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MODULES FOR WHICH THE NATURAL MAP OF THE MAXIMAL
SPECTRUM IS SURJECTIVE

BY

H. ANSARI-TOROGHY and R. OVLYAEE-SARMAZDEH (Rasht)

Abstract. Let R be a commutative ring with identity. The purpose of this paper is to
introduce two new classes of modules over R, called Ms modules and fulmaximal modules
respectively. The first (resp. second) class contains the family of finitely generated and
primeful (resp. finitely generated and multiplication) modules properly. Our concern is
to extend some properties of primeful and multiplication modules to these new classes of
modules.

1. Introduction. Throughout this paper, R will denote a commuta-
tive ring with identity 1 6= 0 and all modules are unitary. N, Z, and Q will
denote respectively the natural numbers, the ring of integers and the field
of quotients of Z. Also “⊂” denotes strict inclusion. Further Spec(R) (resp.
Max(R)) will denote the set of all prime (resp. maximal) ideals of R. More-
over, V (I) will denote the set of all prime ideals of R which contain I. Also
(0) (resp. (0)) will denote the zero submodule (resp. zero ideal).

Let M be an R-module. Define (N : M) = {r ∈ R : rM ⊆ N} for any
submodule N of M . Also for a prime ideal p of R, Mp (resp. Rp) will denote
S−1M (resp. S−1R), where S = R \ p. Moreover, the set {p ∈ Spec(R) :
Mp 6= (0)} is called the support of M , and denoted by Supp(M). Further the
supremum of the lengths r of all strictly decreasing chains p0 ⊃ p1 ⊃ · · · ⊃ pr

of prime ideals of Supp(M) is called the Krull dimension of M , and denoted
by K.dim(M). The Krull dimension of R, denoted by K.dim(R), is defined
similarly by putting M = R. Also for every ideal I of R containing Ann(M),
R̄ and Ī will denote respectively R/Ann(M) and I/Ann(M).

Let M be an R-module. A proper submodule P of M is said to be prime
if rm ∈ P for r ∈ R and m ∈M implies that either m ∈ P or r ∈ (P : M).
If P is a prime (resp. maximal) submodule of M , then (P : M) is a prime
(resp. maximal) ideal of R. Now if p is an ideal of R and P is a prime
(resp. maximal) submodule of M with (P : M) = p, then P is said to be
a p-prime (resp. p-maximal) submodule of M . The set of all prime (resp.
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maximal) submodules of M is denoted by Spec(M) (resp. Max(M)). Also
for a prime (resp. maximal) ideal p of R, the collection of all p-prime (resp.
p-maximal) submodules of M is denoted by Specp(M) (resp. Maxp(M))
(see [5, 6, 8]). Note that Spec(0) = ∅ and Spec(M) may be empty for some
non-zero module M . For example, the Prüfer group Z(p∞) as a Z-module
has no prime submodule for every prime integer p (see [6, p. 3745]).

LetM be anR-module with Spec(M) 6= ∅. Then the map ψ : Spec(M)→
Spec(R̄) defined by ψ(P ) = (P : M)/Ann(M) for every P ∈ Spec(M), will
be called the natural map of Spec(M). Also the map φ : Max(M)→ Max(R̄)
defined by φ(N) = (N : M) for every maximal submodule N of M is called
the natural map of Max(M) (see [6, 7]).

In [7], C. P. Lu introduced the class of primeful modules and considered
the main properties of this class. An R-module M is said to be primeful if
either M = (0), or M 6= (0) and the natural map of Spec(M) is surjective.

Now let M be an R-module. We say M is a Max-surjective module, or
an Ms module for short, if either M = (0), or M 6= (0) and the natural map
of Max(M) is surjective. Further we say M is a fulmaximal module if either
M = (0), or M 6= (0) and every prime submodule of M is contained in some
maximal submodule. In Section 3, it is shown that the class of Ms modules
contains the family of finitely generated and primeful modules properly (see
Example 3.2 and Proposition 3.3(c)). Results 3.4 and 3.6 of this section
extend the properties of primeful modules to Ms modules. Theorem 3.7
provides some useful characterizations and shows that M is an Ms module
if and only if pM ∈ Spec(M) for every p ∈ V (Ann(M))∩Max(R). Also it is
shown (see Theorem 3.8) that if M is a flat module or K.dim(M) = 0, then
M is an Ms module if and only if M is a primeful module.

In Section 4, it is shown that the class of fulmaximal modules contains
the classes of finitely generated, multiplication, and semisimple modules
properly (see Theorem 4.2). Also it is shown that if (Mi)i∈I is a family of
prime-distributive R-modules, then M =

⊕
i∈I Mi is fulmaximal if and only

if each Mi (i ∈ I) is fulmaximal (see Theorem 4.6). Further it is proved
(see Proposition 4.4) that if M is a fulmaximal R-module, then Mp is a
fulmaximal Rp-module for every prime ideal p of R. Finally, Theorem 4.8
provides another characterization for these modules and says that if R is a
one-dimensional Noetherian domain, then M is fulmaximal if and only if for
every (0)-prime submodule P of M , M/P is not a divisible R-module.

2. Auxiliary results

Definitions 2.1. Let M be an R-module.

(a) A proper submodule N of M is said to be prime if for any r∈R and
any m∈M with rm∈N we have m∈N or r∈(N :M) (see [5, 6, 8]).
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(b) M is called a primeful R-module if either M = (0), or M 6= (0) and
the natural map of Spec(M) is surjective (see [7]).

(c) M is called a multiplication R-module if for every submodule N of
M there exists an ideal I of R such that N = IM (see [2, [3]]).

(d) M is called a weak-multiplication R-module if M is primeless (i.e.
Spec(M) = ∅) or every prime submodule N of M is of the form IM
for some ideal I of R (see [1]).

(e) M is said to be co-semisimple if each proper submodule of M is an
intersection of maximal submodules. Every semisimple module is of
course co-semisimple (see [4]).

Remark 2.2. Let M be an R-module. Then M is primeful in each of
the following cases (see [7]):

(a) M is a finitely generated R-module.
(b) M is a faithfully flat R-module.
(c) M is a ring S containing R as a subring (with the same identity) such

that the spectral map θ : Spec(S)→ Spec(R) defined by P 7→ P ∩R
is surjective. (For example, when S is an integral extension of R.)

Remark 2.3 (see [6]). Let M be an R-module.

(a) If K is a submodule of M such that (K : M) is a maximal ideal
of R, then K is a prime submodule of M .

(b) If N is a maximal submodule of M , then N is a prime submodule
of M and (N : M) is a maximal ideal of R.

(c) If M is a non-zero finitely generated R-module, then every proper
submodule of M is contained in some maximal submodule of M .
Also the natural map of Max(M) is surjective so that Max(M) 6= ∅.

(d) Let p ∈ Spec(R). Then the prime submodules of the Rp-module Mp

are in one-to-one correspondence with the prime submodules N of
M such that (N : M) ⊆ p.

3. Max-surjective modules

Definition 3.1. Let M be an R-module. We say that M is a Max-
surjective module, or an Ms module for short, if either M = (0), or M 6= (0)
and the natural map of Max(M) is surjective.

Example 3.2. Every finitely generated R-module is an Ms module by
2.3(c). However, the converse is not true in general. To see this, let M =
Z(p∞)⊕ Z. Then we have Spec(M) = {pM : p ∈ Max(Z)} ∪ {Z(p∞)⊕ (0)}
and Max(M) = {pM : p ∈ Max(Z)}. Clearly M is an Ms Z-module while it
is not a finitely generated Z-module.
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Proposition 3.3. Let M be an R-module.

(a) If p ∈ Max(R), then every p-prime submodule of M is contained in
some p-maximal submodule of M .

(b) Max(M) 6= ∅ if and only if Specp(M) 6= ∅ for some maximal ideal p
of R.

(c) If M is primeful, then M is an Ms module. But the converse is not
true in general.

(d) If M is a non-zero primeful module, then Max(M) 6= ∅.
Proof. (a) Let P ∈ Specp(M) so that Ann(M/P ) = (P : M) = p. It

is clear that M/P has a structure of a k = R/p-vector space. Hence every
subset of M/P is an R-module if and only if it is a k-vector space. But
the vector space M/P has a maximal submodule, K say. Now by the above
arguments, K is also an R-module so that K = Q/P for some submodule
Q of M . It turns out that P ⊆ Q ∈ Max(M). Also p = (P : M) ⊆ (Q : M)
implies that p = (Q : M).

Part (b) and the first statement of (c) are immediate consequences of (a).
To see the second statement of (c), let I be the set of all prime integers and
M =

⊕
p∈I(Z/pZ). Then it is easy to see that M is a faithful Z-module with

Spec(M) = Max(M) = {pM : p ∈ I}. Hence M is an Ms Z-module which
is not primeful. Part (d) follows from (c). This completes the proof.

The following lemma is an analogue of Nakayama’s Lemma.

Lemma 3.4. Let M be an Ms R-module. Then M satisfies the following
condition (NAK): If I is an ideal of R contained in the Jacobson radical
of R, then IM = M implies that M = (0).

Proof. Since IM = M , we have mM = M for every maximal ideal m
of R. Now if M 6= (0), then Ann(M) 6= R. Choose p ∈ V (Ann(M)) ∩
Max(R). Then there exists P ∈ Max(M) such that (P : M) = p. Hence
p is a maximal ideal of R such that pM ⊆ P ⊂ M . Hence pM 6= M , a
contradiction. This completes the proof.

Remark 3.5. By Proposition 3.3(c), Lemma 3.4 extends [7, Cor. 3.2].

The radical of an ideal I of R, denoted by
√
I, is the set

{r ∈ R : rn ∈ I for some n ∈ N}.
Proposition 3.6. Let M be an Ms R-module and I be an ideal of R.

(a) M/IM is an Ms R-module.
(b) Supp(M) = V (Ann(M)).
(c)
√

Ann(M/IM) =
√

(I + Ann(M)).
(d) If M 6= (0) and I is a radical ideal, then (IM : M) = I if and only

if Ann(M) ⊆ I.
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Proof. (a) The proof is straightforward and we omit it.
(b) If M = (0), there is nothing to prove. If not, let p ∈ V (Ann(M)).

Then there exists q ∈ V (Ann(M)) ∩Max(R) such that p ⊆ q. Since M is
an Ms module, there is Q ∈ Max(M) such that (Q : M) = q. It follows
that qM ∈ Spec(M) by 2.3(a). But qMq ∈ Spec(Mq) by 2.3(d). This implies
that Mq 6= (0) so that q ∈ Supp(M). It turns out that p ∈ Supp(M). Thus
V (Ann(M)) ⊆ Supp(M). Since the reverse inclusion is always true, we have
V (Ann(M)) = Supp(M) as required.

(c) It is enough to prove that V (Ann(M/IM)) = V ((I + Ann(M)). It is
clear that V (Ann(M/IM)) ⊆ V (I + Ann(M)). So let p ∈ V (I + Ann(M)).
Then by part (b), p ∈ V (Ann(M)) = Supp(M). This implies that p ∈
Supp(M/IM) by Lemma 3.4. But Supp(M/IM) = V (Ann(M/IM)) by (a)
and (b). It turns out that p ∈ V (Ann(M/IM)) as desired.

(d) The necessity is clear. To see the sufficiency, we have

(IM : M) ⊆
√

(IM : M) =
√

(I + Ann(M)) =
√
I = I

by (c). This implies that (IM : M) = I and the proof is complete.

Theorem 3.7. Let M be a non-zero R-module. Then the following state-
ments are equivalent:

(a) M is an Ms R-module;
(b) pM ∈ Spec(M) for every p ∈ V (Ann(M)) ∩Max(R);
(c) Mp is a non-zero Ms Rp-module for every p ∈ V (Ann(M))∩Max(R);
(d) (pM : M) = p for every p ∈ V (Ann(M));
(e) pMp 6= Mp for every p ∈ V (Ann(M)) ∩Max(R).

Proof. (a)⇔(b): Let p ∈ V (Ann(M)) ∩Max(R). Then there exists P ∈
Max(M) such that (P : M) = p. Hence pM ⊆ P ⊂ M , so that (pM : M)
= p ∈ Max(R). This implies that pM ∈ Spec(M) by 2.3(a). The reverse
implication is an immediate consequence of 3.3(a).

(a)⇔(c): Let M be an Ms R-module and p ∈ V (Ann(M))∩Max(R). By
3.6(b), p ∈ Supp(M) so Mp 6= (0). Since M is an Ms R-module, there is
P ∈ Max(M) such that (P : M) = p. This implies that pM ∈ Spec(M) by
2.3(a). Therefore pMp ∈ Spec(Mp) by 2.3(d). It follows that Max(Mp) 6= ∅
by 3.3(a). Conversely, let p ∈ V (Ann(M))∩Max(R). Then pRp ∈ Max(Rp).
Hence there exists W ∈ Max(Mp) such that (W : Mp) = pRp. This implies
that pMp 6= Mp, so pM 6= M . It follows that pM ∈ Specp(M) by 2.3(a).
Now the claim follows from 3.3(a).

(a)⇔(d): The necessity is clear from 3.6(d). Conversely, if p∈V (Ann(M))
∩ Max(R), then pM 6= M , so pM ∈ Specp(M) by 2.3(a). It follows that
Maxp(M) 6= ∅ by 3.3 as required.

(a)⇔(e): The sufficiency follows from (a)⇔(c) and Lemma 3.4. To see
the necessity let p ∈ V (Ann(M)) ∩Max(R). Then pMp 6= Mp implies that
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pM 6= M so that pM ∈ Spec(M) by 2.3(a). Hence the result follows from
(a)⇔(b). This completes the proof.

Theorem 3.8. Let M be an R-module.

(a) If M is a flat module, then M is an Ms module if and only if M is
a primeful module.

(b) If M is a non-zero divisible module over a Noetherian domain R,
then M is an Ms module if and only if R is a field.

(c) If K.dim(M) = 0, then M is an Ms R module if and only if M is a
primeful module.

(d) If M is a locally free or a locally finitely generated module at every
p ∈ V (Ann(M)), then M is an Ms module if and only if Supp(M) =
V (Ann(M)). (We recall that for a prime ideal p of R, M is a locally
free (resp. locally finitely generated) module at p if Mp is a free (resp.
locally finitely generated) Rp-module.)

(e) If M is a multiplication module, then M is an Ms module if and only
if M is a finitely generated module.

Proof. (a) Let p̄ ∈ Spec(R̄). Then there exists q ∈ V (Ann(M))∩Max(R)
such that p ⊆ q. It follows that q = (Q : M) for some maximal sub-
module Q of M . Therefore pM ⊆ qM ⊂ M . By [5, Theorem 3], this
implies that pM ∈ Specp(M) as desired. The reverse implication follows
from 3.3(c).

(b) If R is a field, then M is faithfully flat, so M is primeful by 2.2. By
3.3(c), this implies that M is an Ms R-module. Conversely, since M is an Ms
R-module, pM 6= M for every p ∈ V (Ann(M)) by 3.7. Further since M is a
divisible R-module and R is a Noetherian domain, it follows that pM = M
for every non-zero prime ideal of R. Now since V (Ann(M)) ∩Max(R) 6= ∅,
we have V (Ann(M)) = {(0)}. Hence Ann(M) = (0) ∈ Max(R). Thus R is
a field as desired.

(c) Let M be an Ms R-module and p̄ ∈ Spec(R̄). By 3.6, Supp(M) =
V (Ann(M)). It follows that K.dim(R̄) = 0. Therefore p̄ ∈ Max(R̄) so that
p = (P : M) for some P ∈ Max(M). Thus P ∈ Specp(M) as required. The
converse follows from 3.3(c).

(d) The necessity follows from 3.6(b). To prove the converse, let p ∈
V (Ann(M)). Then Mp is a non-zero primeful Rp-module by 2.2. Therefore
Mp is a non-zero Ms Rp-module by 3.3(c). Hence M is an Ms R-module by
3.7((a)⇔(c)).

(e) Let M be an Ms module. Then by 3.7, pM 6= M for every p ∈
V (Ann(M)) ∩Max(R). This implies M is a finitely generated R/Ann(M)-
module by [3, 3.1]. Thus M is a finitely generated R-module and the proof
is complete.
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Let M be an R-module. Then the Jacobson radical of M , denoted by
Rad(M), is defined to be the intersection of M and all maximal submodules
of M .

Corollary 3.9. Let M be a non-zero Ms R-module. Then

Rad(M) =
⋂

p̄∈Max(R̄)

pM.

Proof. Since for every maximal submodule P ofM , (P : M) = p with p̄ ∈
Max(R̄), we have Rad(M) =

⋂
P∈Max(M) P ⊇

⋂
p̄∈Max(R̄) pM . Conversely, if

p̄ ∈ Max(R̄), then pM 6= M by 3.7. Thus M/pM is a non-zero vector space
over the field R/p. By the corollary to [5, Theorem 3], this implies that

pM =
⋂

pM⊆P∈Max(M)

P ⊇
⋂

P∈Max(M)

P = Rad(M).

Therefore
⋂

p̄∈Max(R̄) pM ⊇ Rad(M), which completes the proof.

4. Fulmaximal modules. It is well known that every prime ideal of R
is contained in some maximal ideal. However, this is not true for a module
in general. For example, take Q as a Z-module. Then Spec(Q) = {(0)} and
Max(Q) = ∅, so the prime submodule (0) is not contained in any maximal
submodule. Further let {pi}i∈N be the set of all prime integers and let M =
Q⊕

⊕
i∈N Z/piZ. Then

Spec(M) = {piM : i ∈ N} ∪
{

(0)⊕
⊕
i∈N

Z/piZ
}
,

Max(M) = {piM : i ∈ N}.
This shows that prime submodules are not necessarily contained in maximal
submodules of M even in the case where Max(M) 6= ∅.

In this section, we will investigate those modules in which every prime
submodule is contained in some maximal submodule.

Definition 4.1. Let M be an R-module. We say that M is a fulmaximal
module if either M = (0), or M 6= (0) and every prime submodule of M is
contained in some maximal submodule.

Theorem 4.2. The class of fulmaximal R-modules contains the follow-
ing families of R-modules properly:

(a) Multiplication R-modules.
(b) Finitely generated R-modules.
(c) Co-semisimple (or semisimple) R-modules.
(d) Weak multiplication Ms R-modules.
(e) Zero-dimensional Ms R-modules (K.dim(M) = 0).
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Proof. (a) Use [3, Theorem 2.5(i)]. Further if we take M = Z(p∞) ⊕ Z,
then by 3.2, M is a fulmaximal Z-module which is not a multiplication
module.

(b) This is clear. Now take M = Z(p∞)⊕Z; then by 3.2, M is a fulmax-
imal Z-module which is not finitely generated.

(c) Let M be a co-semisimple R-module. Then every proper submodule
of M is an intersection of maximal submodules. Hence M is fulmaximal.
Further if M = Z(p∞) ⊕ Z then M is a fulmaximal module by 3.2. But
M is not a co-semisimple Z-module, because if N is a proper submodule of
Z(p∞), then N ⊕Z is a proper submodule of M which is not an intersection
of maximal submodules of M by 3.2.

(d) Let M be a non-zero weak multiplication Ms R-module and P ∈
Spec(M). Set (P : M) = p. Choose q ∈ Max(R) with p ⊆ q. Since M
is an Ms module, there exists a maximal submodule Q of M such that
(Q : M) = q. This implies that P = (P : M)M ⊆ (Q : M)M = Q as
desired. Now let p be a prime integer and M = Z(p) = S−1Z with S = Z\(p).
One can see that M is a faithful Z-module such that Spec(M) = {(0), P}
and Max(M) = {P}, where P = pZ(p). Hence M is a fulmaximal Z-module,
while it is not an Ms module.

(e) Let M be an Ms R-module with K.dim(M) = 0. Then by 3.6(b), we
have K.dim(R/Ann(M)) = K.dim(M) = 0. Let P be a p-prime submodule
of the R-module M . Then P is a p̄-prime submodule of the R̄-module M .
But p̄ ∈ Max(R̄) by assumption. Thus by Proposition 3.3, there exists a
maximal submodule Q of the R̄-module M such that P ⊆ Q. Clearly Q is
a maximal submodule of the R-module M as required. Now let {pi}i∈N be
the set of all prime integers. Let M =

⊕
k 6=i∈N Z/piZ for some k ∈ N. Then

Spec(M) = Max(M) = {piM : k 6= i ∈ N}.
This implies that M is a faithful fulmaximal Z-module which is not Ms, and
the proof is complete.

We need the following lemma.

Lemma 4.3. Let M be an R-module, S be a multiplicatively closed subset
of R and ϕ : M → S−1M be the natural map.

(a) If L is a submodule of S−1M , then L = Lce = S−1(L ∩M), where
“e” and “c” represent extension and contraction respectively.

(b) If P is a prime submodule of M with (P : M)∩S = ∅, then P ec = P .

Proof. This is straightforward.

Proposition 4.4. Let M be a fulmaximal R-module.

(a) Every homomorphic image of M is fulmaximal.
(b) Mp is a fulmaximal Rp-module for every prime ideal p of R.
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Proof. (a) Let L = M/N for some submodule N of M . Then the claim
is immediate by the fact that

Spec(M/N) = {P/N : P ∈ Spec(M), P ⊇ N}.

(b) Let p ∈ Spec(R) and let W be a prime submodule of Mp. Then
Q = W ∩M is a prime submodule of M with (Q : M) ⊆ p by 2.3(d). Let
N be a maximal submodule of M with Q ⊆ N . Then RpQ ⊆ RpN . Now it
remains to prove that RpN ∈ Max(Mp). To see this, let L be a submodule
of Mp such that RpN ⊆ L ⊂Mp. By Lemma 4.3, L = Rp(L∩M). It follows
that RpN ∩M ⊆ L∩M ⊂M . But RpN ∩M = N by Lemma 4.3. It follows
that RpN = L as desired. This completes the proof.

Notation and Definition 4.5. Let (Mi)i∈I be a family of R-modules
and let M =

⊕
i∈I Mi. For j ∈ I we denote

⊕
j 6=i∈I Mi by Dj(M). Then we

say that (Mi)i∈I is a family of prime-distributive R-modules if

∀j ∈ I ∀P ∈ Spec(M) : P ⊆ (P ∩Mj)⊕Dj(M).

For example, if M is a distributive R-module, then every family (Mi)i∈I

of submodules of M with M =
⊕

i∈I Mi is a family of prime-distributive
R-modules.

Theorem 4.6. Let (Mi)i∈I be a family of prime-distributive R-modules.
Then M =

⊕
i∈I Mi is fulmaximal if and only if each Mi (i ∈ I) is fulmax-

imal.

Proof. Let P be a prime submodule of M . Since P 6= M , there exists
j ∈ J with Mj * P . By [8, 1.6], P ∩ Mj ∈ Specp(Mj). Now since Mj

is fulmaximal, there exists Qj ∈ Max(Mj) such that P ∩ Mj ⊆ Qj . Set
Q = Qj ⊕ Dj(M). As M is a prime-distributive R-module, we have P ⊆
(P ∩Mj) ⊕ Dj(M) ⊆ Q. It is enough to prove that Q ∈ Max(M). To see
this, let N be a proper submodule of M such that Q ⊆ N . Then (Q : M) ⊆
(N : M) ⊂ R. As Qj ∈ Max(Mj), q = (Qj : Mj) is a maximal ideal of R. On
the other hand, q ⊆ (Q : M). It follows that (N : M) = q, so N is a prime
submodule of M by 2.3(a). This implies that N = N ∩C = N ∩

⊕
i∈I Mi ⊆

(N∩Mj)⊕Dj(M) = Q ⊆ N. It follows that Q ∈ Max(M) as required. To see
the reverse implication, let j ∈ I and Pj ∈ Spec(Mj). Then Pj ⊕Dj(M) ∈
Spec(M) by [7, Lemma 4.6]. This implies that Pj⊕Dj(M) ⊆ Q ∈ Max(M).
Hence Pj ⊆ Q∩Mj . Now we show that Q∩Mj ∈ Max(Mj). To see this, let
Q ∩Mj ⊆ N ⊂ Mj . As Q ∈ Spec(M), we have Q ⊆ (Q ∩Mj) ⊕Dj(M) ⊆
N ⊕ Dj(M) ⊂ M. Therefore Q = (Q ∩Mj) ⊕ Dj(M) = N ⊕ Dj(M), so
Q ∩Mj = N as required. This completes the proof.

The next example shows that the prime-distributivity condition cannot
be omitted in the above theorem.
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Example 4.7. Let Mn = (1/n)Z and M =
⊕

n∈NMn. Then Mn’s are
fulmaximal Z-modules. But M is not fulmaximal, for if it were, then the
homomorphic image lim→Mn of M would be fulmaximal by Proposition
4.4(a). (Here lim→Mn denotes the direct limit of the direct system of R-
modules (Mn)n∈N.) This contradicts the fact that Spec(Q) = {(0)} and
Max(Q) = ∅.

Theorem 4.8. Let R be a one-dimensional Noetherian domain and M
be an R-module. Then M is fulmaximal if and only if for every (0)-prime
submodule P of M , M/P is not a divisible R-module.

Proof. Let M be a fulmaximal R-module and P ∈ Spec(0)(M). Then
there exists a maximal submodule Q of M such that P ⊆ Q. Set (Q : M)
= q. If M/P is a divisible R-module, then q(M/P ) = M/P , so qM + P
= M . On the other hand, P ⊆ Q and qM ⊆ Q. It follows that Q = M ,
a contradiction. To see the reverse implication, let P be a p-prime submodule
of M . Then by 3.3(a), we can assume that p = (0). Thus M/P is not a
divisible R-module. Therefore there is a non-zero element a in R such that
a(M/P ) 6= M/P . Now since R/Ra is Artinian, p1 . . . pn ⊆ Ra for some
n ∈ N and maximal ideals pi (1 ≤ i ≤ n). It follows that pj(M/P ) 6= M/P
for some j = 1, . . . , n. This implies that pj(M/P ) ∈ Specpj

(M/P ) by 2.3(a).
By 3.3(a), it follows that Max(M/P ) 6= ∅, so P is contained in a maximal
submodule of M , and the proof is complete.

Corollary 4.9. Let R be a one-dimensional Noetherian domain and
M be a weak multiplication R-module. If M is not divisible, then M is a
fulmaximal R-module. The converse is true if M is not primeless.

Proof. By [1, 2.4(iii)], M is a torsion or torsion-free R-module. If M is
torsion, then Spec(0)M = ∅ and hence M is a fulmaximal R-module by
3.3(a). If M is torsion-free, then the torsion submodule T (M) = (0) is the
only (0)-prime submodule of M . By 4.8, it follows that M is fulmaximal.
The converse is a consequence of 4.8 and the fact that every torsion divisible
R-module is primeless. This completes the proof.
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