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THE AUSLANDER GENERATORS OF THE
EXTERIOR ALGEBRA IN TWO VARIABLES

BY

MAGDALINI LADA (Trondheim)

Abstract. We compute a complete set of nonisomorphic minimal Auslander genera-
tors for the exterior algebra in two variables.

Introduction. In 1971, Auslander introduced a new homological dimen-
sion for Artin algebras, called representation dimension, which was meant
to measure how far an algebra is from having finitely many isomorphism
classes of finitely generated indecomposable modules [1]. Quite a few years
later, there were several publications that motivated the further investiga-
tion of the representation dimension. Among those we have [6], where Iyama
proves that the representation dimension is always finite, [5], where Igusa
and Todorov prove that an Artin algebra with representation dimension less
than or equal to three satisfies the finitistic dimension conjecture, and [9],
where Rouquier uses the exterior algebras as examples of Artin algebras
with arbitrarily large representation dimension.

In the last years, there has been an increasing interest in the topic and
several researchers have worked on determining the representation dimension
of certain classes of algebras. This is usually done by constructing a module
which is a generator-cogenerator for the module category and is such that the
global dimension of its endomorphism ring is the smallest among the global
dimensions of the endomorphism rings of all modules that are generators-
cogenerators for the module category. Such a module is called an Auslander
generator and in general it is not easy to find.

Not much is known about the class of Auslander generators of an Artin
algebra. In [8], the author showed how we can construct, under certain
conditions, a new Auslander generator by mutating a given one. In this
paper, we compute all minimal Auslander generators for the exterior algebra
in two variables, up to isomorphism. This is, to our knowledge, the first
nontrivial example where a complete set of minimal Auslander generators
is computed.
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1. Background. Let Λ be an Artin algebra. We denote by modΛ the
category of finitely generated left Λ-modules, and by a Λ-module we will
always mean a module in modΛ. For a Λ-module M we denote by addM
the full subcategory of modΛ consisting of the direct summands of copies
of M .

A Λ-module M is called a generator-cogenerator if all the indecompos-
able projective and the indecomposable injective Λ-modules are in addM .
The representation dimension of Λ, which we denote by repdimΛ, is defined
as follows:

repdimΛ = inf{gldim EndΛ(M) |M generator-cogenerator for modΛ}.
A basic Λ-module M is called an Auslander generator if gldim EndΛ(M) =
repdimΛ. An Auslander generator is called minimal if for any direct sum-
mand N of M that does not contain any projective or injective Λ-modules,
we have gldim EndΛ(M/N) > gldim EndΛ(M). Note that here, the factor
module M/N is the cokernel of the split monomorphism N ↪→M .

The following result was proved in [3]. Recall that, for an Artin algebra Λ,
a node is a nonprojective, noninjective simple Λ-module S such that the
middle term of the almost split sequence starting at S is projective.

Proposition 1.1. Let Λ and Λ′ be two Artin algebras with no nodes,
and α : modΛ → modΛ′ a stable equivalence. If the Λ-module Λ ⊕ N is
an Auslander generator of Λ, then the Λ′-module Λ′ ⊕ αN is an Auslander
generator of Λ′.

As a straightforward consequence of Proposition 1.1, we get the follow-
ing corollary. Note that τ denotes the Auslander–Reiten translation and Ω
denotes the syzygy functor.

Corollary 1.2. Let Λ be a selfinjective algebra with no nodes, and Λ⊕N
an Auslander generator of Λ. Then the Λ-modules Λ ⊕ τN and Λ ⊕ Ω(N)
are also Auslander generators.

Proof. Since Λ is selfinjective, both of the functors τ and Ω induce a
stable equivalence on modΛ.

2. The exterior algebra. In this section, Λ will denote the exterior
algebra in two variables. We begin by describing Λ as the path algebra of
a quiver modulo relations. Let Q be the quiver

1α 99 βee

and let kQ be the path algebra of Q over some algebraically closed field k.
Set Λ = kQ/I, where I is the ideal of kQ generated by {α2, αβ + βα, β2}.
Then the square of the radical of the quotient algebra Λ/SocΛ is zero. It
is known that if the radical rA of an Artin algebra A is such that r2A = 0,
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then A is stably equivalent to the hereditary algebra given by the triangular
matrix

ΣA =
(
A/rA 0
rA A/rA

)
.

An explicit description of the functor giving this stable equivalence can be
found in [2, X.2]. It is not difficult to see that when A = Λ/SocΛ, where Λ is
the exterior algebra in two variables, then ΣA is isomorphic to the Kronecker
algebra. The indecomposable finitely generated modules over the Kronecker
algebra, as well as the morphisms between them, are described in [2, VIII.7].
Moreover, the kernel of the functor that gives the stable equivalence between
A and ΣA is described in [2, Lemma 2.3, X.2]. Using the above information
we have complete control of the indecomposable Λ-modules and the mor-
phisms between them. In particular, we see that the only extra morphisms
that exist between two indecomposable Λ-modules (that is, besides the mor-
phisms over the Kronecker algebra) are the morphisms that factor through
the simple Λ-module.

We can describe the AR-quiver of Λ as follows. For each p in P1(k) there
is a tube of rank one:

...
...

Rp(5)
(( ((PPPP Rp(5)

(( ((PPPP Rp(5)

Rp(4)
(( ((PPPP

) 	
66nnnn

Rp(4)
(( ((PPPP

) 	
66nnnn

· · · Rp(3)
(( ((PPPP

) 	
66nnnn

Rp(3)
(( ((PPPP

) 	
66nnnn

Rp(3) · · ·

Rp(2)
(( ((PPPP

) 	
66nnnn

Rp(2)
(( ((PPPP

) 	
66nnnn

Rp(1)
) 	

66nnnn
Rp(1)

) 	
66nnnn

Rp(1)

For p = (1, λ) the indecomposable moduleR(1,λ)(n), which we will denote
by Rλ(n), corresponds to the representation

k2nfλα 33
fλβll

where fλα is given by the matrix
(

0n 0n
In 0n

)
and fλβ is given by the matrix( 0n 0n

Jn(λ) 0n

)
. Here Jn(λ) denotes the n× n Jordan block with eigenvalue λ.

For p = (0, 1), the indecomposable module R(1,0)(n), which we will de-
note by R(n), corresponds to the representation

k2nfα 33
fβll

where fα is given by the zero matrix 02n and fβ is given by the matrix(
0n 0n
In 0n

)
.
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Besides the tubes, there is one more component that contains the
projective-injective Λ-module Λ and the simple Λ-module S:

Λ

��???????

τr

��;;;;;;;;;

��;;;;;;;;; r

��;;;;;;;;;

��;;;;;;;;;

??��������
Λ/SocΛ

��;;;;;;;;

��;;;;;;;;
τ−1(Λ/SocΛ)

��;;;;;;;;

��;;;;;;;;

· · · · · ·

τ2S

AA���������

AA���������
τS

AA���������

AA���������
S

AA��������

AA��������
τ−1S

AA��������

AA��������
τ−2S

where by r we denote the radical of Λ. For simplicity, set S2m = (TrD)mS and
S2m+1 = (TrD)m(Λ/SocΛ), m ∈ Z. For n > 0, the Λ-module Sn corresponds
to the representation

k2n+1gα 44
gβjj

where gα is given by the matrix 0n 0n×(n+1)

In 0n×(n+1)

01×n 01×(n+1)


and gβ is given by the matrix 0n 0n×(n+1)

01×n 01×(n+1)

In 0n×(n+1)

 .

Dually, for n < 0, the Λ-module Sn corresponds to the representation

k2n+1hα 44
hβjj

where hα = gTα and hβ = gTβ .
We already know by [1] that repdimΛ = 3 and that the Λ-module M0 =

Λ⊕S0⊕Λ/SocΛ is an Auslander generator. In the next proposition we give
an infinite set of nonisomorphic Auslander generators. Then we prove that
this set forms a complete set of nonisomorphic minimal Auslander generators
of Λ.

Proposition 2.1. With the above notation, let Mn = Λ ⊕ Sn ⊕ Sn+1.
Then Mn is a minimal Auslander generator for all n in Z.

Proof. For any integer m, we have by definition

M2m = Λ⊕ (τ−1)mS ⊕ (τ−1)m(Λ/SocΛ)

= Λ⊕ (τ−1)m(S ⊕ Λ/SocΛ),
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M2m+1 = Λ⊕ (τ−1)m(Λ/SocΛ)⊕ (τ−1)m+1S

= Λ⊕ (τ−1)mΩ−1S ⊕ (τ−1)mΩ(Λ/SocΛ)

= Λ⊕ (τ−1)mΩ−1(S ⊕ Λ/SocΛ).

Hence, by Corollary 1.2, we only need to show that M0 = Λ ⊕ S0 ⊕ S1 =
Λ⊕S ⊕Λ/SocΛ is a minimal Auslander generator. We already know by [1]
that M0 is an Auslander generator. As for the minimality, straightforward
computations show that

gldim EndΛ(M0/S0) = gldim EndΛ(M0/S1)
= gldim EndΛ(M0/(S0 ⊕ S1)) =∞.

Remark. We note that for n ≥ 0 the Auslander generators Mn can
be obtained from M0 by iterated mutation, as described in [8, Section 4].
Dually, for n ≤ 0, the Auslander generators Mn can be obtained from M−1

by iterated mutation.

The rest of the section is devoted to showing that the Λ-modules Mn,
for n in Z, are all the Auslander generators for Λ, up to isomorphism.

In the next proposition we compute the global dimension of the endo-
morphism ring of a generator of Λ, whose nonprojective summands belong
to some tube (not necessarily the same) of the AR-quiver of Λ.

Proposition 2.2. Let M be a generator for modΛ such that all its
nonprojective indecomposable summands are of the form Rp(n) for some
p ∈ P1(k) and some n ∈ N. Then gldim EndΛ(M) =∞.

Proof. Let p ∈ P1(k) be such that there is an indecomposable direct
summand of M isomorphic to Rp(n). Choose n to be the largest natural
number such that Rp(n) is isomorphic to a direct summand of M . We show
by induction that on the quiver of EndΛ(M)op there is a loop at the vertex
corresponding to the simple module SRp(n), where by SRp(n) we denote the
top of the indecomposable projective EndΛ(M)op-module HomΛ(M,Rp(n)).
In particular, we show that there is a morphism fn : Rp(n)→ Rp(n), which is
not the identity, that does not factor through any indecomposable summand
of M . Considering the previous representation of the module Rp(n), the
morphism fn is given by the matrix

Afn =


0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
1 0 · · · 0 0

 .

If M has an indecomposable direct summand Rp(m), then by the choice
of n, we have m ≤ n and it is not hard to see, looking at all possible
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morphisms between Rp(m) and Rp(n), that in this case fn does not factor
through Rp(m). For p different from q and for any n and m, the only nonzero
morphims from Rp(n) to Rq(m), and vice versa, factor through the simple
Λ-module S. Using this fact it is easy to see that fn does not factor through
any other indecomposable summand of M of the form Rq(m), for any m
and q 6= p. We show by induction on n that fn does not factor through Λ
either.

Let n = 1. It is not hard to see that the composition of any morphism
from HomΛ(Rp(1), Λ) with any morphism from HomΛ(Λ,Rp(1)) is zero. It
follows that f1 : Rp(1) → Rp(1) does not factor through Λ. Assume that
fk : Rp(k) → Rp(k) does not factor through Λ. We have the following fac-
torization of fk:

Rp(k) fk //
� _

i

��

Rp(k)

Rp(k + 1)
fk+1 // Rp(k + 1)

π

OOOO

where i and π are the natural inclusion and natural projection respectively.
Thus, we see that if fk+1 factors through Λ then so does fk. Hence fn does
not factor through Λ for any n in N. We have thus proven that the quiver
of EndΛ(M) has a loop at the vertex of the simple module corresponding to
Rp(n). This implies that gldim EndΛ(M) =∞ [4].

The above proposition shows that the set of the indecomposable nonpro-
jective summands of an Auslander generator of Λ must contain at least one
module isomorphic to Sn for some n. Next, we consider the case where a
generator of Λ has exactly one indecomposable direct summand isomorphic
to Sn for some integer n.

Proposition 2.3. Let M be a generator for modΛ that has exactly one
indecomposable direct summand isomorphic to Sn for some integer n. Then
gldim EndΛ(M) ≥ 4.

Proof. Due to Corollary 1.2, we can assume that Sn = S0 = S. More-
over, since gldim EndΛ(Λ ⊕ S) = ∞, we can also assume that M has at
least one more nonprojective indecomposable direct summand besides S. Set
Γ = EndΛ(M)op. We will compute the projective dimension of the simple
Γ -module SS that corresponds to S. Let p1, . . . , pm in P1(k) be such that
there is an indecomposable direct summand of M isomorphic to Rpi(ni).
We choose ni to be the largest natural number such that Rpi(ni) is isomor-
phic to a direct summand of M . Straightforward computations show that
gldim EndΛ(Λ ⊕ S ⊕ Rp(1)) = ∞ for any p in P1(k), so we can assume in
addition that if m = 1, then n1 > 1. Let gi : Rpi(ni)→ S be the morphism
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given by the matrix
Agi = ( 1 0 · · · 0 ).

We show that we then have an exact sequence

0→ S(
Pm
i=1 ni)−1 → Rp1(n1)⊕ · · · ⊕Rpm(nm)

g=(g1,...,gm)
−−−−−−−−→ S → 0

We use induction on m. Let m = 1. We show by induction on n1 that we
have an exact sequence

0→ Sn1−1 → Rp1(n1)
g1−→ S → 0.

For n1 = 1 it is obvious that the sequence

0→ S → Rp1(1)
g1−→ S → 0

is exact. Assume that for n1 = k the sequence

0→ Sk−1 → Rp1(k)
g1−→ S → 0

is exact and consider the following pushout diagram:

0

��

0

��
0 // Sk−1

//

��

Rp1(k) //
� _

i
��

S // 0

0 // Ker g1

��

// Rp1(k + 1)
g1 //

����

S // 0

Rp1(1)

��

Rp1(1)

��
0 0

where the inclusion i is the irreducible morphism from Rp1(k) to Rp1(k+1).
Since the rightmost vertical short exact sequence of the diagram is non-
split, the leftmost vertical short exact sequence is also nonsplit. We claim
Ker g1 ' Sk. First note that since all the morphisms involved in the above
diagram are graded, with respect to the grading induced by the radical lay-
ers, we can view the above diagram over the Kronecker algebra. If X is an
indecomposable direct summand of Ker g1, then as we see from the leftmost
vertical sequence of the diagram, there is a nonzero morphism from Sk−1,
which is a preprojective module, to X, and a nonzero morphism from X
to Rp1(1), which is a regular module. This means that X has to be either a
preprojective module St with t ≥ k − 1 or a regular module from the same
tube as Rp1(1). Since the sequence 0→ Sk−1 → Ker g1 → Rp1(1)→ 0 does
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not split, it is easy to see, by counting the dimensions of the top and the
socle sequence, that X has to be isomorphic to Sk. Hence Ker g1 ' Sk.

Next assume that for m = k > 1 there is an exact sequence

0→ S(
Pk
i=1 ni)−1 → Rp1(n1)⊕ · · · ⊕Rpk(nk)

g=(g1,...,gk)−−−−−−−→ S → 0.

Let j ∈ {1, . . . , k, k + 1} and consider the following commutative exact dia-
gram:

0

��

0

��

0 // S(
Pk+1

i=1
i 6=j

ni)−1
//

��

∑k+1
i=1
i 6=j

Rpi(ni)
//

� _

��

S // 0

0 // Ker g

��

// ∑k+1
i=1 Rpi(ni)

g
//

����

S // 0

Rpj (nj)

��

Rpj (nj)

��
0 0

We view the above diagram over the Kronecker algebra H. Then, as we
see from the diagram, there is a nonzero morphism form Ker g to Rpj (nj)
for all j in {1, . . . , k, k + 1}. But since over the Kronecker algebra we have
HomH(Rp(n), Rq(m)) = (0) for p 6= q and any m and n, we conclude that
Ker g does not contain any summand isomorphic to Rp(n) for any p and
n. Hence, Ker g only contains summands isomorphic to Sn for some n ≥
(
∑k+1

i=1
i 6=j

ni)− 1. The only n such that Sn satisfies the dimension formulas for

the top and the socle sequences of the sequence

0→ S(
Pk+1

i=1
i 6=j

ni)−1 → Ker g → Rpj(nj) → 0

is n = (
∑k+1

i=1 ni)− 1. Thus, we have

Ker g ' S(
Pk+1
i=1 ni)−1.

Hence, we have shown that for any m ≥ 0 we have an exact sequence

0→ S(
Pm
i=1 ni)−1 → Rp1(n1)⊕ · · · ⊕Rpm(nm)

g=(g1,...,gm)
−−−−−−−−→ S → 0.

Recall that ni is chosen to be the largest natural number such that
Rpi(ni) is isomorphic to a direct summand of M . Due to this fact it is not
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hard to see that the cokernel of the morphism

HomΛ(M, g) : HomΛ(M,Rp1(n1)⊕ · · · ⊕Rpm(nm))→ HomΛ(M,S)

is the simple module SS (see again [2, VIII.7] for the structure of the Hom-
spaces between regular modules over the Kronecker algebra). Since the func-
tor HomΛ(M,−) is left exact, we have an exact sequence of Γ -modules

0→ HomΛ(M,S(
Pm
i=1 ni)−1)→ HomΛ(M,Rp1(n1)⊕ · · · ⊕Rpm(nm))

HomΛ(M,g)
−−−−−−−→ HomΛ(M,S)→ SS → 0.

Note that the Γ -modules HomΛ(M,Rp1(n1) ⊕ · · · ⊕ Rpm(nm)) and
HomΛ(M,S) are projective, hence HomΛ(M,S(

Pm
i=1 ni)−1) ' Ω2

Γ (SS). Since
we have assumed that if m = 1, then n1 > 1, we find that S(

Pm
i=1 ni)−1

is not in addM , hence pdΓ SS > 2. To compute the rest of the projective
resolution of SS , we need to find an addM -approximation of the Λ-module
S(

Pm
i=1 ni)−1.
Let

p : P → S(
Pm
i=1 ni)−1

be the projective cover of S(
Pm
i=1 ni)−1 and

λ : Soc(S(
Pm
i=1 ni)−1)→ S(

Pm
i=1 ni)−1

be the natural inclusion. Then it is easy to verify that the morphism

P ⊕ Soc(S(
Pm
i=1 ni)−1)

( p λ )−−−→ S(
Pm
i=1 ni)−1

is the minimal addM -approximation of S(
Pm
i=1 ni)−1. Moreover, straightfor-

ward computation shows that

Ker(p λ) ' S−(
Pm
i=1 ni)+1

Hence, we have an exact sequence

0→ HomΛ(M,S−(
Pm
i=1 ni)+1)→ HomΛ(M,P ⊕ Soc(S(

Pm
i=1 ni)−1))

HomΛ(M,( p λ ))−−−−−−−−−−→ HomΛ(M,S(
Pm
i=1 ni)−1)→ 0.

Since S−(
Pm
i=1 ni)+1 is not in addM , it follows that the Γ -module

HomΛ(M,S−(
Pm
i=1 ni)+1), which is isomorphic to Ω3

Γ (SS), is not projective.
Hence pdΓ SS ≥ 4, which implies that gldimΓ ≥ 4. Thus, gldim EndΛ(M)
≥ 4.

So, according to Propositions 2.2 and 2.3, the set of nonprojective inde-
composable summands of an Auslander generator M of Λ must contain at
least two modules from the component of the AR-quiver that contains Λ.
We show that if M is in addition minimal, then M 'Mn for some integer n.
We need the following lemma.
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Lemma 2.4. For any positive integers n and k, there exists a short exact
sequence

0→ Sk−(n+k+1) → Sk+1
−(n+k)

f−(n+k)−−−−−→ S−n → 0,

where the morphism f−(n+k) has the following property: if X is an indecom-
posable Λ-module which is not isomorphic to S−(n+i) for i = 0, . . . , k − 1,
then any morphism f : X → S−n factors through f−(n+k).

Proof. We prove the claim using induction on k. Let k = 1. Then the
almost split sequence

0→ S−(n+2) → S2
−(n+1) → S−n → 0

has the desired properties, so we can choose f−(n+1) to be the minimal right
almost split morphism ending at S−n. Assume that for k = l there exists a
short exact sequence

0→ Sl−(n+l+1)

g−→ Sl+1
−(n+l)

f−(n+l)−−−−−→ S−n → 0,

with the property described in the statement of the lemma. Let

0→ Sl+1
−(n+l+2) → S

2(l+1)
−(n+l+1)

ε−→ Sl+1
−(n+l) → 0

be the direct sum of l + 1 copies of the almost split sequence ending at
S−(n+l). Then there exists a morphism h : Sl−(n+l+1) → S

2(l+1)
−(n+l+1) such that

ε ◦h = g. Viewing these morphisms over the Kronecker algebra H, and using
the fact that dimk HomH(S−(n+l+1), S−(n+l+1)) = 1, we conclude that h is
a split monomorphism. Hence, we obtain the following pullback diagram:

0

��

0

��
Sl−(n+l+1)

h
��

Sl−(n+l+1)

g

��

0 // Sl+1
−(n+l+2)

// S
2(l+1)
−(n+l+1)

ε //

��

Sl+1
−(n+l)

f−(n+l)

��

// 0

0 // Sl+1
−(n+l+2)

// Sl+2
−(n+l+1)

��

f−(n+l+1) // S−n

��

// 0

0 0

It is easy to verify, from the above commutative diagram, that the morphism
f−(n+l+1) has the desired factorization property.
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We are now ready to prove that the Λ-modules Mn = Λ⊕Sn⊕Sn+1, for
n in Z, form a complete set of nonisomorphic minimal Auslander generators
of Λ.

Theorem 2.5. Let M be a minimal Auslander generator of Λ. Then M
is isomorphic to Mn = Λ⊕ Sn ⊕ Sn+1 for some integer n.

Proof. Let
M = Λ⊕M1 ⊕ · · · ⊕Ms,

where Mi is indecomposable nonprojective for i = 1, . . . , s. In view of Propo-
sitions 2.2 and 2.3 the set of the indecomposable nonprojective direct sum-
mands of M must contain at least two modules from the component of the
AR-quiver of Λ that contains Λ. So we can assume that M1 ' Sm and
M2 ' Sn, where n and m are such that n < m, and if one of the modules
Mi, for i = 3, . . . , s, is isomorphic to Sl, then l < n. Let i be an integer such
that m− 2i < −1 and consider the module

M̃ = Λ⊕ τ i(M1 ⊕ · · · ⊕Ms).

By Corollary 1.2, we see that M̃ is also a minimal Auslander generator.
Moreover,

τ iM1 ' τ iSm ' Sm−2i, τ iM2 ' τ iSn ' Sn−2i.

Set m − 2i = m′ and n − 2i = n′. Then n′ < m′ < −1. In order to prove
the claim of the theorem, we compute a projective resolution of the simple
EndΛ(M̃)op-module SΛ that corresponds to Λ. We show that pd SΛ ≤ 3 if
and only if m′ = n′ + 1.

We first need to compute an add M̃ -approximation of radΛ = S−1. Let

0→ S
−(m′+1)
m′−1 → S−m

′

m′
fm′−−→ S−1 → 0

be the short exact sequence that we get from Lemma 2.4 for n = −1 and
k = −m′ + 1. Then, by the choice of m′, the morphism fm′ is a right
add M̃ -approximation of S−1. Hence, applying the functor HomΛ(M̃,−) to
the short exact sequence above, we get the short exact sequence

0→ HomΛ(M̃, S
−(m′+1)
m′−1 )→ HomΛ(M̃, S−m

′

m′ )→ HomΛ(M̃, S−1)→ 0.

But S−1 = rΛ and the natural inclusion i : S−1 → Λ is the right almost split
morphism ending at Λ, so we have a short exact sequence

0→ HomΛ(M̃, S−1)→ HomΛ(M̃, Λ)→ SΛ → 0.

Moreover, Λ and Sm′ are in add M̃ , which implies that HomΛ(M̃, Λ) and
HomΛ(M̃, S−m

′

m′ ) are projective EndΛ(M̃)op-modules. Hence,

HomΛ(M̃, S
−(m′+1)
m′−1 ) = Ω2

EndΛ(fM)op
(SΛ).
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Now, assume that Sm′−1 is not in add M̃ . We will show that this assump-
tion leads to a contradiction. To continue the projective resolution of SΛ,
we need to compute a right add M̃ -approximation of Sm′−1. Let

0→ Sm
′−n′−1

n′−1 → Sm
′−n′

n′
fn′−−→ Sm′−1 → 0

be the short exact sequence that we get from Lemma 2.4 for n = −(m′− 1)
and k = m′ − n′ − 1. Then, by the choice of m′ and n′, the morphism
fn′ is a right add M̃ -approximation of Sm′−1. Hence, applying the functor
HomΛ(M̃,−), we get the short exact sequence

0→ HomΛ(M̃, Sm
′−n′−1

n′−1 )→ HomΛ(M̃, Sm
′−n′

n′ )→ HomΛ(M̃, Sm′−1)→ 0.

Since Sn′ is in add M̃ , the EndΛ(M̃)op-module HomΛ(M̃, Sm
′−n′

n′ ) is projec-
tive. Hence,

HomΛ(M̃, Sm
′−n′−1

n′−1 )−(m′+1) = Ω3
EndΛ(fM)op

(SΛ).

Since M̃ is an Auslander generator, we find that gldim EndΛ(M̃)op = 3,
so pd

EndΛ(fM)op
SΛ ≤ 3. Hence, HomΛ(M̃, Sm

′−n′−1
n′−1 )−(m′+1) is projective,

which implies that Sn′−1 is in add M̃ . But then M̃ contains as direct sum-
mands the modules Sn′−1, Sn′ and Sm′ , which contradicts the minimality
of M̃ , since the module Mn′−1 = Λ ⊕ Sn′−1 ⊕ Sn′ is already an Auslander
generator.

Hence, the Λ-module Sm′−1 is in add M̃ , and since M̃ is a minimal Aus-
lander generator, we have m′ = n′ + 1,

M̃ ' Λ⊕ Sn′ ⊕ Sn′+1 'Mn′ ,

and then
M ' Λ⊕ Sn ⊕ Sn+1 'Mn.

We end the paper with a remark on the number of nonprojective in-
decomposable direct summands of the minimal Auslander generators of Λ.
In [10], Rouquier proved that for a selfinjective algebra A with repdimA = 3,
the number m of nonprojective indecomposable direct summands of an Aus-
lander generator M is at least half of the number of isomorphism classes of
simple A-modules n. In [3], Dugas improved this result by showing that
m ≥ (2/3)n, and if, in addition, A is weakly symmetric or of Loewy length
three, then m ≥ n. In the case of the exterior algebra Λ in two variables
that we studied here, we have m = 2, that is, twice the number of simple
Λ-modules, for all minimal Auslander generators. This fact might suggest
that the bounds given by Dugas can be further improved. Moreover, a natu-
ral question is whether the number of nonprojective indecomposable direct
summands is the same for all minimal Auslander generators, for any Artin
algebra.
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