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INVERSE SEQUENCES WITH PROPER BONDING MAPS

BY

TOMÁS FERNÁNDEZ-BAYORT and ANTONIO QUINTERO (Sevilla)

Abstract. Some topological properties of inverse limits of sequences with proper
bonding maps are studied. We show that (non-empty) limits of euclidean half-lines are
one-ended generalized continua. We also prove the non-existence of a universal object
for such limits with respect to closed embeddings. A further result states that limits of
end-preserving sequences of euclidean lines are two-ended generalized continua.

1. Introduction. This paper is concerned with spaces obtained as in-
verse limits of sequences whose bonding maps are proper (1). Among other
results, we prove that inverse limits of end-preserving sequences of euclidean
lines (R-type spaces) or half-lines (R≥0-type spaces) preserve connectedness
and Freudenthal ends (Theorems 5.2 and 6.1). In contrast, this is no longer
true for trees without terminal vertices with three or more ends. Further-
more, we show that the category of R≥0-type spaces and proper maps does
not admit a universal space (Theorem 5.4).

As the space of Freudenthal ends of inverse limits of sequences with
proper bonding maps may fail to be metrizable (see Example 4.3), we will
use the general theory of ends based on ultrafilters as in [H] and [FG]. In
Appendix A we collect the elements of that theory needed in this paper. A
second appendix contains an explicit proof of the fact that for generalized
continua, Freudenthal ends can be equivalently defined by the use of nested
sequences of quasicomponents (Theorem B.6).

2. Preliminaries. By a space we mean a locally compact σ-compact
Hausdorff space. It is clear that local compactness and σ-compactness yield
the existence of exhausting sequences, that is, increasing sequences of com-
pact setsKn ⊂ X such thatX =

⋃∞
n=1Kn andKn ⊂ intKn+1. The Freuden-

thal ends of a space X are defined as follows (see [Fr1], [Fr2] and [H]). Let A
denote the family of all closed sets in X with compact frontier. The Freuden-
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thal compactification of X is the space X̂ of all A-ultrafilters endowed with
the compact topology whose basic closed sets are of the form

B(A) = {U ∈ X̂; A ∈ U}
where A ranges over A; see [H, 2.1]. Moreover, each x ∈ X is identified with
the A-ultrafilter Ux such that x ∈ U for all U ∈ Ux (termed a trivial A-
ultrafilter). This way X̂ can be regarded as the union of X with the set of all
non-trivial A-ultrafilters in X. The difference F(X) = X̂−X turns out to be
a zero-dimensional closed subspace whose elements are called the Freudenthal
ends of X. A space X is said to be one-ended (two-ended, respectively) if
it has exactly one Freudenthal end (two Freudenthal ends, respectively). In
Appendix A we give a brief account of the basic properties of the Freudenthal
compactification used in this paper.

Most of the results in this paper deal with metrizable spaces (admis-
sible spaces, for short) and all maps considered are proper. Recall that
a continuous map f : X → Y is said to be proper if f−1(K) is com-
pact for each compact subset K ⊂ Y . It is well-known that proper maps
between admissible spaces are closed ([E, 3.7.18]). Any proper map f :
X → Y between admissible spaces extends to a continuous map f̂ : X̂ →
Ŷ which restricts to a continuous map f∗ : F(X) → F(Y ). Namely, if

U ∈ F(X), then f̂(U) = f∗(U) is the unique element in
⋂
U∈U f(U)

bY
. See

Lemma A.6.
Notice that admissible spaces are second countable. Connected admissi-

ble spaces are termed generalized continua. The ends of a generalized con-
tinuum X can be described in a more geometrically appealing way as nested
sequences of quasicomponents. More precisely, there is a homeomorphism

F(X) ∼= lim←−Q(X − intKn)

where Q(X − intKn) is the space of quasicomponents of X − intKn and
{Kn}n≥1 is an exhausting sequence of X. In particular, F(X) is homeomor-
phic to a closed subset of the Cantor set. All this is stated without proof
in [Sh]. For the sake of completeness we give explicit proofs of these facts in
Appendix B.

In general, the Freudenthal compactification of an admissible space X
may fail to be metrizable. In fact, the metrizability of X̂ and F(X) are
equivalent and both are equivalent to the compactness of the space of qua-
sicomponents of X. Explicitly,

Theorem 2.1 ([I, Thm. VI.42]). Let X be a separable metric space in
which every point has arbitrarily small neighbourhoods with compact frontier.
Then X̂ is metrizable and compact if and only if the space of quasicomponents
of X is metrizable and compact.
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In particular, the Freudenthal compactification of a generalized contin-
uum is always a metrizable space and hence a continuum. This fact allows
us to prove the following

Lemma 2.2. Let {Kn}n≥1 be an exhausting sequence of the generalized
continuum X and let ε = (Qn)n≥1 be the Freudenthal end defined by the
nested sequence of quasicomponents Qn ⊂ X− intKn. Then, for every n ≥ 1
there is a continuum L ⊂ X̂ − intKn joining ε and FrKn. Moreover each
Qn (n ≥ 1) contains at least one non-compact component.

The following well-known result is crucial in the proof of Lemma 2.2.

Lemma 2.3 ([K, Thm. 2, p. 172]). If A ⊂ X is a non-trivial subset of
the continuum X and C is a component of X − A, then C ∩ FrA 6= ∅. In
particular, if A = {p} reduces to one point, then p lies in the closure of each
component C ⊂ X − {p}.

Proof of Lemma 2.2. Any sequence {xk}k≥n with xk ∈ Qk converges to
ε in X̂. Let Dk denote the component of xk in X̂ − intKn. We claim that
Dk ∩X ⊂ Qn for all k ≥ n. Indeed, for any closed-open set H in X − intKn

with Qn ⊂ H we know from the topology of X̂ (see Appendix B) that the

set Ĥ = H ∪ HF with HF = H
bX ∩ F(X) is closed-open in X̂ − intKn

containing xk. Therefore Dk ⊂ Ĥ by connectedness and so Dk ∩ X ⊂ H;
that is, Dk ∩X ⊂ Qn by definition of a quasicomponent.

Next we apply Lemma 2.3 to intKn⊂X̂ to show thatDk meets Fr(intKn)
⊂ FrKn for all k ≥ n. By compactness of FrKn, we can assume without loss
of generality that there is a sequence yk ∈ Dk ∩ FrKn ⊂ Qn converging to
some y0 ∈ Qn ∩ FrKn. Here we use the fact that Qn is a closed set.

As y0 lies in the lower limit LiDk, [K, Thm. 6, p. 171] implies that
the upper limit L = LsDk ⊂ X̂ − intKn is a continuum with ε ∈ L and
y0 ∈ FrKn ∩ L.

We apply again Lemma 2.3 to L0 = F(X) ∩ L ⊂ L to show that the
closure in L of the component of y0, C ⊂ L − L0, contains at least one
end of L0. Hence C is a connected non-compact closed set in X − intKn

containing y0 ∈ Qn. Therefore C ⊂ Qn by definition of a quasicomponent,
and the component of y0 in Qn is necessarily non-compact.

The unbounded component given by Lemma 2.2 need not be unique, as
shown by the generalized continuum X ⊂ R≥0 × [0, 1] depicted in the figure
below.

It is clear that X is one-ended; however, for all n ≥ 1 the quasicomponent
outside [0, n)× [0, 1] consists of two unbounded components, namely [na,∞)
and [n,∞).
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Uniqueness of such components holds for the so-called Peano general-
ized continua. Recall that a Peano continuum X is a metrizable, compact,
connected and locally connected space. If compactness is replaced by local
compactness, then the space X is called a generalized Peano continuum. Any
generalized Peano continuum is separable ([E, 4.4 F.(c)]) and hence second
countable; that is, a generalized Peano continuum is a locally connected gen-
eralized continuum. For locally connected spaces, quasicomponents coincide
with components; in particular, Freudenthal ends are defined by components;
see [ShV].

3. Inverse limits with proper bonding maps. We will use the no-
tation X = lim←−p{Xn, fn} to represent the inverse limit of a sequence with
proper bonding maps fn. Notice that X may be the empty space (e.g., the
sequence of inclusions X1 ⊃ X2 ⊃ · · · where Xn = [n,∞)). For non-empty
inverse limits the following lemma can be easily proved; compare ([E, 3.7.12]).

Lemma 3.1. Any non-empty inverse limit X = lim←−p{Xn, fn} of ad-
missible spaces is an admissible space. Moreover, the natural projections
πn : X → Xn are proper maps. Furthermore, if the fn’s are monotone then
so are the πn’s.

Recall that a map f : X → Y is said to be monotone if it is a continuous
surjection such that f−1(y) is connected for each y ∈ Y . It is known (see
[E, 6.1.29]) that if f is a monotone closed map then f−1(C) is connected for
any connected set C ⊂ Y .

Corollary 3.2. Any inverse limit of generalized continua X =
lim←−p{Xn, fn} with monotone proper bonding maps is a generalized conti-
nuum.

By using the Aleksandrov one-point compactification, X+ = X ∪ {∞},
we next show that inverse limits with proper bonding maps can be regarded
as ordinary “pointed” inverse limits. For this, if Xn is pointed by xn ∈ Xn,
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by writing X = lim←−∗{Xn, gn} we mean that X is the limit of an inverse
sequence whose bonding maps satisfy g−1

n (xn) = xn+1 for all n. Recall that
any proper map f : X → Y extends to a continuous map f+ : X+ → Y +

by setting f+(∞) = ∞. With this notation, the following proposition is a
straightforward consequence of the universal property of inverse limits.

Proposition 3.3. For any admissible space X the following two state-
ments are equivalent:

(a) X = lim←−p{Xn, fn}.
(b) X+ = lim←−∗{X

+
n , f

+
n } where X+

n is pointed by ∞ ∈ X+
n for each n.

As an admissible spaceX is embedded as a closed subset in Rn if and only
if X+ embeds in the n-sphere Sn, the following corollary is an immediate
consequence of the embedding theorem ([N, 2.36]) due to Isbell.

Corollary 3.4. If X = lim←−p{Xn, fn} where each Xn is homeomorphic
to a non-trivial closed subset of Rk, then X can be embedded as a closed set
in R2k.

4. Inverse limits preserving Freudenthal ends. Compactness is cru-
cial, not only for the existence of non-empty inverse limits, but also for the
preservation of connectedness. For instance, the inverse limit of one-ended
treesXn sketched in the next figure consists of two copies of the half-line R≥0.

0

g1 g2 g3

0 = 0a
1 = 1a 2 = 2a

1

21 3

0a

0a

1a

0

Here the (proper) maps gn are the obvious projections.
We proceed to study the relationship between the connectedness of X =

lim←−p{Xn, fn} and the behaviour of the bonding maps fn with respect to
ends. We start with the following

Proposition 4.1. If X = lim←−p{Xn, fn} is an inverse limit of gener-
alized continua, then there is a canonical continuous surjection ϕ : X̂ →
lim←−{X̂n, f̂n}.

Proof. It is clear that the maps π̂n : X̂ → X̂n induced by the projections
πn : X → Xn define a canonical map ϕ : X̂ → L = lim←−{X̂n, f̂n}. Moreover,
the image ϕ(X̂) ⊂ L is compact, and hence its complement D = L−ϕ(X̂) is
an open set contained in the compact set F = lim←−{F(Xn), fn∗}. IfD 6= ∅ and
ε ∈ D, the 0-dimensionality of F yields an open and closed neighbourhood
of ε in F , Ω ⊂ D. Therefore, Ω is open in L as well as closed in F , and hence
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compact in L. This contradicts the connectedness of L, proving D = ∅. Here
we use the fact that the X̂n’s are continua.

Corollary 4.2. Under the above assumptions, there exists a continuous
surjection of the Freudenthal ends of X = lim←−p{Xn, fn} onto the inverse limit
lim←−{F(Xn), fn∗}.

We say that an inverse sequence {X1
g1←− X2

g2←− · · · } with proper
bonding maps is end-faithful if the induced maps gn∗ : F(Xn+1) ∼= F(Xn)
are homeomorphisms for all n ≥ 1. Moreover, the limit X = lim←−p{Xn, gn} is
said to be end-preserving if the canonical projections πn : X → Xn induce
homeomorphisms πn∗ : F(X) ∼= F(Xn) for all n ≥ 1.

Obviously, sequences of one-ended spaces are end-faithful. The following
example shows that end-faithful sequences may have non-metrizable spaces
of ends.

Example 4.3. The end space of the inverse limit of one-ended trees
needs not be metrizable. Indeed, let {pi}i≥1 be an increasing sequence of
prime numbers where p1 = 2 and consider the inverse sequence formed by
the trees (n ≥ 1)

Xn = ([1,∞)× {0}) ∪ {{pni } × [0, pni ]}i≥1

and proper maps fn : Xn+1 → Xn defined as follows:

fn(x, 0) =


(x, 0) if x ∈ [1,∞),
(pn−1
i + x, 0) if 0 ≤ x ≤ pn−1

i (pi − 1),
(pn−1
i , x− pn−1

i (pi − 1)) if pn−1
i (pi − 1) ≤ x ≤ pni .

1 pn−1
i

pn
i

(pn−1
i , pn−1

i )

The dotted line in the figure depicts the image under fn−1 of the segment
{pni } × [0, pni ] ⊂ Xn. It is not hard to check that X = lim←−p{Xn, fn} is
homeomorphic to the disjoint union [1,∞) t ⊔i≥1[pi,∞), and so F(X) is
not metrizable by Theorem 2.1.

Proposition 4.4. Assume that the admissible space X = lim←−p{Xn, gn}
is the end-preserving limit of an end-faithful sequence of generalized continua.
Then X is connected, and hence a generalized continuum.

In the proof of Proposition 4.4 we will use the following straightforward
generalizations of [E, 2.5.7] and [N, 2.19], respectively. We include the proof
of Lemma 4.6 for the sake of completeness.
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Lemma 4.5. Let A ⊂ X = lim←−p{Xi, fi} be a closed set where the Xi’s
are admissible spaces. If πi : X → Xi are the canonical projections, then
A = lim←−p{πi(A), f ′i} for the obvious restrictions f ′i .

Lemma 4.6. Let A1, A2 ⊂ X be closed subsets of an inverse limit X =
lim←−p{Xi, fi} of admissible spaces. If A1 ∩ A2 6= ∅ and either A1 or A2 is
compact, then A1 ∩ A2 = lim←−p{πi(A1) ∩ πi(A2), f1

i } for the obvious restric-
tions f1

i .

Proof. As each intersection πi(A1) ∩ πi(A2) is compact, the limit L =
lim←−p{πi(A1) ∩ πi(A2), f1

i } is not empty. Furthermore, by Lemma 4.5, A1 ∩
A2 = lim←−p{πi(A1 ∩A2), f2

i } ⊂ L for the corresponding restrictions f2
i . Con-

versely, given x = (xi)i≥1 ∈ L there is an element yji ∈ Aj such that
πi(y

j
i ) = xi for all i, j = 1, 2. Then the sequences y1

i and y2
i converge to

x in X and so x ∈ A1 ∩A2. Here we use the fact that A1 and A2 are closed
sets.

Remark 4.7. The inverse limit at the beginning of this section shows
that Lemma 4.6 fails to hold if compactness is dropped.

Proof of Proposition 4.4. Suppose that X = U1∪U2 is a disjoint union of
two open (and hence closed) sets. Consider the induced maps π̂n : X̂ → X̂n

between Freudenthal compactifications, and set Ai = Ui
bX for i = 1, 2. By

Lemma 4.5, Ai = lim←−{π̂n(Ai), ĝ
′
n} for the obvious restrictions. Moreover,

the connectedness of X̂n leads to π̂n(A1) ∩ π̂n(A2) 6= ∅ for each n. Applying
Lemma 4.6, we get A1∩A2 = lim←−{π̂n(A1)∩π̂n(A2), ĝ′′n} for the corresponding
restrictions, and hence A1 ∩ A2 = A1 ∩ A2 ∩ F(X) 6= ∅. Thus, for any end
U ∈ A1 ∩A2, Lemma A.3 yields U1, U2 ∈ U , whence ∅ = U1 ∩U2 ∈ U , which
contradicts that U is a filter.

We also have the following partial converse of Proposition 4.4:

Proposition 4.8. A path connected inverse limit X = lim←−p{Di, fi} of
an end-faithful sequence of generalized dendrites is end-preserving.

Recall that a (generalized) dendrite is a (generalized) Peano continuum in
which any two different points can be separated by the omission of some third
point. It is known that the Freudenthal compactification of a generalized
dendrite is a dendrite; see [FeQ, Sect. 4] for a proof.

Proof of Proposition 4.8. Suppose that there are two distinct Freudenthal
ends (i.e., sequences of quasicomponents) ε1 = (Q1

n)n≥1 and ε2 = (Q2
n)n≥1

with ε = πi∗(ε1) = πi∗(ε2) for each i ≥ 1. Here πi∗ : F(X) → F(Xi)
are the maps induced by the projections πi : X → Xi. As ε1 6= ε2 the
quasicomponents Q1

n and Q2
n are disjoint for n large enough. Let Lj ⊂ X̂ −

intKn (j = 1, 2) be continua in X̂ given by Lemma 2.2 with εj ∈ Lj
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and Lj ∩ FrKn 6= ∅. Then, for the induced map π̂i : X̂ → X̂i, the image
π̂i(Lj) is a connected set in the dendrite D̂i with ε ∈ π̂i(L1)∩ π̂i(L2). Hence
Ωi = π̂i(L1)∪ π̂i(L2) is also a connected set in D̂i. If Ωi

0 = Ωi ∩F(Di), then
Ωi − Ωi

0 = πi(L1 − L1
0) ∪ πi(L2 − L2

0) with Lj0 = Lj ∩ F(X). Notice that
Lj − Lj0 is closed in X.

On the other hand, we choose a path Γ ⊂ X with Γ ∩ Lj 6= ∅ for
j = 1, 2. Hence πi(Γ ) is a continuum in Di and so is Σi = π̂i(Γ ) ∩ Ωi =
πi(Γ ) ∩ (Ωi − Ωi

0) since dendrites are hereditarily unicoherent. Therefore,
for the restrictions f ′i : Σi+1 → Σi the inverse limit Σ = lim←−{Σi, f

′
i} is a

continuum in X. However, Lemma 4.6 yields

Σ = Γ ∩ ((L1 − L1
0) ∪ (L2 − L2

0))

where the right-hand side space is not connected. This is a contradiction and
the proof is finished.

Remark 4.9. As any generalized Peano continuum is path connected
([Shu, 4.2.5]), Proposition 4.8 holds for X being a generalized Peano contin-
uum.

Monotone bonding maps produce end-faithful inverse sequences. More
precisely:

Theorem 4.10. Any sequence {X1
f1←− X2

f2←− · · · } of admissible spaces
with monotone proper bonding maps is end-faithful. Moreover, its inverse
limit X = lim←−p{Xn, fn} is end-preserving.

The proof is an immediate consequence of the following

Lemma 4.11. Any monotone proper map f : X → Y between admissible
spaces induces a homeomorphism f∗ : F(X)→ F(Y ).

Proof. Let {Ln}n≥1 be an exhausting sequence of Y . It is readily checked
that {Kn}n≥1 withKn = f−1(Ln) is an exhausting sequence ofX. Given two
ends (i.e., A-ultrafilters) U1 6= U2 in F(X), there exist two closed sets with
compact frontier, U1 ∈ U1 and U2 ∈ U2, with U1∩U2 = ∅ and FrU1∪FrU2 ⊂
intKn0 for n0 sufficiently large. By Lemma A.2, X−intKn0 ∈ U1∩U2 and so
F1 = U1−intKn0 and F2 = (X−intKn0)−F1 form a partition ofX−intKn0

into two closed-open sets with F1 ∈ U1 and F2 ∈ U2 since U2− intKn0 ⊂ F2.
On the other hand, f(F1) ∩ f(F2) = ∅; indeed, if f(x1) = f(x2) for

xi ∈ Fi then the connected set f−1(f(x1)) meets F1 and F2, which is a
contradiction. Here we use the monotonicity of f . This way f(F1) and f(F2)
form a partition of Y − intLn0 = f(X − intKn0) into two closed (and hence
open) sets. Therefore the frontier of f(Fi) in Y is compact for i = 1, 2.

Moreover f̂(Ui) = f∗(Ui) ∈ f(Fi)
bY

by definition of the induced map f̂ :
X̂ → Ŷ . Hence f(Fi) belongs to the A-ultrafilter f∗(Ui); see Lemma A.3.
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Moreover, f(F1) ∩ f(F2) = ∅ yields f∗(U1) 6= f∗(U2). This shows that f∗ is
injective.

The surjectivity of f∗ follows from the fact that monotone maps are
supposed to be onto and hence, given any end W ∈ F(Y ), f−1(W) is an
A-filter in X by Lemma A.7. It is readily checked from the definition of f∗
that f∗(U) =W for any A-ultrafilter U with f−1(W) ⊂ U .

Proof of Theorem 4.10. It follows from Lemma 4.11 that the induced
maps fn∗ : F(Xn+1) → F(Xn) are homeomorphisms. To check that the
inverse limit is end-preserving we observe that the projections πn : X → Xn

are monotone by Lemma 3.1, and we apply Lemma 4.11 again.

5. Ray-type spaces. Next we consider the proper analogue of the well-
known class of arc-like spaces in continuum theory. Namely, we say that a
space X is a ray-type space if X = lim←−p{Xn, fn} where Xn = R≥0 is the
euclidean half-line for each n ≥ 1.

Lemma 5.1. Let X = lim←−p{R≥0, fn} be a ray-type space. If F1 and F2

are two non-compact closed connected subsets in X, then either F1 ⊂ F2 or
F2 ⊂ F1.

Proof. By Lemma 3.1 the projections πn : X → R≥0 are proper, and
so πn(F1) and πn(F2) are non-compact closed connected subsets in R≥0.
Hence πn(Fj) (j = 1, 2) is an unbounded closed interval and hence either
πn(F1) ⊂ πn(F2) or πn(F2) ⊂ πn(F1). Notice that if πm(F1) ⊂ πm(F2) for
some m, then πn(F1) ⊂ πn(F2) for all n ≤ m. Therefore, the existence of an
infinite subsequence {nj}j≥1 with πnj (F1) ⊂ πnj (F2) yields πn(F1) ⊂ πn(F2)
for all n ≥ 1. Moreover, by Lemma 4.5, Fi = lim←−p{πn(Fi), f

′
n} where f ′n :

πn+1(Fi)→ πn(Fi) are the restrictions (i = 1, 2), and so F1 ⊂ F2.
If the subsequence {nj}j≥1 does not exist, then necessarily there is n0

for which πn(F2) ⊂ πn(F1) for n ≥ n0, and so F2 ⊂ F1.

Theorem 5.2. Any ray-type space X is a one-ended generalized contin-
uum.

Proof. X has at most one non-compact component by Lemma 5.1. On the
other hand, Proposition 3.3 implies that the Aleksandrov compactification
X+ is an (arc-like) continuum, and so Lemma 2.3 shows that the closure of
any component C ⊂ X = X+ − {∞} must contain ∞ ∈ C. Hence, X has
non-compact components and so it is a generalized continuum.

Suppose that X has two distinct ends εi = (Qin)n≥1 (i = 1, 2) defined by
sequences of quasicomponents Qin ⊂ X− intKn for the exhausting sequence
{Kn}n≥1. As ε1 6= ε2, there exists an n0 such that the quasicomponents Q1

n0

and Q2
n0

are disjoint. Let Ci ⊂ Qin0
be a non-compact component given by

Lemma 2.2. As each Qin is a closed set, so is Ci, and Lemma 5.1 yields either
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C1 ⊂ C2 ⊂ Q2
n0
, or C2 ⊂ C1 ⊂ Q1

n0
. In both cases, Q1

n0
∩Q2

n0
6= ∅, which is

a contradiction.

Remark 5.3. In continuum theory, arc-like spaces are characterized by
the existence for each ε > 0 of an ε-map f : X → [0, 1] (i.e., for each x ∈ X,
diam(f−1(f(x))) < ε).

A crucial step in the proof is the fact that if f is an ε-map then there
exists δ > 0 such that diam(f−1(A)) < ε whenever diam(A) < δ; see [N,
2.33]. This property does not hold for ray-type spaces; indeed, the linear
homeomorphism g : R≥0 → R≥0 defined by g(n) = n and g(n + 1/2) =
n+ 1/n is an ε-map for all ε > 0 but for the sets An = [n, n+ 1/n] we have
diam(An) < 1/n and diam(g−1(An)) = 1/2 for all n.

In order to obtain a characterization of ray-type spaces in terms of ε-maps
f : X → R≥0

∼= [0, 1) we have to consider metrics on X which are controlled
at infinity, that is, for each η > 0 there exists a compact set K ⊂ X such
that d(x, y) < η if x, y ∈ X − K (these metrics are exactly restrictions of
metrics on the Aleksandrov compactification X+).

This way, a space X is ray-type if and only if, given a metric d on X
controlled at infinity, there exists an ε-map f : (X, d)→ R≥0 for any ε > 0.
For this we observe that X = lim←−p{R≥0, gn} is ray-type if and only if
X+ = lim←−∞{R

+
≥0, g

+
n } (Proposition 3.3). Then, a careful inspection of the

arguments in the proof of [N, 12.19] shows that the latter is equivalent to
the existence of an ε-map f : X+ → R+

≥0
∼= [0, 1] with f−1(∞) =∞ for any

ε > 0.

It is known that the class of arc-like spaces contains a universal space
(see [S]). In contrast, the class of ray-type spaces admits no universal space.
Recall that a space U is said to be universal in a topological category C if
every space of C can be embedded in U .

Theorem 5.4. There is no universal space in the category R of ray-type
spaces and proper maps.

For this we define a rayless space to be a space which does not admit a
proper embedding of the half-line R≥0.

Proof of Theorem 5.4. Let X = R≥0 be the half-line and Y be a rayless
ray-type space in R (see Example 5.5 below for an example of such a space).
Assume that there is a universal space U ∈ R. This implies the existence
of closed embeddings X,Y ⊂ U . By Lemma 5.1 we have either X ⊂ Y or
Y ⊂ X. The former is ruled out since Y is rayless, and thus Y is a closed
connected subset in X and hence an interval. This is a contradiction and the
theorem follows.

Example 5.5. Next we describe an example of a rayless ray-type space.
For this we consider the family of unit segments in the planar grid of unit
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squares given by Aji = {(x, y) ∈ R2; x = i, j−1 ≤ y ≤ j} and Bi
j = {(x, y) ∈

R2; y = j, i − 1 ≤ x ≤ i}. Let Xn be the ray in the plane grid obtained by
adding to the union

⋃{Aji ; 1 ≤ j <∞, 2n(j−1) ≤ i ≤ 2nj} a minimum set
of horizontal segments Bi

j ; see the figure below. The proper bonding maps
fn : Xn+1 → Xn are given by the obvious maps which carry the segment
Aji ⊂ Xn+1 linearly onto Aji−2(j−1) ⊂ Xn if 2(n+1)(j−1) ≤ i ≤ 2(n+1)j−2

and onto Aj2nj if 2(n+ 1)j − 2 ≤ i ≤ 2(n+ 1)j.

X3 ≡

X2 ≡

X1 ≡ A1
1 A1

2

A2
3 A2

4

A3
5 A3

6

B4
1

B6
2

B8
3

B7
4

B5
3

B3
2

B1
1

A1
0

B2
0

A2
2

A3
4

A4
7A4

6 A4
8f1

f2

f3

We claim that X = lim←−p{Xn, fn} is homeomorphic to the space Σ =⋃∞
k=1Σk depicted below.

p1

Σ1

p2

Σ2

Σ ≡

For this we observe that Xn decomposes as a union Xn =
⋃∞
k=1X

k
n where

Xk
n is the arc in Xn containing

⋃
2(k−1)≤i≤2k A

k
i . Moreover fn(Xk

n+1) = Xk
n

for all n, k ≥ 1. From this, it is readily checked that for the restrictions
fkn = f |Xk

n, the inverse limit Xk = lim←−{X
k
n, f

k
n} is a closed subset in X and

X =
⋃∞
k=1X

k. Moreover, the definition of the bonding maps fn yields hom-
eomorphisms ϕk : Xk ∼= Σk onto the topologists’s sine curve Σk ⊂ Σ, which
are compatible at the points {pk}k≥1. This way we get a homeomorphism
ϕ =

⋃∞
k=1 ϕk : X =

⋃∞
k=1X

k ∼= Σ =
⋃∞
k=1Σk, and the result follows.
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6. Further results and final remarks. As an extension of ray-type
spaces, a space X is said to be a T -type space if it is the limit X =
lim←−p{Xn, fn} of an end-faithful sequence where each Xn = T is the locally
finite tree T . For T = R the euclidean line, Theorem 5.2 extends to R-type
spaces. Namely,

Theorem 6.1. Any R-type space X is a two-ended generalized contin-
uum.

Proof. Assume that X = lim←−p{R, fn} is not connected with a compact
component D. As X is R-type, the one-point compactification X+ is an (S1-
like) continuum. Here we use Proposition 3.3. Then, by Lemma 2.3,∞ ∈ D,
which is a contradiction. Therefore, all components of X are non-compact.

Suppose that X has at least three components C1, C2 and C3. As the
canonical projections πn : X → R are proper maps, it follows that πn(Ci)
⊂ R (i = 1, 2, 3) are non-compact closed connected sets, and hence un-
bounded closed intervals. Thus, at least two of them are related by inclusion,
say πn(C1) ⊂ πn(C2). By arguing as in the proof of Lemma 5.1 and by using
Lemma 4.5 we get

C1 = lim←−p{πn(C1), f1
n} ⊂ lim←−p{πn(C2), f2

n} = C2,

which is a contradiction. Here f in : πn+1(Ci)→ πn(Ci) are the corresponding
restrictions of the bonding maps fn.

It remains to rule out the case that X has exactly two non-compact
components C1 and C2. For this we observe that the connectedness of R
implies that for each n the unbounded intervals πn(Ci) (i = 1, 2) must have
a non-empty intersection An = πn(C1)∩ πn(C2) 6= ∅, which can be assumed
to be a compact interval for all n ≥ n0, since otherwise πn(C1) ⊂ πn(C2) = R
(or vice versa) for each n, and we would proceed as in the previous case.

The compactness of the An’s yields ∅ 6= lim←−{An, f
′
n} ⊂ C1 ∩ C2 for the

restrictions f ′n = fn|An+1 , which is a contradiction. Hence X is a generalized
continuum.

Moreover, Corollary 4.2 shows that X has at least two ends. Here we use
the fact that the sequence defining X is end-faithful. Next we check that
the number of ends is at most 2. Indeed, assume on the contrary that εi =
(Qin)n≥1 (1 ≤ i ≤ 3) are distinct ends where, for each n, Qin ⊂ X − intKn is
a quasicomponent for the exhausting sequence {Kn}n≥1. Then there exists
m such that the quasicomponents Q1

m, Q
2
m, Q

3
m are pairwise disjoint. If, for

each i ≤ 3, Ci ⊂ Qim is a non-compact component given by Lemma 2.2, then
for each n ≥ 1, at least two of the three non-compact and connected sets
πn(Ci) share one of the ends of R. In particular, we find a pair of indices 1 ≤
i < j ≤ 3 and a subsequence {nk}k≥1 such that both πnk

(Ci) and πnk
(Cj)

contain the same end of R. Hence, for each k ≥ 1, either πnk
(Ci) ⊂ πnk

(Cj)
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or πnk
(Cj) ⊂ πnk

(Ci). As in the proof of Lemma 5.1, we can readily infer
that either Ci ⊂ Cj or Cj ⊂ Ci. This contradicts the assumption εi 6= εj ,
and the proof is finished.

Easy examples show that Theorems 5.2 and 6.1 on R≥0-type and R-
type spaces, respectively, do not hold for other trees. More precisely, a T -
type space X, with T a one-ended tree, may fail to be connected and end-
preserving, as shown by the example at the beginning of Section 4. Moreover,
Example 4.3 shows that the end space of X may even fail to be metrizable.
It is also easy to obtain an example showing that a T -type space Y with
T a tree without end vertices may fail to be connected and end-preserving;
see the figure below representing an inverse sequence of infinite triods whose
limit is the union R t Ra of two disjoint copies of the euclidean line.

f1 f2

−1 0 = 0a 1 2

−1a

−2a

−1 0 1 = 1a 2

0a

−1a

−2a

−1 0 1 2 = 2a

1a

0a

−1a

−2a

Example 4.3 suggests the following question:

Question 6.2. Assume that X = lim←−p{Tn, fn} is the limit of trees Tn
with a finite number of branching points. Is the end space of X metrizable?

As a consequence of Proposition 4.4, if X is an end-preserving T -type
space, then X is connected. But we do not have yet a positive answer or a
counterexample for the converse:

Question 6.3. Is any connected T -type space end-preserving?

A partial positive answer was given in Proposition 4.8. Also the following
simple example shows that for some one-ended locally finite graphs G there
exist connected G-type spaces which are not end-preserving. For instance,
the euclidean line R is the inverse limit of the following sequence of one-ended
graphs where the bonding maps are the obvious extensions of the ones of
the example at the beginning of Section 4.

f1 f2

0 0 01 = 1a 1 12 2 = 2a 23 3 3 = 3a

0a

0a

0a

1a

1a

2a
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Appendix A. This appendix collects the basic facts of the theory of
ends for (not necessarily metrizable) locally compact σ-compact Hausdorff
spaces. We follow [H] and [FG]. Throughout this appendix we will use the
notation introduced in Section 2. In particular, A stands for the family of
all closed subsets with compact frontier of a space X. We start with some
elementary lemmas whose proofs follow basically from the definitions and so
are omitted.

Lemma A.1. An A-ultrafilter U is trivial if and only if U contains a
compact set.

Lemma A.2. If {Kn}n≥1 is an exhausting sequence in X, then all com-
plements X − intKn (n ≥ 1) belong to any non-trivial A-ultrafilter U .

For any set B ⊂ X, let BF denote the intersection B
bX ∩ F(X) in the

Freudenthal compactification of X.

Lemma A.3. For any A ∈ A, B(A) = A
bX = A ∪ AF . In particular,

U ∈ A
bX if and only if A ∈ U .

Let G denote the family of all open subsets with compact frontier in X.
Then by using Lemmas A.1 and A.3 one gets

Lemma A.4. For each G ∈ G the set G\ = G ∪ GF is open in X̂, and
these sets together with the open sets of X form a basis of open sets in X̂.

The following statement is an immediate consequence of the previous
lemma.

Lemma A.5. For any compact set K ⊂ X and any closed set F ⊂ X
with compact frontier FrF ⊂ K the difference F − K is an open set in G
and (F −K)\ is an open set in X̂.

Next we prove the main result of this appendix.

Lemma A.6. Let f : X → Y be a proper map between admissible spaces.
Then f induces a continuous map f̂ : X̂ → Ŷ which restricts to a map
f∗ : F(X)→ F(Y ).

In the proof of Lemma A.6 we will use the following

Lemma A.7. Let f : X → Y a proper map and A ⊂ Y . If FrA is
compact then so is Fr(f−1(A)).

Proof. By continuity the closed set Fr (f−1(A)) is contained in the com-
pact set f−1(FrA). Here we use the fact that f is proper. Hence, Fr(f−1(A))
is compact.
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Proof of Lemma A.6. Let U be a non-trivial ultrafilter. By compactness
of Ŷ , the filter f(U) generated by the images of elements of U has at least
one cluster point (see [E, 3.1.24]) and so

ZU =
⋂
U∈U

f(U)
bY 6= ∅.

Furthermore, this intersection contains no elements of Y . Indeed, other-
wise take y ∈ ZU ∩ Y =

⋂
U∈U f(U). Here we use the fact that each f(U)

is a closed set in Y . Thus, the compact set f−1(y) meets all U ∈ U and so⋂
U∈U U ∩ f−1(y) 6= ∅ ([E, 3.1.24]), which is a contradiction since U is not

trivial; see Lemma A.1.
Moreover, ZU reduces to one element. To prove this, assume thatW1 and

W2 are two distinct A-ultrafilters in ZU . Then we can find two disjoint closed
sets Wi ∈ Wi (i = 1, 2) with compact frontier. Moreover, by Lemma A.5,
(Wi − FrWi)\ is an open neighbourhood of Wi in Ŷ and hence

f(U) ∩ (Wi − FrWi)\ = f(U) ∩ (Wi − FrWi) 6= ∅.
Thus, Wi ∩ f(U) 6= ∅, and so U ∩ f−1(Wi) 6= ∅ for all U ∈ U and i =
1, 2. By Lemma A.7, f−1(Wi) is a closed set with compact frontier. Hence
f−1(W1) and f−1(W2) are disjoint sets in the A-ultrafilter U , which is a
contradiction.

The previous observations show that f extends to a well-defined map
f̂ : X̂ → Ŷ by setting f̂(U) = f∗(U) where f∗(U) is the only element
in ZU . In order to prove the continuity of f̂ , let G\ be a basic open set as in
Lemma A.4. Then f̂−1(G\) = f−1(G) ∪ f−1

∗ (GF ). Moreover Fr(f−1(G)) is
compact by Lemma A.7, and the continuity of f̂ will follow if we check the
equality

f−1
∗ (GF ) = (f−1(G))F

yielding f̂−1(G\) = (f−1(G))\. For this, given U ∈ f−1
∗ (GF ), it follows

that G\ is an open neighbourhood of f∗(U) in Ŷ and hence G ∩ f(U) =
G\ ∩ f(U) 6= ∅ for all U ∈ U . Therefore, (f−1(G))\ ∩ U = f−1(G) ∩ U
6= ∅ for all U ∈ U ; that is, U ∈ f−1(G)F . The converse is similar.

Appendix B. Freudenthal ends of generalized continua can be defined
alternatively by using nested sequences of quasicomponents. This appendix
contains a proof of the equivalence of both approaches (Theorem B.7).
A third description of the Freudenthal compactification by using sequences
is given in [B].

Recall that, given a space X, the quasicomponent of x ∈ X, denoted
by Q = Q(x), is defined to be the intersection of all closed-open sets of
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X containing x. The partition into quasicomponents of X refines the par-
tition into components (i.e., each component is contained in a quasicompo-
nent); moreover, the continuous image of a quasicomponent is contained in a
quasicomponent. For compact metric spaces, quasicomponents coincide with
components; see [K] for details.

Lemma B.1. Let X be an admissible space. Given a compact set K ⊂ X
and a disjoint quasicomponent Q ⊂ X, there exists a closed-open set U with
Q ⊂ U and U ∩K = ∅.

Proof. As K and Q are disjoint, for each x ∈ K there is a closed-open
set Hx with x ∈ Hx and Q ⊂ X −Hx. By compactness, K ⊂ H =

⋃n
i=1Hxi

for some n ≥ 1, and we are done by setting U = X −H.

The space of quasicomponents of X is the set Q(X) of quasicomponents
of X endowed with the topology generated by the basis of open sets consist-
ing of all the sets A♦ = {Q; Q ∈ Q(X) and Q ⊂ A} where A ⊂ X ranges
over all closed-open subsets in X. Any continuous map f : X → Y between
admissible spaces induces a continuous map f# : Q(X)→ Q(Y ) which car-
ries a quasicomponent Q ⊂ X to the unique quasicomponent Q′ ⊂ Y with
f(Q) ⊂ Q′.

Lemma B.2. Let X be a generalized continuum. For any compact set
K ⊂ X the space of quasicomponents Q(X − intK) is compact.

Proof. Consider any cover Q(X − intK) =
⋃
α∈ΛA

♦
α where each Aα is a

closed-open set in X − intK. The connectedness of X guarantees that Aα ∩
FrK 6= ∅ for all α, and the compactness of FrK yields FrK ⊂ ⋃s

i=1Aαi for
some s ≥ 1. We claim that Q(X−intK) ⊂ ⋃s

j=1A
♦
αj
. Indeed, by Lemma B.1

and connectedness of X, Q∩FrK 6= ∅ for all Q ∈ Q(X−intK). Hence, given
x ∈ Q ∩ FrK there is i ≤ s with x ∈ Aαi , thus Q ⊂ Aαi , or equivalently,
Q ∈ A♦

αi
.

Proposition B.3. Let X be a generalized continuum and K ⊂ X be a
compact subset. Then Q(X − intK) is homeomorphic to a closed subspace
of the Cantor set.

Proof. By Lemma B.2, Q(X − intK) is compact, and by [K, Thm. 3
p. 148 and Thm. 5 p. 151] there exists an embedding Q(X − intK) ↪→∏∞
i=1{0, 1}. Here we use the fact that X − intK is second countable.

Given an exhausting sequence {Kn}n≥1 of X, a q-end of X is a sequence
(Qn)n≥1 of quasicomponents Qn ⊂ X − intKn with Qn+1 ⊂ Qn. Let E(X)
denote the set of all q-ends of X. The set qX = X ∪E(X) admits a compact
topology whose basis consists of all open sets of X together with the sets

qΩ = Ω ∪ {(Qn)n≥1; there is n0 with Qn ⊂ Ω for n ≥ n0}



INVERSE SEQUENCES 317

where Ω ⊂ X is any open set with compact frontier. We call qX the q-
compactification of X. Moreover, the subspace E(X) ⊂ qX turns out to be
homeomorphic to lim←−Q(X − intKn), and hence, by Proposition B.3, to a
closed subset of the Cantor set.

Given a set M ⊂ X, let ME denote the intersection M
qX ∩ E(X). If

M = Ω is an open set with compact frontier, then it is readily checked that
qΩ = Ω ∪ΩE . Moreover:

Lemma B.4. The family of sets of the form A[ = A∪AE where A ranges
over all closed subsets with compact frontier in X forms a basis of closed sets
in qX.

Proof. The difference Ω = X − A is an open set with compact frontier
FrΩ = FrA contained in the interior of some Kn. Hence A ∩ (X − intKn)
and Ω ∩ (X − intKn) form a partition of X − intKn into two open sets and
so AE = E(X)−ΩE . Thus, A[ = qX − qΩ, and the result follows.

Let {Kn} be an exhausting sequence of the generalized continuum X.
Given an A-ultrafilter U ∈ F(X), we consider, for each i ≥ 1, the filter

(B.1) Ui = {U ∈ U ; FrU ⊂ intKi}.
Notice that Ui 6= ∅ for each i ≥ 1 since X−intKi−1 ∈ Ui. Notice also that

for any U ∈ U there exists n0 such that U ∈ Un for all n ≥ n0. Moreover,
the connectedness of X yields U ∩ FrKi 6= ∅ for all U ∈ Ui. Therefore, by
[E, 3.1.24], the compactness of FrKi guarantees that for each i ≥ 1 the
intersection of closed sets

Li =
( ⋂
U∈Ui

U
)
∩ FrKi

is a non-empty compact subset of FrKi. Moreover, the family {FrKi}i≥1 is
locally finite and so the union L =

⋃∞
i=1 Li is a closed set in X. In addition

we have

Lemma B.5. The set LE consists of exactly one q-end εU .

Proof. Let {xi}i≥1 be any sequence with xi ∈ Li. By compactness of qX,
there is a subsequence converging to some end ε ∈ LE , and so LE 6= ∅.

Next we show that LE consists of exactly one q-end. For this, assume on
the contrary that ε = (Qn)n≥1 and ε′ = (Q′n)n≥1 are two q-ends in LE . Then
one finds i ≥ 1 such that there is a closed-open set H in X − intKi with
Qn ⊂ H and Q′n∩H = ∅ for all n ≥ i. If we set H ′ = (X− intKi)−H, then
qH and qH ′ are basic open neighbourhoods of ε and ε′, respectively. As
ε, ε′ ∈ L

qX , there are subsequences {xns}s≥1 and {xnt}t≥1 of elements xn ∈
Ln with xns ∈ H and xnt ∈ H ′ for all s, t ≥ 1. Thus, xns ∈

⋂
U∈Uns

U∩H 6= ∅,
and so H ∩U 6= ∅ for all U ∈ U since each U ∈ U belongs to some Uns . Since
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U is an ultrafilter, we get H ∈ U . Similarly, H ′ ∈ U and so ∅ = H ∩H ′ ∈ U ,
which is a contradiction. Thus, LE reduces necessarily to a single element.

Lemma B.5 yields a well-defined map

Ψ̃ : F(X)→ E(X)

by setting Ψ̃(U) = εU .

Theorem B.6. The map Ψ̃ is a homeomorphism.

Proof. First we show that Ψ̃ is bijective. For this, given two distinct
A-ultrafilters U ,W ∈ F(X) we find for any U ∈ U a set W ∈ W with U ∩W
= ∅. Here we use the fact that W 6= U is an ultrafilter. With the notation
of (B.1) above, we can assume without loss of generality that U ∈ Un0 and
W ∈ Wn0 for some n0. As the q-ends εU = (Qn)n≥1 and εW = (Q′n)n≥1

are in UE and W E , respectively, we have Qn0 ⊂ U and Q′n0
⊂ W . Hence

Qn0 ∩Q′n0
= ∅, and εU 6= εW . This shows that Ψ̃ is injective.

Furthermore, Ψ̃ is onto. In fact, given ε = (Qn)n≥1 ∈ E(X), the union
H =

⋃∞
n=1Hn, where Hn is the family of all closed-open sets in X − intKn

with
⋂{H;H ∈ Hn} = Qn, forms a basis for an A-filter. Let U be an

ultrafilter containing H. Then, for any n ≥ 1,

Ln =
⋂
U∈Un

U ∩ FrKn ⊂
⋂

H∈Hn

H ∩ FrKn ⊂ Qn−1.

Hence ε ∈ LE ; that is, ε = εU = Ψ̃(U).
Finally, as both F(X) and E(X) are Hausdorff compact spaces, it will

be enough to check that the bijection Ψ̃ is continuous. By using Lemma B.4
it suffices to show

Ψ̃−1(AE) = B(A) ∩ F(X)

for any closed set A with compact frontier, say FrA ⊂ intKn. To check this,
let U ∈ B(A). By definition A ∈ U , and so A ∈ Um for all m ≥ n+ 1. Hence
Lm ⊂ A and so Ψ̃(U) = εU ∈ AE . Conversely, if εU ∈ AE then A ∩ Lnj 6= ∅
for a subsequence {nj}j≥1, and so A ∩ U 6= ∅ for all U ∈ Unj . As any set in
U belongs to Unj for some nj , it follows that A ∈ U ; that is, U ∈ B(A). Here
we use the fact that U is an ultrafilter.

We extend Ψ̃ to a map Ψ : X̂ → qX by setting Ψ(Ux) = x if x ∈ X.

Theorem B.7. Ψ is a homeomorphism.

Proof. Clearly Ψ is a bijection. Moreover, the proof of Theorem B.6
shows that Ψ−1(A[) = B(A) for any closed set with compact frontier A,
and Lemma B.4 implies the continuity of Ψ . Thus Ψ is a homeomorphism
between Hausdorff compact spaces.
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