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REMARKS ON THE COMPARISON
OF WEIGHTED QUASI-ARITHMETIC MEANS

BY

GYULA MAKSA and ZSOLT PÁLES (Debrecen)

Abstract. We present comparison theorems for the weighted quasi-arithmetic means
and for weighted Bajraktarević means without supposing in advance that the weights are
the same.

1. Introduction. Throughout this paper N, Z, Q, R, and I will denote
the sets of all positive integers, integers, rational numbers, real numbers, and
a nonvoid open subinterval of R, respectively. Let ϕ : I → R be a continuous
and strictly monotonic function, 2 ≤ n ∈ N, and λ1, . . . , λn ∈ ]0, 1[ such that∑n

k=1 λk = 1. The function Mϕ,λ defined on In by

Mϕ;λ(x1, . . . , xn) = ϕ−1
( n∑
k=1

λkϕ(xk)
)

is called a weighted quasi-arithmetic mean with generating function ϕ and
weights λ1, . . . , λn. In this note we discuss the following comparison prob-
lem for these means: What properties have to be imposed upon the con-
tinuous and strictly monotonic functions ϕ,ψ : I → R and the weights
λ1, . . . , λn, µ1, . . . , µn in order that the inequality

Mϕ;λ(x1, . . . , xn) ≤Mψ;µ(x1, . . . , xn)

be satisfied for all (x1, . . . , xn) ∈ In? This problem was raised and discussed
in the monograph of Hardy–Littlewood–Pólya [9], supposing in advance that
the weights are the same (see p. 66 in the second edition). However, as is
shown in this paper, this a priori condition can be omitted.

In the last section of the paper, we consider the analogous but more
general problem for Bajraktarević means. However, to derive the necessity of
the conditions, we impose additional regularity properties of the generating
functions.
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2. Comparison of weighted quasi-arithmetic means. Our first
main result is the following comparison theorem.

Theorem 1. Let ϕ,ψ : I → R be continuous and strictly monotonic
functions, 2 ≤ n ∈ N, and let λ1, . . . , λn, µ1, . . . , µn ∈ ]0, 1[ with

∑n
k=1 λk =∑n

k=1 µk = 1. Then the inequality

(1) ϕ−1
( n∑
k=1

λkϕ(xk)
)
≤ ψ−1

( n∑
k=1

µkψ(xk)
)

holds for all (x1, . . . , xn) ∈ In if, and only if, ψ ◦ ϕ−1 is convex (resp.
concave) whenever ψ is increasing (resp. decreasing) and λk = µk for all
k ∈ {1, . . . , n}.

Proof. First we prove the necessity. We may (and do) suppose that ψ is
strictly increasing and (1) holds for all (x1, . . . , xn) ∈ In.

Reduction to (λ, µ)-convexity. Let J := ϕ(I), f := ψ◦ϕ−1, k ∈ {1, . . . , n}
be fixed and λ := λk, µ := µk.

Then ∅ 6= J ⊂ R is an open interval, and f : J → R is a continuous and
strictly monotonic function. With the substitutions

xk := ϕ−1(x), x` := ϕ−1(y) for ` ∈ {1, . . . , n} \ {k}, where x, y ∈ J,

inequality (1) implies that

(2) f(λx+ (1− λ)y) ≤ µf(x) + (1− µ)f(y) (x, y ∈ J),

that is, f is a (λ, µ)-convex function on J (see Kuhn [14]).

The proof of the convexity of f . Let p(u) = u2 + (1− u)2, u ∈ ]0, 1[, and
for t ∈ ]0, 1[ define

a0(t) := t and am(t) := p(am−1(t)) for m ∈ N.

Then p : ]0, 1[→ [1/2, 1[ and

am+1(t) ≤ am(t) for m ∈ N, lim
m→∞

am(t) = 1/2 for t ∈ ]0, 1[.

We show, by induction on m, that

(3) f(am(λ)x+ (1− am(λ))y) ≤ am(µ)f(x) + (1− am(µ))f(y)

for all x, y ∈ J and 0 ≤ m ∈ Z. Indeed, (3) is obvious for m = 0. Suppose
that 0 < m ∈ Z and (3) holds for m− 1, that is,

(4) f(am−1(λ)x+ (1− am−1(λ))y)

≤ am−1(µ)f(x) + (1− am−1(µ))f(y) (x, y ∈ J).

Thus, by the definition of p and am, and by using (4) repeatedly, for all
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x, y ∈ J , we have

f(am(λ)x+ (1− am(λ))y)
= f(p(am−1(λ))x+ (1− p(am−1(λ)))y)

=
(
(am−1(λ)2 + (1− am−1(λ))2)x+ 2am−1(λ)(1− am−1(λ))y

)
= f

(
am−1(λ)(am−1(λ)x+ (1− am−1(λ))y)

+ (1− am−1(λ))(am−1(λ)y + (1− am−1(λ))x)
)

≤ am−1(µ)f(am−1(λ)x+ (1− am−1(λ))y)

+ (1− am−1(µ))f
(
am−1(λ)y + (1− am−1(λ))x

)
≤ p(am−1(µ))f(x)+(1−p(am−1(µ)))f(y) = am(µ)f(x)+(1−am(µ))f(y),

which proves (3). Since f is continuous and limm→∞ am(t) = 1/2 for all
t ∈ ]0, 1[, (3) implies that f is Jensen-convex, and hence convex (see [12]).

The proof of the equality λ = µ (λk = µk, k ∈ {1, . . . , n}). Since f is
convex, it is absolutely continuous. Therefore, there exists a subset A ⊆ J of
full Lebesgue measure such that f ′(y) exists for all y ∈ A. Furthermore, f ′ is
integrable on any compact interval and the Newton–Leibniz formula holds.
Hence, if f ′ vanished on A then f would be constant, which is impossible.
Thus there exists a point ξ ∈ A such that f ′(ξ) 6= 0. Now, define the function
F on J by

F (x) := f(λx+ (1− λ)ξ)− µf(x)− (1− µ)f(ξ).

Then it follows from (2) that F (x) ≤ 0. On the other hand, F (ξ) = 0. This
shows that F has a maximum at ξ. Thus

0 = F ′(ξ) = λf ′(ξ)− µf ′(ξ) = (λ− µ)f ′(ξ),

whence λ = µ. Therefore λk = µk for all k ∈ {1, . . . , n}.
The proof of the sufficiency is straightforward.

Remark 2. We sketch some other possible ways of the proof of Theo-
rem 1. Kuhn [13], using transfinite tools, proved that if a function f : J → R
is (λ, λ)-convex for some 0 < λ < 1, i.e.,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (x, y ∈ J),

then this inequality also holds for all λ ∈ L ∩ [0, 1], where L ⊂ R is the
smallest subfield containing λ. Consequently, f is Jensen-convex. The Jensen-
convexity was proved in an elementary way by Daróczy–Páles [6] using the
identity

x+ y

2
= λ

(
λ
x+ y

2
+ (1− λ)x

)
+ (1− λ)

(
λy + (1− λ)

x+ y

2

)
.

It was observed by Matkowski–Pycia [17] that this identity implies the
Jensen-convexity of (λ, µ)-convex functions as well. The same was obtained
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by Kominek [10] using Rodé’s theorem ([20]). Thus, by the Bernstein–
Doetsch theorem (see [3]), (λ, µ)-convex functions bounded from above on
an interval of positive length are convex.

Another possibility to deduce the Jensen-convexity from the (λ, µ)-con-
vexity is its connection to the λ-Wright-convexity. It is obvious that the
(λ, µ)-convex functions are also λ-Wright-convex, i.e.,

(5) f(λx+ (1− λ)y) + f(λy + (1− λ)x) ≤ f(x) + f(y) (x, y ∈ J).

(Indeed, interchanging x and y in (2) and adding the inequality so obtained
to (2), we obtain (5).) Thus the results of Maksa–Nikodem–Páles [16] (the
set of λ’s for which (5) holds is dense in [0, 1]) or Kominek [11] (f has a limit
at a point) or Olbryś [18] (f is measurable) or Olbryś [19] can be applied to
prove that the (λ, µ)-convexity and a “weak” regularity property imply the
convexity.

There are other proofs also for λ = µ when the (λ, µ)-convex function f
is not constant. Some of them are based on a simplified version of the Rodé
theorem ([20]) given by Kuhn [14]: If f : J → R is (λ, µ)-convex then, for all
τ ∈ J , there exists a function a : J → R satisfying

(6) a(λx+ (1− λ)y) = µa(x) + (1− µ)a(y) (x, y ∈ J)

such that a ≤ f and a(τ) = f(τ). Supposing measurability, Kominek proved
the equality λ = µ in [10].

Without using the Rodé theorem and measurability, Matkowski and Py-
cia showed in [17] that if λ and µ are not conjugate then every (λ, µ)-convex
function is constant, while they are conjugate (i.e., both transcendental over
Q or both algebraic over Q and have the same minimal polynomial) then
there are non-constant additive solutions f : R→ R of the equation

f(λx+ (1− λ)y) = µf(x) + (1− µ)f(y) (x, y ∈ R).

The latter statement is also a simple consequence of Daróczy’s results on (6)
proved in [4].

3. Comparison of weighted Bajraktarević means. A generalization
of quasi-arithmetic means was introduced in 1963 by Bajraktarević in [1], [2]:
Given a continuous and strictly monotonic function ϕ : I → R and a positive
function ω : I → R+, 2 ≤ n ∈ N, λ1, . . . , λn ∈ ]0, 1[ with

∑n
k=1 λk = 1, the

mean Mϕ,ω,λ is defined on In by

Mϕ,ω;λ(x1, . . . , xn) = ϕ−1

(∑n
k=1 λkω(xk)ϕ(xk)∑n

k=1 λkω(xk)

)
.

In this section we consider the following general comparison problem: What
properties have to be imposed upon the continuous and strictly monotonic
functions ϕ,ψ : I → R, the positive function ω : I → R+, and the weights
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λ1, . . . , λn, µ1, . . . , µn in order that the inequality

(7) Mϕ,ω;λ(x1, . . . , xn) ≤Mψ,ω;µ(x1, . . . , xn)

be valid for all (x1, . . . , xn) ∈ In?
In the case λk = µk (k ∈ {1, . . . , n}), necessary and sufficient conditions

for inequality (7), assuming its validity for all n ∈ N, were established by
Daróczy and Losonczi in [5] and [15]. Here, we investigate this inequality
with a fixed number of variables n ≥ 2 and, a priori, we do not assume that
the condition λk = µk (k ∈ {1, . . . , n}) holds.

In the particular case when ω is a constant function, the above compar-
ison problem obviously reduces to the problem dealt with in the previous
section. Unfortunately, the approach used in that particular case cannot be
followed for the setting when ω is nonconstant. Thus, to derive the necessity
of the conditions, we need additional regularity assumptions on the functions
ϕ,ψ : I → R and ω : I → R+. Furthermore, in the proof of the necessity
below, we prove first that µk = λk for all k, and the convexity (or concavity)
of the function f := ψ ◦ϕ−1 is deduced in the next step (while, in the proof
of Theorem 1, the convexity was obtained in the first step).

Theorem 3. Let ϕ,ψ : I → R be continuous and strictly monotonic
functions, ω : I → R+ be a positive function, 2 ≤ n ∈ N, and let λ1, . . . , λn,
µ1, . . . , µn ∈ ]0, 1[ with

∑n
k=1 λk =

∑n
k=1 µk = 1. Assume the following

regularity condition: There exists a point p ∈ I such that ω is continuous at
p and the function f := ψ ◦ ϕ−1 is differentiable at ϕ(p) with f ′(ϕ(p)) 6= 0.
Then the inequality

(8) ϕ−1

(∑n
k=1 λkω(xk)ϕ(xk)∑n

k=1 λkω(xk)

)
≤ ψ−1

(∑n
k=1 µkω(xk)ψ(xk)∑n

k=1 µkω(xk)

)
holds for all (x1, . . . , xn) ∈ In if, and only if, f is convex (resp. concave)
whenever ψ is increasing (resp. decreasing) and λk = µk for all k ∈
{1, . . . , n}.

Proof. To prove the necessity, we suppose that ψ is strictly increasing and
(8) holds for all (x1, . . . , xn) ∈ In. Let J := ϕ(I), w := ω◦ϕ−1, k ∈ {1, . . . , n}
be fixed and λ := λk, µ := µk. Then ∅ 6= J ⊂ R is an open interval. With
the substitutions

xk := ϕ−1(x), x` := ϕ−1(y) for ` ∈ {1, . . . , n} \ {k},
where x, y ∈ J , inequality (8) implies that

(9) f

(
λw(x)x+ (1− λ)w(y)y
λw(x) + (1− λ)w(y)

)
≤ µw(x)f(x) + (1− µ)w(y)f(y)

µw(x) + (1− µ)w(y)
(x, y ∈ J).
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By our regularity assumption on f and ω, the function w : J → R is positive
and continuous at ξ := ϕ(p) ∈ J ; furthermore, f is differentiable at ξ with
f ′(ξ) 6= 0. Now define the function F on J by

F (x) := f

(
λw(x)x+ (1− λ)w(ξ)ξ
λw(x) + (1− λ)w(ξ)

)
− µw(x)f(x) + (1− µ)w(ξ)f(ξ)

µw(x) + (1− µ)w(ξ)
.

First we prove that F is differentiable at ξ and F ′(ξ) = (λ − µ)f ′(ξ). We
can write F in the form F = f ◦ g− h, where the functions g, h : J → R are
defined by

g(x) :=
λw(x)x+ (1− λ)w(ξ)ξ
λw(x) + (1− λ)w(ξ)

, h(x) :=
µw(x)f(x) + (1− µ)w(ξ)f(ξ)

µw(x) + (1− µ)w(ξ)
.

Observe that g(ξ) = ξ and hence, by the continuity of w at ξ,

lim
x→ξ

g(x)− g(ξ)
x− ξ

= lim
x→ξ

g(x)− ξ
x− ξ

= lim
x→ξ

λw(x)
λw(x) + (1− λ)w(ξ)

= λ,

proving that g is differentiable at ξ and g′(ξ) = λ.
On the other hand, h(ξ) = f(ξ), thus, by the continuity of w and the

differentiability of f at ξ, we obtain

lim
x→ξ

h(x)−h(ξ)
x− ξ

= lim
x→ξ

h(x)−f(ξ)
x− ξ

= lim
x→ξ

µw(x)
µw(x) + (1− µ)w(ξ)

f(x)−f(ξ)
x− ξ

= µf ′(ξ),

which shows that h is differentiable at ξ and h′(ξ) = µf ′(ξ).
Combining the above properties and using the chain rule, it follows that

F is differentiable at ξ and F ′(ξ) = (λ− µ)f ′(ξ).
In view of inequality (9), we see that F (x) ≤ 0 for all x ∈ I. Thus

F (ξ) = 0 implies that F has a maximum at ξ. Therefore,

0 = F ′(ξ) = (λ− µ)f ′(ξ),

whence λ = µ and hence λk = µk for all k ∈ {1, . . . , n}.
With the notation

α(x, y) :=
λw(x)

λw(x) + (1− λ)w(y)
,

inequality (3) can be rewritten as

f(α(x, y)x+(1−α(x, y))y) ≤ α(x, y)f(x)+(1−α(x, y))f(y) (x, y ∈ J).

Applying the characterization of convexity obtained in [8, Corollary 2.3], it
follows that the function f must be convex. Thus, the proof of the necessity
is completed.

Conversely, assuming that f is convex (resp. concave) whenever ψ is
increasing (resp. decreasing) and λk = µk for all k ∈ {1, . . . , n}, a standard
argument shows that inequality (8) is valid.
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It is an open problem whether the regularity assumption from the theo-
rem above can be removed.
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