⊂ SH1 ,
we have ‖x1 − x3‖ > α too. Inductively, we construct an α-separated se-
quence (xn) in SX along with a corresponding non-increasing sequence of
finite-codimensional subspaces (Hn). These sequences are chosen so that
xn+1 ∈ SHn with Hn ⊂ Hn−1 such that ‖xn − h‖ > α for every h ∈ SHn .

3. Comments. IfX is asymptotically uniformly convex, then δX(1) > 0
and the ε obtained by Elton and Odell [2] is quantified. InX = `p, 1≤ p<∞,
the sequence of unit vectors is 21/p-separated and 1 + δX(1) = 21/p. This
answers the question raised in [6] whether Theorem 1.2 therein can be im-
proved. This improvement occurs in two ways. Indeed, according to Propo-
sition 2.3(3) in [3], for every infinite-dimensional Banach space X and every
0 < ε < 1, we have δX(ε) ≤ δX(ε) (where δX denotes the modulus of
convexity of X). First, every infinite-dimensional uniformly convex Banach
space is asymptotically uniformly convex, but the converse is false (con-
sider `1). Secondly, quantitatively we have 1 + δX(1) ≥ 1 + 1

2δX(2/3) where
the right-hand side is the separation constant obtained in [6].
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