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Abstract. An independent set S of a graph G is said to be essential if S has a pair
of vertices that are distance two apart in G. In 1994, Song and Zhang proved that if for
each independent set S of cardinality k + 1, one of the following condition holds:

(i) there exist u 6= v ∈ S such that d(u) + d(v) ≥ n or |N(u) ∩N(v)| ≥ α(G);
(ii) for any distinct u and v in S, |N(u) ∪N(v)| ≥ n−max{d(x) : x ∈ S},

then G is Hamiltonian. We prove that if for each essential independent set S of cardinality
k+1, one of conditions (i) or (ii) holds, then G is Hamiltonian. A number of known results
on Hamiltonian graphs are corollaries of this result.

1. Introduction. We consider only finite simple graphs in this paper;
undefined notation and terminology can be found in [1]. In particular, we
use V (G), E(G), k(G), α(G) and δ(G) to denote the vertex set, edge set,
connectivity, independence number and minimum degree of G, respectively.
If G is a graph and u, v ∈ V (G), then a path in G from u to v is called
a (u, v)-path of G. If v ∈ V (G) and H is a subgraph of G, then NH(v)
denotes the set of vertices in H that are adjacent to v in G. Thus, dH(v),
the degree of v relative to H, is |NH(v)|. We also write d(v) = dG(v) and
N(v) = NG(v) when the graph in use is clear. If C and H are subgraphs
of G, then NC(H) =

⋃
u∈V (H)NC(u), and G − C denotes the subgraph of

G induced by V (G)− V (C). For vertices u, v ∈ V (G), the distance between
u and v, denoted d(u, v), is the length of a shortest (u, v)-path in G, or ∞
if no such path exists.

Let Cm = x0x1 . . . xm−1x0 denote a cycle of order m. Define N+
Cm

(u) =
{xi+1 : xi ∈ NCm(u)}, N−Cm

(u) = {xi−1 : xi ∈ NCm(u)} and N±Cm
(u) =

N+
Cm

(u) ∪ N−Cm
(u), where subscripts are taken modulo m. Let S ⊆ V (G),

and define ∆(S) = max{d(x) : x ∈ S}.
A subset S ⊆ V (G) is said to be an essential independent set (EIS) if

S is an independent set in G and there exist two distinct vertices x, y ∈ S
with d(x, y) = 2.
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Three classical results on Hamiltonian graphs are:

Theorem 1.1 (Dirac, [4]). If δ(G) ≥ n/2, then G is Hamiltonian.

Theorem 1.2 (Ore, [11]). If d(u)+d(v) ≥ n for each pair of nonadjacent
vertices u, v ∈ V (G), then G is Hamiltonian.

Theorem 1.3 (Chvátal and Erdős, [3]). If G is a graph with κ(G) ≥
α(G), then G is Hamiltonian.

Theorem 1.2 was generalized by Fan [5] who showed that only pairs
of vertices at distance 2 are essential. In 1996, Chen et al. [2] proved a
Dirac-type result for essential independent sets with k vertices.

Theorem 1.4 (Chen et al., [2]). Let G be a k-connected (k ≥ 2) graph
on n ≥ 3 vertices. If max{d(u) : u ∈ S} ≥ n/2 for any essential independent
set S with k vertices in G, then G is Hamiltonian.

In 1997, Liu and Wei [10] considered essential independent sets with k+1
vertices in the following:

Theorem 1.5 (Liu and Wei, [10]). Let G be a k-connected (k ≥ 2) graph
on n ≥ 3 vertices. If max{d(u) : u ∈ S} ≥ n/2 for any essential independent
set S with k + 1 vertices in G, then G is Hamiltonian or is in one of three
exceptional classes of graphs.

In 2002, Hirohata [9] considered essential independent sets S with k
vertices and showed that the length of a longest cycle depends on max{d(u) :
u ∈ S}. Recently, in [8] Theorem 1.5 as well as some other results were
generalized.

Neighborhood unions have already been shown to be very useful in study-
ing Hamiltonian graphs. The first use of this generalized degree condition
was to provide another generalization of Dirac’s theorem by Faudree et al.
[7] in 1989.

Theorem 1.6 (Faudree et al. [7]). If G is a 2-connected graph and if
|N(u)∪N(v)| ≥ (2n−1)/3 for each pair of nonadjacent vertices u, v ∈ V (G),
then G is Hamiltonian.

In 1991, Faudree et al. [6] considered the effect of δ(G).

Theorem 1.7 (Faudree et al., [6]). If G is a 2-connected graph and if
|N(u)∪N(v)| ≥ n− δ(G) for each pair of nonadjacent vertices u, v ∈ V (G),
then G is Hamiltonian.

In 1994, Song and Zhang [12] considered independent sets with k + 1
vertices and proved the following theorem.

Theorem 1.8 (Song and Zhang, [12]). Let G be a k-connected graph
(k ≥ 2) with independence number α. If for each independent set S of car-
dinality k + 1, one of the following conditions holds:
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(i) there exist u 6= v ∈ S such that d(u)+d(v) ≥ n or |N(u)∩N(v)| ≥ α;
(ii) for any distinct u and v in S, |N(u)∪N(v)| ≥ n−max{d(x) : x ∈ S},

then G is Hamiltonian.

The purpose of this paper is to unify and extend the theorems above
through the use of essential independent sets by proving the following result.

Theorem 1.9. Let G be a k-connected graph (k ≥ 2) with independence
number α. If for each essential independent set S of cardinality k + 1, one
of the following conditions holds:

(i) there exist u 6=v∈S such that d(u) + d(v)≥n or |N(u) ∩N(v)|≥α;
(ii) for any distinct u and v in S, |N(u)∪N(v)| ≥ n−max{d(x) : x ∈ S},

then G is Hamiltonian.

Obviously, Theorem 1.9 generalizes Theorems 1.1, 1.2, 1.3, 1.6, 1.7 and 1.8.
Next we present an example that shows that Theorem 1.9 is stronger than
Theorem 1.8.

Let k ≥ 2 and n ≥ (k + 1)(k + 3) + k + 2 + 1 = k2 + 5k + 6. Let
H = Kn−(k+2) and build a graph G as follows. Take H along with a disjoint
set of vertices S = {x1, . . . , xk+2}. Now join each xi ∈ S, 1 ≤ i ≤ k+ 1, to a
distinct set of k+ 3 vertices of H. That is, make the neighborhoods of these
vertices of S disjoint. Next join xk+2 to a set of k vertices of H in such a
way that N(xk+2) ∩N(xi) = ∅ for 1 ≤ i ≤ k + 1.

Now the resulting graph G is clearly k-connected. Also α(G) = k + 3.
If we consider the independent vertex set S′ = {x1, . . . , xk+1} we see that
d(xi) + d(xj) = 2k + 6 < n.

Also, for two vertices in S′ we have |N(xi)∩N(xj)| = ∅. Thus condition
(i) of the Song–Zhang Theorem fails to hold. Further,

|N(xi) ∪N(xj)| = 2k + 6 < n−max{d(x) : x ∈ S} = n− (k + 3)

(using the bound on n). Thus, condition (ii) of the Song–Zhang Theorem
also fails to hold. Hence, Theorem 1.8 cannot be applied to G.

However, the only essential independent sets of order k + 1 contain a
vertex y in H and k vertices from S = {x1, . . . , xk+2}. For any such set,
there exists some vertex xi such that d(y, xi) = 2 and

d(y) + d(xi) = n− (k + 2)− 1 + k + 3 = n.

Therefore, Theorem 1.9 does apply.

2. Proof of Theorem 1.9. Before we begin the proof of Theorem
1.9, we need to establish a few basic facts. Within these facts we will also
establish some useful inequalities.

For a cycle Cm = x0x1 . . . xm−1x0, we write [xi, xj ] to denote the subpath
xi, xi+1, . . . , xj of the cycle Cm, where subscripts are taken modulo m. For
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notational convenience, [xi, xj ] will denote the (xi, xj)-path of Cm as well
as the vertex set of this path.

Claim. Let G be a 2-connected non-Hamiltonian graph. Let Cm = x0x1

. . . xm−1x0 be a longest cycle of G, H a component of G − Cm, x ∈ V (H).
Suppose that xi ∈ NCm(x) and xj ∈ NCm(H) satisfy {xi+1, xi+2, . . . , xj−1}∩
NCm(H) = ∅. Then Facts (I)–(III) and inequalities (1)–(5) below hold.

Proof of Claim. Let P be a path in H with end-vertices adjacent to
xi, xj ∈ V (Cm), respectively.

Fact (I). Suppose xh ∈ {xi+1, xi+2, . . . , xj−2} − {xj , xj−1} is adjacent
to xj+1. Then xh+1 is adjacent to neither xi+1 nor x.

First, since {xi+1, xi+2, . . . , xj−1} ∩NCm(H) = ∅, it follows that xh+1 is
not adjacent to x.

If xh+1 is adjacent to xi+1 we obtain the cycle

C∗ = xiPxjxj−1 . . . xh+1xi+1xi+2 . . . xhxj+1xj+2 . . . xi

which is longer than Cm, a contradiction.

Fact (II). Suppose xh ∈ {xj+1, xj+2, . . . , xi} is adjacent to xj+1. Then
xh−1 is adjacent to neither xi+1 nor x.

Otherwise, if xh−1 is adjacent to xi+1, then the cycle

C∗ = xiPxjxj−1 . . . xi+1xh−1xh−2 . . . xj+1xhxh+1 . . . xi

is longer than Cm, a contradiction. Also, suppose xh−1 is adjacent to x. Let
P ′ be a path in H with end-vertices adjacent to xh−1, xj , respectively. Then

C∗ = xh−1P
′xjxj−1 . . . xhxj+1xj+2 . . . xh−1

is a cycle longer than Cm, a contradiction.

Fact (III). Suppose y ∈ V (G − Cm) is adjacent to xj+1. Then y is
adjacent to neither xi+1 nor x.

Clearly, y is not in H, so y is not adjacent to x. If y is adjacent to xi+1,
then the cycle

C∗ = xiPxjxj−1 . . . xi+1yxj+1xj+2 . . . xi

is longer than Cm, a contradiction. In Fact (I) above, we do not assume that
the two vertices {xj , xj−1} are adjacent to xj+1. Hence, we have

|N(xi+1) ∪N(x)| ≤ n− (d(xj+1)− |{xj−1, xj}|)− |{xi+1, x}|(1)
≤ n− d(xj+1).
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Clearly, all vertices in N+
Cm

(H) ∪ V (H) are nonadjacent to xi+1 and
nonadjacent to xj+1. Hence, we also have

|N(xi+1) ∪N(xj+1)| ≤ n− |N+
Cm

(H) ∪ V (H)|(2)

≤ n− |N+
Cm

(x)| − |V (H)|.

Moreover, if xj−1 is adjacent to xj+1, then xj is not adjacent to xi+1.
Combining this with the discussion in Facts (I), (II) and (III), there are at
least (d(xj+1) − |{xj}|) − |{xi+1}| − |V (H)| vertices not adjacent to xi+1.
Hence,

d(xi+1) ≤ n− (d(xj+1)− |{xj}|)− |{xi+1}| − |V (H)|,

which implies that

d(xi+1) + d(xj+1) ≤ n− |V (H)|.(3)

Similarly, all vertices in N+
Cm

(xj+1)∪NG−Cm(xj+1)∪{x} are nonadjacent
to x, thus we have

d(x) ≤ n− |N+
Cm

(xj+1) ∪NG−Cm(xj+1) ∪ {x}|,

which implies

d(x) + d(xj+1) ≤ n− 1.(4)

Clearly, the common neighbors of xi+1 and x are all on Cm. Hence, we
also have

|N(xi+1) ∩N(x)| ≤ α− 1.(5)

Proof of Theorem 1.9. Assume that G is not Hamiltonian. Let Cm =
x0x1 . . . xm−1x0 be a longest cycle of G, and H a component of G − Cm.
Since G is k-connected, we have |NCm(H)| ≥ k. Let P be a path in H
whose end-vertices x∗, y∗ are adjacent to xi and xj on Cm respectively. Let
x ∈ V (H) and xi ∈ NCm(x). Let S∗ denote k vertices of N+

Cm
(H) containing

xi+1, and let S = S∗ ∪{x}. Clearly, S is an EIS. Now, G satisfies conditions
(i) or (ii) of the Theorem.

Suppose (i) holds, that is, there exist u, v ∈ S with u 6= v such that
d(u) + d(v) ≥ n or |N(u) ∩N(v)| ≥ α.

Since S is an EIS, we have α(G) ≥ k+1. Then, by inequalities (3) and (4),
d(u) + d(v) ≥ n is impossible. Together with (i), this implies |N(u) ∩N(v)|
≥ α. By (5), if |N(u)∩N(v)| ≥ α(G), then u, v ∈ N+

Cm
(H). Without loss of

generality, assume {u, v} = {xi+1, xj+1}.
Since Cm is a longest cycle of G, the vertices of N(xi+1) ∩ N(xj+1)

are not in G − Cm, for otherwise a cycle longer than Cm is easily found.
Thus, N(xi+1) ∩ N(xj+1) ⊆ V (Cm), which implies |N(xi+1) ∩ N(xj+1)| =
|NCm(xi+1)∩NCm(xj+1)| = |N−Cm

(xi+1)∩N−Cm
(xj+1)|. Since Cm is a longest
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cycle of G, N−Cm
(xi+1) ∩ N−Cm

(xj+1) is an independent set (or again, us-
ing P , a longer cycle is easily found). Let w be a vertex of H. Then {w} ∪
(N−Cm

(xi+1) ∩ N−Cm
(xj+1)) is also an independent set. By condition (i) of

the Theorem, |N−Cm
(xi+1) ∩ N−Cm

(xj+1)| ≥ α. This implies that |{w} ∪
(N−Cm(xi+1) ∩ N−Cm

(xj+1))| ≥ α + 1, contradicting the fact that the in-
dependence number of G is α.

Now suppose (ii) holds, that is, for any distinct u, v ∈ S, |N(u)∪N(v)| ≥
n−max{d(x) : x ∈ S} = n−∆(S).

If ∆(S) = d(x), then by inequality (2), we have |N(xi+1) ∪N(xj+1)| ≤
n − d(x) − 1, while condition (ii) says that |N(u) ∪ N(v)| ≥ n − ∆(S), a
contradiction.

We now consider the following two cases.

Case 1: k ≥ 3 and |NCm(H)| ≥ k. In this case, let xi1, . . . , xik ∈
NCm(H) be such that there are no neighbors of H in the intervals [xit+1, . . . ,
xi(t+1)−1] for t = 1, . . . , k − 1. Let z ∈ V (H) be adjacent to some vertex of
{xi1, xi2, . . . , xik} and let

S = {z, xi1+1, . . . , xik+1}.

Clearly, S is an EIS. Without loss of generality, ∆(S) = d(xik+1).
If xik−1xik+1 /∈ E(G), then by (1), there exist

(d(xik+1)− |{xik}|) + |{xi(k−1)+1, z}|

vertices that are nonadjacent to xi(k−1)+1 and nonadjacent to z, hence we
have

|N(xi(k−1)+1) ∪N(z)| ≤ n− (d(xik+1)− |{xik}|)− |{xi(k−1)+1, z}|
≤ n− d(xik+1)− 1,

a contradiction.
Suppose xik−1xik+1 ∈ E(G). Without loss of generality, xik+t is not

adjacent to xik−1, and all of {xik+1, xik+2, . . . , xik+t−2, xik+t−1} are adjacent
to xik−1 (clearly, xik+t must exist in the set {xik+1, xik+2, . . . , xi(k+1)−1},
since xi(k+1)−1 is not adjacent to xik−1). Then, without loss of generality,
x ∈ V (H) is adjacent to some vertex of {xi1, xi2, . . . , xi(k−1)}. Let S∗ =
{x, xi1+1, xi2+1, . . . , xi(k−1)+1, xik+t}. Clearly, S∗ is an EIS (for otherwise a
longer cycle clearly exists, a contradiction). For the EIS S∗ we will prove
that conditions (i) and (ii) of the Theorem fail to hold.

First, when w, y ∈ {x, xi1+1, xi2+1, . . . , xi(k−1)+1, xik+t}\{xik+t}, we can
easily check that d(w) + d(y) ≤ n− 1 and |N(w) ∩N(y)| ≤ α− 1.

Next, suppose w = xik+t and y = x. Clearly we also have d(w) + d(y) ≤
n− 1 and |N(w) ∩N(y)| ≤ α− 1.
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Now suppose w = xik+t and y ∈ {xi1+1, xi2+1, . . . , xi(k−1)+1}.
Since xik−1xik+1 ∈ E(G) and each vertex of {xik+1, xik+2, . . . , xik+t−1} is

adjacent to xik−1, it follows that each vertex of {x, xi1+1, xi2+1, . . . , xik+t} \
{xik+t} is nonadjacent to any vertex of {xik, xik+1, . . . , xik+t−2, xik+t−1}
(otherwise, we easily get a longer cycle). Then clearly, for any xi(k−r)+1

(1 ≤ r ≤ k − 1),

(F1) if xh ∈ {xi(k−r)+1, xi(k−r)+2, . . . , xik−1} is adjacent to xi(k−r)+1,
then xh−1 is not adjacent to xik+t

(otherwise, the cycle

xikxik+1xik+2 . . . xik+t−1xik−1xik−2 . . . xhxi(k−r)+1xi(k−r)+2

. . . xh−1xik+txik+t+1 . . . xi(k−r)Pxik

is longer than Cm, a contradiction). Similarly,

(F2) If xh ∈ {xik+t+1, xik+t+2, . . . , xi(k−r)} \ {xi(k−r)} is adjacent to
xi(k−r)+1, then xh+1 is not adjacent to xik+t.

If there exist p vertices of Cm \ {xi(k−i)} adjacent to xi(k−r)+1 or xik+t,
then there must also exist p vertices of Cm \ {xi(k−r)} not adjacent to xik+t

or xi(k−r)+1. Moreover, no vertex of H is adjacent to both xi(k−r)+1 and
xik+t, and every vertex of G − Cm − H is adjacent to at most one of
{xi(k−r)+1, xik+t}, and xi(k−r)+1 and xik+t are not adjacent to both xi(k−r)+1

and xik+t. Hence, we have d(xi(k−r)+1) + d(xik+t) ≤ n− 1.
It follows that |N−(xi(k−r)+1) ∩ N−(xik+t)| ≤ α − 1 (otherwise, by a

proof similar to case (i), we must get a longer cycle). Thus, |N(xi(k−r)+1)∩
N(xik+t)| ≤ α(G)− 1.

Therefore, when w = xik+t, y ∈ {xi1+1, xi2+1, . . . , xi(k−1)+1}, we also
have d(w) + d(y) ≤ n− 1 and |N(w) ∩N(y)| ≤ α(G)− 1.

Now, we consider condition (ii) of the Theorem.
Suppose d(xik+t) ≤ max{d(xih+1) : h = 1, . . . , k − 1}. Without loss of

generality, assume ∆(S∗) = d(xih+1), where h ∈ {1, . . . , k−1}. Clearly xih+1

is not adjacent to xik+2 (otherwise, the cycle C∗ = xihPxikxik+1xik−1xik−2

. . . xih+1xik+2xik+3 . . . xih is longer than Cm). Further, xi(h−1)+1 and x are
not both adjacent to xik+1 (otherwise, we must get a longer cycle). Thus,
by (1), we have

|N(xi(h−1)+1) ∪N(x)| ≤ n− (d(xih+1)− |{xih−1, xih}|)
− |{xi(h−1)+1, x}| − |{xik+1}|

≤ n− d(xih+1)− 1,

a contradiction.
Suppose d(xik+t) > max{d(xih+1) : h = 1, . . . , k − 1}.
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In this case, clearly, none of {xi(k−1)+1, xi(k−1)+2, . . . , xik−1} is adjacent
to x. By the choice of xik+t, none of {xik+1, xik+2, . . . , xik+t} is adjacent to
xi(k−1)+1 and none to x (otherwise, we obtain a cycle longer than Cm).

Since Cm is a longest cycle of G, we have:

• If xi(k−1)+r ∈ {xi(k−1)+2, xi(k−1)+3, . . . , xik−2} is adjacent to xik+t,
then xi(k−1)+r+1 is adjacent to neither xi(k−1)+1 nor x.
• xik+r ∈ {xik+t, xik+t+1, . . . , xi(k−1)} is adjacent to xik+t, then xik+r−1

is adjacent to neither xi(k−1)+1 nor x.
• xik+r ∈ {xik, xik+1, . . . , xik+t−1}\{xik} is adjacent to xik+t, then xik+r

is adjacent to neither xi(k−1)+1 nor x.

Similar to the discussion of inequality (1), we have

|N(xi(k−1)+1) ∪N(x)| ≤ n− (d(xik+t)− |{xik}|)− |{xi(k−1)+1, x}|
≤ n− d(xik+t)− 1,

a contradiction.

Case 2: |NCm(H)| = |{xi, xj}| = 2. In this case, without loss of gener-
ality, assume d(xi+1) ≤ d(xj+1).

Claim (a). Let x, y be two vertices of H which are adjacent to xi, xj, re-
spectively. If d(xi+1, xj+1) = 2, then there is a Hamilton path in the subgraph
H with end-vertices x, y.

Proof of Claim (a). Let P ′ be a longest path of H with end-vertices x, y.
If P ′ is not a Hamilton path of H, let w be a vertex of H − P ′ which is
adjacent to some vertex of P ′. Clearly, {xi+1, xj+1, w} is an EIS. Further, we
know that condition (i) of the Theorem does not hold. Thus, (ii) must hold.
Then we can check that w must be adjacent to every vertex of H −{w}, for
otherwise, by (1), we again reach a contradiction. Thus, we get a path in H
longer than P ′ with end-vertices x, y, a contradiction.

Claim (b). If u ∈ V (H) is adjacent to xi, then u must be adjacent
to xj.

Proof of Claim (b). If u is not adjacent to xj , then, by a proof similar
to that of (1), |N(xi+1) ∪ N(x)| ≤ n − (d(xj+1) − |{xj}| − |{xi+1, x}| ≤
n− d(xj+1)− 1, a contradiction.

Subcase 2.1: |V (H)| ≥ 2. Let {xi, xj} = NCm(H), and let x, y ∈ V (H)
be adjacent to xi, xj , respectively. Moreover, let |V (H)| = h.

Subcase 2.1.1: d(xi+1, xj+1) ≥ 3.

Subcase 2.1.1.1: d(x) ≥ max{d(xi+1), d(xj+1)} or d(y) ≥ max{d(xi+1),
d(xj+1)}. Without loss of generality, assume d(x) ≥ max{d(xi+1), d(xj+1)}.
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Clearly {x, xi+1, xj+1} is an EIS. Further, we know that condition (i) of the
Theorem does not hold. Thus, (ii) must hold. But we can check that

|N(xi+1) ∪N(xj+1)| ≤ n− |N(x)| ≤ n−max{d(x) : x ∈ S} − 1,

contrary to (ii).

Subcase 2.1.1.2: Subcase 2.1.1.1 fails to hold. Without loss of gener-
ality, d(xj+1) = max{d(xi+1), d(xj+1), d(x), d(y)}. Since d(xi+1, xj+1) ≥ 3,
let xr ∈ {xj+1, xj+2, . . . , xi} be adjacent to xj+1 with r as large as possible.
Then xr is not adjacent to xi+1. Let xh ∈ {xi+1, xi+2, . . . , xj−1} be adjacent
to xj+1 with h as small as possible. Then xh is not adjacent to xi+1. Hence,
one can check that

|N(xi+1) ∪N(x)| ≤ n− (d(xj+1)− |{xj , xj−1}|)− |{xi+1, x}| − |{xk, xh}|
≤ n− d(xj+1)− 2,

a contradiction.

Subcase 2.1.2: d(xi+1, xj+1) = 2. By Claim (a), H has a Hamilton
path with end-vertices x, y. Suppose that

(∗) xf ∈ {xj+1, xj+2, . . . , xi} is adjacent to xi+1 and xf+r ∈ {xj+1, xj+2,
. . . , xi} is adjacent to xj+1 (where r ≥ 1 and xf+1 is not adjacent to
xi+1).

Then none of {xf+1, xf+2, . . . , xf+h} is adjacent to xj+1 (otherwise, together
with Claim (a) that H has a Hamilton path with end-vertices x, y, we get a
cycle longer than Cm). Hence, we have

|N(xi+1) ∪N(x)| ≤ n− (d(xj+1)− |{xj−1, xj}|)− |{xi+1, x}|
− (|{xf+1, xf+2, . . . , xf+h}| − 1)

≤ n− d(xj+1)− 1,

a contradiction.
Similarly, if xf ∈ {xi+1, xi+2, . . . , xj−1} is adjacent to xj+1, and xf+r

is adjacent to xi+1, we also get a contradiction. Now suppose that (∗)
fails to hold. Namely, when xf ∈ {xj+1, xj+2, . . . , xi} is adjacent to xj+1,
then none of {xj+1, xj+2, . . . , xf−1} is adjacent to xi+1. If xf ∈ {xi+1,
xi+2, . . . , xj−1} is adjacent to xj+1, then none of {xf+1, xf+2, . . . , xj} is ad-
jacent to xi+1. In this case, under the conditions of the Theorem, if xf ∈
{xj+1, xj+2, . . . , xi} is adjacent to xj+1, and none of {xf+1, xf+2, . . . , xi}
is adjacent to xj+1, then all of {xj+1, xj+2, . . . , xf} are adjacent to xj+1,
and every vertex of {xf , xf+1, . . . , xi} is adjacent to xi+1. Similarly, when
xt ∈ {xi+1, xi+2, . . . , xj} is adjacent to xi+1, and none of {xt+1, xt+2, . . . , xj}
is adjacent to xi+1, then every vertex of {xi+1, xi+2, . . . , xt} is adjacent to
xi+1 (otherwise we obtain the contradiction that |N(xi+1)∪N(x)| ≤ n−d(j+
1)− 1). Clearly xf−1 is not adjacent to any of {xf , xf+1, . . . , xt} − {xf , xt}



72 K. W. ZHAO AND R. J. GOULD

and xf−1 is not adjacent to xj (otherwise, we again obtain a longer cycle).
Thus, if d(xi+1) ≤ d(xf−1), we have

|N(xi+1) ∪N(x)| ≤ n− (d(xf−1)− |{xf , xt}|)− |{xi+1, x, xj}|
≤ n− d(xf−1)− 1,

a contradiction. If d(xi+1) > d(xf−1), we have

|N(xf−1)∪N(x)| ≤ n−(d(xi+1)−|{xf , xt}|)−|{xi−1, x, xj}| ≤ n−d(xi+1)−1,

a contradiction.

Subcase 2.2: |V (H)| = 1. Let V (H) = {x} and |NCm(x)| = 2 =
|{x1, xf}|. In this case, we have Cm = Cn−1, since otherwise, as we are
not in Subcase 2.1, any component H ′ of G − Cm − H has |V (H ′)| = 1.
Without loss of generality, let V (H ′) = {y}, so |NCm(y)| = 2. This implies
that |N(x) ∪ N(y)| ≤ 4. Since Cm is a longest cycle, y is not adjacent to
at least one of {x2, xf+1}. Without loss of generality, y is not adjacent to
x2. Then d(x2) ≤ n − |{x, y, x2, xf+1}| = n − 4. Clearly, S = {x, y, x2}
is an EIS. By condition (ii) of the Theorem, for any distinct u and v in
S, |N(u) ∪ N(v)| ≥ n − ∆(S). Together with d(x2) ≤ n − 4, we see that
|N(x) ∪N(y)| = 4 implies m ≥ 4 and d(x2) = n− 4. Since Cm is a longest
cycle we can easily check that m ≥ 6 and n ≥ 8. By inequality (3), we
have d(xf+1) ≤ n − |V (H)| − d(x2) = 3. If y is not adjacent to xf+1, then
S = {x, y, xf+1} is an EIS. Then condition (ii) of the Theorem implies that
|N(x)∪N(y)| ≥ n∆(S) fails, a contradiction. Suppose y is adjacent to xf+1.
Let N(y) = {xi, xj}, say i < j. Since Cm is a longest cycle of G, if xh+1 = xi,
then xj−1 is not adjacent to x2. Thus we have d(x2) < n − 4, which con-
tradicts the above result that d(x2) = n− 4. If xf+1 = xj then since Cm is
a longest cycle of G; it follows that xi+1 is not adjacent to x2 and we have
d(x2) < n− 4, again contradicting d(x2) = n− 4. Therefore, Cm = Cn−1.

Now, without loss of generality, assume d(x2) ≤ d(xf+1). Let S =
{x, x2, xf+1}.

Claim (I). The vertex x2 is not adjacent to xf .

For otherwise, we have |N(x2) ∪N(x)| = d(x2). By condition (ii) of the
Theorem, that implies |N(x2) ∪ N(x)| ≥ n −∆(S) = n − d(xf+1), and we
have d(x2) ≥ n− d(xf+1). This contradicts inequality (3).

Claim (II). The vertex xf−1 is adjacent to xf+1.

For otherwise, by inequality (3) and Claim (I), we have

d(x2) ≤ n− (d(xf+1)−|{xf}|)−|{x2}|− |{xf}|− |V (H)| ≤ n−d(xf+1)−2.

But by condition (ii) of the Theorem and Claim (I), we have
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d(x2) = |N(x2) ∪N(x)| − 1 ≥ n−∆(S)− 1 = n− d(xf+1)− 1,

a contradiction.

Claim (III). The vertex x2 is adjacent to xn−1.

For otherwise, if x2 is not adjacent to xn−1, when d(x2) = d(xf+1), we
can apply Claim (II) to deduce that x2 is adjacent to xn−1, a contradiction.
Suppose d(x2) < d(xf+1). If d(xn−1) ≥ d(xf−1), Claim (II) implies that x2

is adjacent to xn−1, again a contradiction. If d(xn−1) < d(xf−1), together
with inequality (3) we have max{d(x2), d(xn−1)} < (n − 1)/2. Let S =
{x, x2, xn−1}. Clearly, this contradicts condition (ii) of the Theorem.

Claim (IV). Let xt ∈ {xf+1, xf+2, . . . , xn−1} be adjacent to x2 and
suppose none of {xf+1, xf+2, . . . , xt−2, xt−1} is adjacent to x2. Let xt ∈
{x2, x3, . . . , xf−1} be adjacent to xf+1 and none of {x2, x3, . . . , xk − 1} be
adjacent to xf+1. Then d(xt−1) + d(xk−1) ≤ n− 3.

In this case, xt is adjacent to xf+1 (otherwise, by inequality (1), we have

|N(x2) ∪N(x)| ≤ n− (d(xf+1)− |{xf−1, xf}|)− |{x2, x}| − |{xt−1}|
= n− d(xf+1)− 1,

contradicting condition (ii) of the Theorem).
Since Cn−1 is a longest cycle of G, when xr ∈ {x2, x3, . . . , xf−1} is adja-

cent to x2, then xr−1 is not adjacent to xt−1. If xr ∈ {xt, xt+1, . . . , xn−1, x1}−
{xn−1, x1} is adjacent to x2, then xr+1 is not adjacent to xt−1. Clearly, x2 is
adjacent to neither xf nor xf+1, and xt−1 is adjacent to neither xf−1 nor xf .
Hence, we have

d(xt−1) ≤ n− (d(x2)− |{xn−1, x1}|)− |{xf−1, xf , xt−1, x}| = n− d(x2)− 2.

Similarly, d(xk−1) ≤ n− d(xf+1)− 2. This implies

d(xt−1) + d(xk−1) ≤ [n− d(x2)− 2] + [n− d(xf+1)− 2].(6)

Without loss of generality, assume d(x2) ≥ d(xf+1). By condition (ii) of
the Theorem, we have d(x2) + 1 = |N(x2) ∪ N(x)| ≥ n − d(xf+1), which
implies that d(x2) + d(xf+1) ≥ n − 1. By inequality (3), we have d(x2) +
d(xf+1) ≤ n − 1. This implies d(x2) + d(xf+1) = n − 1. Together with (6),
we have

d(xt−1) + d(xk−1) ≤ [n− d(x2)− 2] + [n− d(xf+1)− 2] = n− 3.(7)

In what follows we will show that d(xk−1) + d(xt−1) ≥ n− 2, which con-
tradicts the above inequality. First we must establish the following claims.

Claim (A). If xk−1xf ∈ E(G), then d(xk−1) ≥ d(xf−1). If xk−1xf−1 /∈
E(G), then d(xk−1) ≥ d(xf+1)− 1.
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Clearly, {x, xn−1, xk−1} is an EIS. If the Claim fails to hold, then by
condition (ii) of the Theorem, we have

d(xn−1) + 1 = |N(xn−1) ∪N(x)| ≥ n−∆{x, xn−1, xk−1}.(8)

If d(xk−1) ≥ d(xn−1), then inequality (8) becomes

d(xn−1) + 1 = |N(xn−1) ∪N(x)| ≥ n−∆{x, xn−1, xk−1} = n− d(xk−1).

Since Claim (A) fails to hold,

n− d(xf−1) > n− d(xf−1).

Thus, d(xn−1) + 1 > n − d(xh−1), which implies that d(xn−1) + d(xh−1) >
n− 1, which contradicts inequality (3).

If d(xk−1) < d(xn−1), then combined with the above hypothesis that
d(xn−1) ≤ d(xf−1), and that Claim (A) fails, we find that when xk−1xf ∈
E(G),

d(xf−1) + 1 > d(xk−1) + 1 ≥ |N(xk−1) ∪N(x)|.(9)

When xk−1xf /∈ E(G), we get

d(xf−1) + 1 > d(xk−1) + 2 ≥ |N(xk−1) ∪N(x)|.(10)

Now |N(xk−1) ∪ N(x)| ≥ n − ∆{x, xn−1, xk−1} = n − d(xn−1), which
implies that d(xn−1)+d(xf−1) > n−1. However, this contradicts (3). Thus,
Claim (A) is proved.

Claim (B). If xt−1xn ∈ E(G), then d(xt−1) ≥ d(xn−1). If xt−1xn /∈
E(G), then d(xt−1) ≥ d(xn−1)− 1.

The proof of Claim (B) is similar to that of (A) and is omitted.
Thus, when xk−1 is adjacent to xf or xt−1 is adjacent to xn, we have

d(xk−1) + d(xt−1) ≥ d(xn−1) + d(xf−1)− 1 = n− 2.

This contradicts (7).
When xk−1 is not adjacent to xf and xt−1 is not adjacent to xn, we have

d(xk−1) + d(xt−1) ≥ d(xn−1) + d(xf−1)− 2 = n− 3.

Together with inequality (7), we have d(xk−1)+d(xt−1) = n−3. Then clearly
xk−1xt−1 /∈ E(G) and xk−1x1 /∈ E(G) and xk−1xf /∈ E(G). Since xk−1xf ∈
E(G) and xt−1xn /∈ E(G), none of the vertices of {xk−1, xt−1, x1, xf} is
adjacent to both xk−1 and xt−1. Together with the fact that d(xk−1) +
d(xt−1) = n − 3, we see that xk−1 and xt−1 must have at least one com-
mon neighbor. Thus, {x, xt−1, xk−1} is an EIS. Without loss of generality,
d(xt−1) ≥ d(xk−1).

By condition (ii) of the Theorem, we have

d(xk−1) + 2 = |N(xk−1) ∪N(x)| ≥ n−∆{x, xt−1, xk−1} = n− d(xt−1),
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which implies d(xk−1) + d(xt−1) ≥ n − 2, a contradiction to inequality (7),
completing the proof of the Theorem.
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