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SEQUENTIAL COMPACTNESS VS. COUNTABLE COMPACTNESS

BY

ANGELO BELLA (Catania) and PETER NYIKOS (Columbia, SC)

Abstract. The general question of when a countably compact topological space is
sequentially compact, or has a nontrivial convergent sequence, is studied from the view-
point of basic cardinal invariants and small uncountable cardinals. It is shown that the
small uncountable cardinal h is both the least cardinality and the least net weight of a
countably compact space that is not sequentially compact, and that it is also the least
hereditary Lindelöf degree in most published models. Similar results, some definitive, are
given for many other cardinal invariants. Special attention is paid to compact spaces. It is
also shown that MA(ω1) for σ-centered posets is equivalent to every countably compact
T1 space with an ω-in-countable base being second countable, and also to every compact
T1 space with such a base being sequential. No separation axioms are assumed unless
explicitly stated.

1. Introduction. This article continues the theme, begun in [Ny], of
sequential compactness (and lack thereof) in countably compact topological
spaces, without the usual assumption of separation axioms. We do mention
(and, in a few places, prove) some results involving the separation axioms
T1, KC, Hausdorff (T2) and T3 (= T2 and regular), but we will always spell
these axioms out when they are assumed.

In [Ny] one of us gave some reasons for taking this unusual (for him) step.
To these reasons we add one which is behind practically all the results in
this paper: quite unexpectedly, we have found countably compact spaces to
be quite amenable to the techniques of modern set theory even in a general
topological setting. The “small uncountable cardinal” h in particular plays
a major role, as do the splitting trees which give one way of defining it.

We need to choose our definition of “countably compact” carefully. Say-
ing “every infinite subset has an accumulation point,” as in the usual state-
ment of the Bolzano–Weierstrass theorem, gives rise to such unintended
examples as the product of ω with the indiscrete 2-point space. Engelking’s
text [E] even goes as far as to restrict “countably compact” to Hausdorff

2010 Mathematics Subject Classification: Primary 54A25, 54D10, 54D30; Secondary
03E17, 03E35, 03E75, 54B15, 54D30, 54D55.
Key words and phrases: countably compact, compact, sequentially compact, KC space,
cardinal invariants, splitting tree, network, weight, net weight, hereditary Lindelöf degree,
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spaces. However, the alternative definition, “every countable open cover has
a finite subcover”, turns out to give a nice structure theory even for gen-
eral spaces. A standard exercise is that it is equivalent to “every sequence
has a cluster point” and also to “every denumerable subset has a complete
accumulation point” [that is, a point x such that every neighborhood of x
contains infinitely many elements of the denumerable subset]. As usual, “se-
quentially compact” is the strictly stronger condition that every sequence
has a convergent subsequence.

For most of this paper, the general theme will be how “small” a count-
ably compact or compact space can be with respect to the basic cardinal
invariants ([J], [Ho2]) without being sequentially compact. In the next to
last section we deal with a more specialized concept, that of a κ-in-λ-base
and a κ-in-<λ-base, because our techniques in the earlier sections adapt
readily to this context too.

In the final section we also study the related general theme of how
“small” an infinite [countably] compact space can be and have only triv-
ial convergent sequences, and also touch on this theme in Section 3.

Here is a piquant twist on the usual assumptions on separation axioms:
We may as well confine our attention to T0 spaces. This is because all the
basic cardinal invariants on spaces are unaffected by the passage from a
space X to its T0 reflection (except for cardinality, which may be reduced,
but that is in line with our general themes), as are compactness, countable
compactness, sequential compactness, sequentiality, the base properties in
the next to last section, as are the negations of these properties. All this is
obvious from the following description of the T0 reflection of a space X: it is
the quotient space of X modulo the equivalence relation x ≡ y ⇔ every open
set containing x contains y, and vice versa. This induces an isomorphism of
the topologies of X and X/≡, from which all else follows.

Where the second general theme is concerned, we can confine ourselves to
the class of T1 spaces, because if every open set containing x also contains y,
then any sequence which alternates between x and y will converge to x.

With one possible exception (the least number of open sets) we can even
confine ourselves to the class of T1 spaces where the first general theme is
concerned. The reasons for this are varied and will be made clear in the last
section. One of the tools we use there is the preorder x ≤ y iff x ∈ c`{y}
iff every open set containing x contains y. This is a true partial order on
T0 spaces. In more general spaces, the conjunction of x ≤ y and y ≤ x is
equivalent to x ≡ y.

The small uncountable cardinals h, s, and t play a major role below. The
cardinal t is the least cardinality of a complete tower on ω. By a complete
tower we mean a collection of sets well-ordered with respect to reverse almost



SEQUENTIAL COMPACTNESS VS. COUNTABLE COMPACTNESS 167

containment (A ≤ B iff B \A is finite, written B ⊆∗ A) such that no infinite
set is almost contained in every member of the collection. The cardinals s
and h are defined with the help of the following concepts. A set S is said
to split a set A if both A ∩ S and A \ S are infinite. A splitting family on
ω is a family of subsets of ω such that every infinite subset of ω is split by
some member of the family. We will call a splitting family a splitting tree if
either any two members are almost disjoint, or one is almost contained in
the other; thus it is a tree under reverse almost inclusion.

The least cardinality of a splitting family is denoted s, while the least
height of a splitting tree is denoted h. It is easy to show that ω1 ≤ t ≤ h ≤
s ≤ c (= 2ω). For more about the relationships of these cardinals see [D1]
and [V] and (except for h) [vD], and also some of the consistency results
mentioned below. The seminal paper on h is [BPS], where h is denoted
κ(N∗). The usual correspondence between subsets of ω and clopen subsets
of βω − ω = ω∗ gives rise to a correspondence between splitting trees and
what is called shattering refining matrices in [BPS].

Proofs of the following may be found in Section 6 of [vD]:

Theorem A. c is the least cardinality of a countably compact T3 space
that is not sequentially compact.

Theorem B. Every compact Hausdorff space of cardinality < 2t is se-
quentially compact.

Theorem C. s is the least weight of a countably compact space [also of
a compact space] that is not sequentially compact.

The proof of Theorem C in [vD, Theorem 6.1] works for all countably
compact spaces, even though [vD] uses the convention that “space” means
“T3 space.”

Obviously, Theorem A is definitive for countably compact T3 spaces, and
it is well known to extend to Urysohn spaces (i.e., spaces in which distinct
points have disjoint closed neighborhoods) but it already fails for Hausdorff
spaces (see comments following the proof of Theorem 3 below). Theorem B
is not optimal in all models of set theory: in Section 4, we show (Example 6)
that there is a model in which every compact space of cardinality 2t is
sequentially compact, negatively answering the following question of van
Douwen [vD, Question 6.6, in effect]:

Question. Is ZFC enough to imply the existence of a compact Haus-
dorff space of cardinality 2t that is not sequentially compact?

It is not known whether Theorem B extends to compact spaces in general:

Problem 1. Is every compact space of cardinality < 2t sequentially
compact?
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Alas and Wilson [AW] have extended Theorem B to a wider class of
spaces:

Theorem B+. Every compact KC space of cardinality < 2t is sequen-
tially compact.

A KC space is one in which every compact subset is closed. An elementary
theorem of general topology is that every Hausdorff space is KC. Even more
elementary is the fact that every KC space is T1 (because a space is T1 iff
singletons are closed). Alas and Wilson also showed:

Theorem D. Every compact space of cardinality ≤ t is sequentially
compact.

Theorem E. Every countably compact space of hereditary Lindelöf de-
gree < t is sequentially compact.

In this paper we strengthen Theorems D and E with Theorems 1 and 4,
respectively. But first, here is a quick corollary of Theorem E:

Corollary 1. Every countably compact, hereditarily Lindelöf KC space
is sequential.

Proof. Every countably compact subset of a hereditarily Lindelöf space
is compact. Since t is uncountable, this corollary now follows from Theorem
E and Theorem F below, whose proof is implicit in [IN, Proposition 1.19].

Theorem F. A countably compact KC space is sequential iff it is se-
quentially compact and C-closed.

Recall that a space is called C-closed if every countably compact sub-
space is closed. Despite the similarity in the definitions, being C-closed is
much more restrictive than being KC, as Theorem F indicates (sequentially
compact, nonsequential T2 spaces abound).

The following example, standard in the study of sequential spaces and
their subspaces, shows how “KC” cannot be eliminated from the above corol-
lary.

Example 1. Let p be a point of βω \ω and let X be the space obtained
by adding a point x to ω ∪ {p} and declaring the neighborhoods of x to
be those subsets of X that contain x and all but finitely many points of ω.
Being countable, X is hereditarily Lindelöf, and X is countably compact,
but it is not sequential since no sequence from X \ {p} converges to p.

2. Net weight in compact spaces. Recall that a network is defined
like a base, except that its members are not required to be open: N is a
network for X if for every neighborhood W of a point x, there exists N ∈ N
such that x ∈ N ∈W. The net weight of a space is the least cardinality of a
network for it. Obviously, hereditary Lindelöf degree ≤ net weight ≤ weight,
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and for compact Hausdorff spaces, net weight equals weight. However, this
equality breaks down for more general spaces. Example 1 is a countable T1

space which can be made to be of weight c, and the following example is
even a KC space.

Example 2. Let X be the one-point compactification of the space Q of
rational numbers. The singletons of X form a countable network, but since
Q has a copy of every countable ordinal in it, the extra point ∞ of X does
not have a countable local base. Of course, X is not Hausdorff, but it is a KC
space: a subset of Q is closed in X iff it is compact, while subsets containing
∞ are easily shown to be compact iff their traces on Q are closed.

The cofinality of the collection of compact subsets of Q is the dominating
number d [vD, Theorem 8.7]. The proof is long and intricate, except for the
cofinality being ≥ d. It follows that the weight of the one-point compactifi-
cation of Q is d also.

The following theorem includes ideas from the proofs of both Theorem D
and Theorem E. It clearly implies Theorem D (just let N be the set of
singletons).

Theorem 1. If X is a compact space with a network N of cardinality
≤ t, such that every point of X is in fewer than t members of N, then X is
sequentially compact.

Proof. Let N = {Nα : α < κ} be a network for X with κ ≤ t. Let
〈xn : n ∈ ω〉 be a sequence in X. Let A−1 = ω. Suppose α < κ and we
have an α-sequence of infinite subsets 〈Aβ : −1 ≤ β < α〉 of ω such that
Aγ ⊆∗ Aβ whenever β < γ. [Note the order reversal. As usual, A ⊆∗ B
means A\B is finite.] Using the fact that α < t, let A′α ⊆∗ Aβ for all β < α.
If there is an infinite subset A ⊂ A′α and an open set U containing Nα such
that {xn : n ∈ A} misses U , let Uα = U and Aα = A; otherwise, let Uα = ∅
and let Aα = A′α.

For each x ∈ X let α(x) < t be such that all members of N containing
x are indexed before α(x). If κ = t and 〈xn : n ∈ Aα(x)〉 does not converge
to x, then there exists β(x) < α(x) such that x ∈ Nβ(x) ⊂ Uβ(x) and so
Uβ(x) contains xn for only finitely many n ∈ Aα(x). If κ < t, let Aα(x) be
some infinite set almost contained in every Aα and choose β(x) as before.
If 〈xn : n ∈ ω〉 has no convergent sequences then the sets Uβ(x) are an
open cover of X. Let Uβ(y1), . . . , Uβ(yn) be a finite subcover with the β(yi)
in ascending order. Then there exists i such that xk ∈ Uβ(yi) for infinitely
many k in Aβ(yn), contradicting the way Aβ(yi) was defined.

Lemma 1 below actually has Theorem 1 as a corollary, but the first half
of its proof is “nonlinear” and we thought the simpler, “linear” proof of
Theorem 1 was worth presenting.
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Lemma 1. Let κ be a regular cardinal and assume that every splitting
tree has a chain of cardinality κ. If X is a compact space with a network
N of cardinality κ, such that every point of X is in fewer than κ members
of N, then X is sequentially compact.

Proof. Let N = {Nα : α<κ}. Toward a contradiction, let 〈xn : n∈ ω〉
be a sequence in X with no convergent subsequence. Let A−1 = {ω}. Sup-
pose α < κ and we have an α-sequence of MAD families 〈Aβ : −1 ≤ β < α〉
on ω such that Aγ refines Aβ whenever β < γ. Since α < h, there exists
a MAD family A′α which refines Aβ for all β < α.

Let us denote by τ(Nα) the collection of all open sets U such that Nα⊂U .
For a given B ∈ A′α, let A(B) ⊂ [B]ω be an almost disjoint family maximal
with respect to the property C ∈ [B]ω and the set {xn : n ∈ C} is either
almost contained in each member of τ(Nα) or almost disjoint from some
member of τ(Nα). Then put Aα =

⋃
{A(B) : B ∈ A′α}. It is easy to realize

that Aα is actually a MAD family on ω. Now, thanks to our hypothesis, we
may fix a chain {Aα : α < κ} in the tree

⋃
{Aα : α < κ}.

The remainder of the proof is the same as in Theorem 1, except that
we have not yet defined Uα. Now that we have the chain in hand, let Uα
be an open set containing Nα and missing {xn : n ∈ Aα} unless every open
set containing Nα meets {xn : n ∈ Aα} (hence almost contains it), in which
case we let Uα = ∅. And now we follow the second paragraph of the proof
of Theorem 1.

Theorem 1 is the case κ = t of Lemma 1: every branch of a splitting tree
is a complete tower, so every splitting tree has a chain of length t. The case
κ = h of Lemma 1 is also of interest:

Theorem 2. If every splitting tree has a chain of length h, then a com-
pact space X with a network N of cardinality ≤ h, such that every point of
X is in fewer than h members of N, is sequentially compact.

Corollary 2. If every splitting tree has a chain of length h, then every
compact space of cardinality ≤ h is sequentially compact.

Corollary 2 only improves on Theorem B+ if 2t = c = h (obviously,
2t ≥ c ≥ h in general) but there do exist such models, as we shall see later
[Example 6].

The hypothesis in Theorem 2 and Corollary 2 is equivalent to saying that
every splitting tree of height h “has long branches,” as the jargon goes—a
“long branch” being one that meets every level of the tree. We will see later
[Example 5] that this hypothesis cannot be eliminated even for compact
Hausdorff spaces.

We also cannot remove the restriction on the order of N at each point
in Theorems 1 and 2: in any model of t = s, the space 2t is not sequentially
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compact, but it has a base (hence a network) of cardinality t = h. We do
not know whether it is even consistent to remove the order restriction from
Theorem 2:

Problem 2. Is it consistent that every compact space of net weight h
is sequentially compact?

However, in models of t < h, we can remove this restriction in Theorem 1
and even weaken “compact” to “countably compact”. In fact, there are
basically only two cases of Lemma 1: the case κ = h of Theorem 2, and the
case κ < h where we get sequential compactness outright; this is the gist of
one direction in the second of two topological characterizations of h in the
following section.

3. Countably compact spaces and the cardinal h. Our next the-
orem is a worthy companion for Theorems A and C of the introduction,
despite there being no mention of the compact case in it. As can be seen
from Problem 2 above, we do not know whether the net weight charac-
terization in the following theorem goes through for compact spaces. The
cardinality characterization does fail, as will be seen in Section 4.

Theorem 3. h = the least cardinality of a countably compact space
which is not sequentially compact = the least net weight of a countably com-
pact space which is not sequentially compact. The examples include initially
<h-compact KC spaces.

Proof. Since net weight ≤ cardinality, it is enough to prove that the least
net weight is ≥ h, and that the least cardinality is ≤ h. To prove nw ≥ h, let
X be any space with a network N of size κ, where κ < h, and suppose X is
not sequentially compact. Let σ = 〈xn : n ∈ ω〉 be a sequence in X without
a convergent subsequence. We will show X is not countably compact.

We begin with the first paragraph in the proof of Lemma 1, except that,
at the very end, we pick our chain {Aα : α < κ} in the tree

⋃
{Aα : α < κ}

so that there is an infinite set C almost contained in every Aα. This we can
do because our tree is not splitting. We claim that {xn : n ∈ C} does not
have a complete accumulation point.

For each x ∈ X, there exists an open set V containing x that omits
infinitely many points of {xn : n ∈ C} and hence of every {xn : n ∈ Aα}.
Pick β < κ such that Nβ ⊂ V ; then, by the way Aβ was chosen, it is almost
disjoint from some open set U which contains Nβ and with it x. So x is not
a complete accumulation point of {xn : n ∈ C}.

The κ = h case of the following example completes the proof of Theo-
rem 3.
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Example 3. Let N be the set of positive integers, defined in such a way
as to be disjoint from the class of ordinals. Let κ be the height of some
splitting tree T =

⋃
{Mα : α < κ} on N where each Mα is an infinite MAD

family on N and Mα refines Mβ whenever β < α. Let X have N ∪ κ as an
underlying set. We will define the topology on X with the help of T .

Points of N are isolated. If α, β ∈ κ∪ {−1}, let (β, α] = {ξ : β < ξ ≤ α}.
Let a base for the neighborhoods of α be all sets of the form

N(α, β,F , F ) = (β, α] ∪ N \
(⋃

F ∪ F
)

such that β < α, and F is a finite subcollection of Mα and F is a finite
subset of N. Note that if α is either 0 or a successor, it is enough to take
the collection of all N(α, α− 1,F , F ).

Claim 1. This defines a topology.

Claim 2. X is a KC space.

Claim 3. X is countably compact.

Claim 4. If κ is regular (in particular, if κ = h), then X is initially
<h-compact.

Claim 5. N is dense in X, but no nontrivial sequence from N converges
to any point of X. [In other words, every sequence in N that converges in
X is eventually constant.]

Proof of Claim 1. We only need to show that if ξ ∈ N(α, β,F , s) ∩
N(α′, β′,F ′, s′), then there is a basic neighborhood of ξ in the intersection.
Let β′′ be the maximum of β, β′. Then (β′′, ξ] is a subset of both (β, α] and
(β′, α′]. Moreover, for each F ∈ F ∪ F ′ there is a unique MF ∈ Mξ such
that F ⊂∗ MF . Let sF = F \MF and let s′′ = s ∪ s′ ∪

⋃
{sF : F ∈ F ∪F ′}.

It is easy to see that N(ξ, β′′,F ∪ F ′, s′′) is the desired basic neighborhood
of ξ.

The foregoing proof also essentially shows that each point ξ of κ has a
local base of sets of the form N(ξ, η,F , s).

Proof of Claim 2. We show that every compact subset of X meets N in
a finite set. Since the relative topology on κ is the usual (Hausdorff) order
topology and κ is closed, Claim 2 follows.

Let K be a compact subset of X. Then K ∩κ is compact in κ, hence has
a greatest element α. Suppose K ∩ N is infinite. Let M ∈ Mα hit K; then
{N(α,−1, {M}, ∅)} ∪ {{n} : n ∈ N} is an open cover of K without a finite
subcover, contradicting compactness of K.

Proof of Claim 3. Let A be an infinite subset of N. Since T is splitting,
there exists α such that infinitely many members of Mα hit A. Indeed,
choose α0 such that at least two members of Mα0 hit A and let N0 be the
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collection of all infinite sets of the form M ∩ A, M ∈ Mα0 . If N0 is finite,
choose α1 > α0 so that every member of N0 is hit by at least two members
of Mα1 and define N1 analogously to N0. Choosing αn in this fashion for all
n ∈ ω if necessary, let α be their supremum; then α is as desired. It follows
that α is a cluster point of A.

Proof of Claim 4. A space is defined to be initially <λ-compact if every
open cover of cardinality < λ has a finite subcover. Thanks to Claim 3,
it is enough to show that every open cover of X of cardinality < κ has a
countable subcover. And this is immediate from the fact that the subspace
κ has this property.

Proof of Claim 5. The set N is dense because each Mα is infinite. To
show the rest of Claim 5, let A be an infinite subset of N and let α be as
in the proof of Claim 3. If α < ξ < κ, then infinitely many members of Mξ

hit A, so the closure of A includes a terminal segment of κ. But in a KC
space, convergent sequences have unique limits. So no 1-1 sequence from N
converges, and this is easily seen to be equivalent to only trivial sequences
converging.

The one-point compactification of Example 3 does not settle Problem 2:
every infinite subset of N converges to the extra point.

Theorem 3 is not optimal for Hausdorff spaces: if we let µ0 stand for the
least cardinality of a countably compact T2 space that is not sequentially
compact, then s ≤ µ0 as shown in Theorem 4.1 of [BvDMW]. The following
problem from that paper is still unsolved as far as we know.

Problem 3. Is µ0 = s?

Let µ1 stand for the least cardinality of an infinite, countably compact
T2 space in which every convergent sequence is eventually constant. We now
have s ≤ µ0 ≤ µ1 ≤ c, the last inequality following from the existence of
a countably compact subset of βω of cardinality c. In [BvDMW], where µ0

is denoted µns and µ1 is denoted µd, it is shown that ω1 = µ1 < c and
ω1 < µ0 = µ1 < c are both consistent, and the question is raised whether
µ0 = µ1 is a theorem of ZFC; as far as we know, this is still unanswered.

Also, we do not know whether we can improve on µ1 by weakening the
T2 axiom to T1. As pointed out in the introduction, nothing is gained by
weakening it further.

Example 3 is so simple that all its standard cardinal invariants can
be easily found, and (except for precaliber and caliber, which are proper
classes rather than single cardinals) they are all either ω (density, π-weight,
cellularity) or the supremum of the cardinals < κ (pseudocharacter, tight-
ness, hereditary π-character) or κ (cardinality, net weight, spread, hereditary
density, [hereditary] Lindelöf degree, hereditary π-weight) or c (character,
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weight, the number RO(X) of regular open sets) or, for o(X) (the number
of open sets), 2κ. To see this last fact, note that o(X) ≤ 2|X| for any space,
while the successor ordinals form a discrete subspace D of cardinality κ, and
the sets A ∪ N are open, and distinct for distinct A ⊂ D.

Next we strengthen Theorem E in some models.

Theorem 4. Let X be a countably compact space. If every splitting tree
has a chain of cardinality hL(X)+, then X is sequentially compact.

Proof. In what follows, S• denotes the set of all complete accumulation
points of S. Note that S• is closed in X and that S• ⊂ R• whenever S is
almost contained in R.

Let us assume by contradiction that there exists a set A ∈ [X]ω with no
nontrivial convergent subsequence. This means that for any B ∈ [A]ω and
any x ∈ B there exists some open set Ux such that x ∈ Ux and C = B \ Ux
is infinite. By countable compactness, C is a proper subset of B, and C• is
a proper subset of B•.

For α < h we suppose to have already defined a collection {Aγ : γ < α}
of MAD families contained in [A]ω satisfying:

(1) if β < γ < α then Aγ “strongly refines” Aβ, i.e., each member
C ∈ Aγ is almost contained in some B ∈ Aβ and C• is a proper
subset of B•.

If α = β + 1 and Aβ has been defined, then for each B ∈ Aβ we let
E(B) ⊂ [B]ω be an almost disjoint family maximal with respect to the
property that C• is a proper subset of B• for any C ∈ E(B). Put Aα =⋃
{E(B) : B ∈ Aβ}. Using countable compactness of X, it is easy to check

that Aα is a MAD family on A.
If α is a limit ordinal then, in order to define Aα, observe first that, as

|α| < h, there exists an infinite subset S of A which is almost contained in
some (unique) member of Aγ for each γ < α. Let S be the collection of all
such S and let Aα be a maximal almost disjoint family of members of S.
By the induction hypothesis, Aα strongly refines all Aβ, β < α. It is also a
MAD family on A: for any B ∈ [A]ω the trace of the tree {Aγ : γ < α} on
B cannot be splitting and so there exist infinite subsets of B in S.

The tree
⋃
{Aα : α < h} has a chain C of cardinality hL(X)+. As

hL(X)+ ≤ h, this is obvious if the tree is not splitting and follows from our
hypothesis in the other case. Then the family {C• : C ∈ C} is a strictly de-
creasing collection of closed sets, in contrast with the definition of hL(X).

Theorem E is a corollary of Theorem 4, just as Theorem 1 is a corollary
of Lemma 1. We also have:

Corollary 3. If κ < h, then every countably compact space of heredi-
tary Lindelöf degree < κ is sequentially compact.
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Corollary 4. If every splitting tree has a chain of length h, or if h
is a limit cardinal, then h = min{hL(X) : X is countably compact but not
sequentially compact}.

Proof. Example 3, with κ = h, provides a countably compact KC non-
sequentially compact space X satisfying hL(X) = |X| = h. Now apply
Theorem 4 to conclude that every countably compact space X satisfying
hL(X) < h is sequentially compact.

Since h is clearly regular, saying that it is a limit cardinal, as in Corol-
lary 4, is the same as saying that it is weakly inaccessible. But do we need
to say anything at all here? We mean:

Problem 4. If hL(X) < h, is X sequentially compact if it is (a) count-
ably compact or (b) compact?

4. Compact spaces and the Novak number. We return to compact
spaces with our next theorem, which uses the following concept.

The Novak (or Baire) number n of ω∗ (= βω−ω) is the smallest cardinal-
ity of a cover of ω∗ by nowhere dense sets. A good reference for this cardinal is
again [BPS], where it is denoted n(N∗). We recall that max{t+, h} ≤ n ≤ 2c

and the equality h = n holds if and only if there is a splitting tree of height
h without long chains (see [BPS, 2.10 and 3.4]).

Theorem 5. Let X be a compact space. If |X| < n then X is sequentially
compact.

Proof. Assume by contradiction that X is not sequentially compact and
let S = 〈xn : n < ω〉 be a sequence with no convergent subsequence. For
any x ∈ X let Ax be the collection of all A ∈ [ω]ω such that there exists
an open neighbourhood U of x satisfying xn /∈ U for each n ∈ A. Fix a
maximal almost disjoint subcollection Bx ⊂ Ax. As we are assuming that S
does not have any subsequence converging to x, it follows that Bx is actually
a MAD family on ω. The set Nx = ω∗ \

⋃
{B∗ : B ∈ Bx} is nowhere dense

and therefore we may pick a point p ∈ ω∗ \
⋃
{Nx : x ∈ X}. [As usual,

B∗ denotes the Stone–Čech remainder c`βωB \B.] This means that p ∈ B∗x
for some Bx ∈ Bx and any x ∈ X. Consequently, the family {Bx : x ∈ X}
has the finite intersection property and the compactness of X ensures the
existence of a point z ∈

⋂
{{xn : n ∈ Bx} : x ∈ X}. But Bz ∈ Az and so

z /∈ {xn : n ∈ Bz}, according to the way Az was defined. This contradiction
proves the theorem.

Notice that a version of Example 3 where κ = h, in a model where all
splitting trees have long chains, shows that consistently Theorem 5 cannot
be extended to countably compact (even KC) spaces.
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Theorem 5 is evidently an improvement of both Theorem D and Corol-
lary 2. We do not know whether the formula in Theorem 5 is optimal—i.e.,
whether there always exists a compact space of cardinality n which is not
sequentially compact. However, such a space (if there is any) cannot always
be Hausdorff or even KC. This follows from Theorems B+ and 5 and the fact
that there are models where n < 2t (for instance, if c is a singular cardinal
then 3.5 and 4.2 in [BPS] give h ≤ cf(c) and n ≤ h+, so that n < c ≤ 2t).
See also Example 7 below.

The more interesting question of the consistency of 2t < n will be treated
in Example 6.

Problem 5. Let µ2 be the least cardinality of a compact T2 space that
is not sequentially compact. Is µ2 also equal to the least cardinality of (a)
a compact space that is not sequentially compact? (b) a compact KC space
that is not sequentially compact?

Clearly, if Problem 5(a) has an affirmative answer, so does Problem 1.
The results discussed here give max{2t, n} ≤ µ2 ≤ 2h. The latter inequal-

ity follows from, and is further improved by, a general construction which
we next recall.

Example 4. Given any splitting tree T , there is a compact Hausdorff
space Φ with underlying set ω∪T ∗, where T ∗ is the order completion of T , in
which ω is a dense set of isolated points and no sequence on ω can converge
to any point of T ∗. The construction of Φ is given in several places, including
[Ny]. The relative topology on T ∗ is the coarse wedge topology. This is the
topology which has as a subbase all sets of the form Vx = {t ∈ T ∗ : t ≥ x}
and their complements, where x is on a successor level.

The hereditary Lindelöf degree of Φ is c, because the points on level ω+1
of T are a discrete subspace of cardinality c, and the weight of Φ is c.

Each infinite level of T is of cardinality c, so the cardinality of Φ is the
number of branches of T. Thus if we let µ3 be the least number of branches
in a splitting tree, we can improve the inequality µ2 ≤ 2h to µ2 ≤ µ3 ≤ 2h.
The latter inequality can be strict, as in Example 5 below.

We can get the points on successor levels to be of character a in Φ, where
a is the least cardinality of an infinite MAD family on ω, but we do not know
whether the character of Φ itself (defined, as usual, as the supremum of the
characters of its points) can be less than c.

Problem 6. What is the least character (a) of a countably compact
space that is not sequentially compact? (b) of a compact space that is not
sequentially compact?

Since character ≤ weight, this character must be ≤ s and it is also ≥ p:
if a cluster point of a sequence has a local base of cardinality < p, then
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there is a subsequence converging to it. This is obvious from the definition
of p: it is the least cardinal such that there is a base B for a free filter on ω
for which there is no infinite subset of ω almost contained in every member
of B.

Obviously, p ≤ t, but it is still an unsolved problem whether p = t.

Example 5. Dordal [D1] showed that in the Mathias model, t = ω1

and h = ω2 = 2ω = 2ω1 and there is a splitting tree T of height h that has
no long branches; hence n = h. Dow [D3] constructed other forcing models
with splitting T having the same properties. If we use these T to construct
Φ then |Φ| = |T ∗| = ω2 = h, whence the hypothesis in Corollary 2 cannot
be eliminated. We do not know whether it is needed for Corollary 4 (see
Problem 4).

Example 6. Dordal [D2] has shown that if one begins with a model of
GCH, then one obtains a model of MA + c = κ by ccc forcing, and then
forces with what was the full binary tree of height ω1 in the original model,
then one obtains a model of h = c = κ and t = ω1. [As seen by the ground
model, this is just forcing by the product P×Q where P is the ccc forcing
and Q is the full binary tree of height ω1.] Since the second forcing poset
is of cardinality ω1, it does not increase the value of either 2ω or 2ω1 , and
Dordal has shown that no cardinals are collapsed by it. [This is the tricky
detail, and would not work if the first forcing were not ccc.] So in the final
model, 2t = c = h.

On the other hand, it is easy to see from the Lemma in Example V
of [BPS] that if κ = ω2 then in the final model, n ≥ ω3, so that every
compact Hausdorff space of cardinality 2t is sequentially compact. This gives
a negative solution to Question 6.6 in [vD].

Example 7. Back in 1967, Hechler introduced nonlinear iterated forcing
at a conference [He] where he showed that there are ccc forcing posets that
give (ωω,<∗) a cofinal family of increasing functions of any “reasonable”
order type.

If we use one that gives a cofinal family of order type ω2×ω1, we can use
the family to construct a pair (A,B) of totally ordered families of nowhere
dense subsets of ω∗ whose union is all of ω∗, with A of order type ω1 and B
of order type ω2 [NV]. [Also,

⋃
A is disjoint from

⋃
B.] Then n = ω2 in this

model, the smallest value possible for n. Since the forcing is ccc, we can also
make c, and hence 2ω1 , “arbitrarily large” and either regular or singular, by
choosing our ground model that way.

Despite its simplicity, this family of nowhere dense sets is ill-suited for
producing a compact space of cardinality < 2ω1 that is not sequentially
compact. If we simply take the quotient space of βω associated with the
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partition generated by A ∪ B, then every infinite subset of ω converges to
every point outside ω.

5. Countable compactness and special bases. Our remaining the-
orems involve the concept of an ω-in-countable base and a generalization.

Definition. Let κ and λ be cardinals. A collection B of sets is said
to be κ-in-≤ λ [resp. κ-in-<λ] if every set of cardinality κ is contained in
no more than [resp. fewer than] λ members of B. κ-in-ω is referred to as
κ-in-countable.

Countably compact spaces have a strange dual personality where ω-in-
countable bases are concerned: they are very well behaved in some models
of ZFC and can behave very badly in others. The following theorems from
[BG] illustrate this. The first uses the concept of an HFD (hereditarily fi-
nally dense) subset of 2ω1 . These spaces exist under the continuum hypoth-
esis (CH) and are countably compact and Tikhonov (in fact, hereditarily
normal), but neither compact nor sequentially compact.

Theorem G. Every HFD subset of 2ω1 has an ω-in-countable base.

Theorem H. [p > ω1] Every countably compact Hausdorff space with
an ω-in-countable base is metrizable.

Theorem Z. Every compact Hausdorff space with an ω-in-countable
base is metrizable.

The natural generalization of “compact metrizable” to spaces that are
not necessarily Hausdorff is “compact second countable.” So the equivalence
of (1) and (2) in the following theorem comprises a twofold strengthening
of Theorem H:

Theorem 6. The following statements are equivalent:

(1) p > ω1.
(2) Every countably compact T1 space with an ω-in-countable base is

second countable (hence compact).
(3) Every compact T1 space with an ω-in-countable base is second count-

able.
(4) Every compact T1 space with an ω-in-countable base is sequential.

Other equivalent statements of note are t > ω1 [vD, Theorem 3.1] and
MAω1(σ-centered) [W, Theorem 5.16].

To show Theorem 6, we first show two lemmas whose combined proof is
very similar to that of [BG, Theorem 4.4]:
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Lemma 2. [p > κ] Let X be a topological space with an ω-in-<κ base B.
For each x in X let B(x) = {B ∈ B : x ∈ B}. Let

Y = {x ∈ X : x is in the closure of a countable subset of X \ {x}}.

Then |B(y)| < κ for all y ∈ Y .

Proof. Assume indirectly that there is some y ∈ Y such that |B(y)|
≥ κ and fix C ∈ [B(y)]κ. If y is in the closure of the countable infinite set
S ⊂ X \ {y}, then the trace of C on S has the strong finite intersection
property (i.e., every finite subcollection has infinite intersection), and p > κ
ensures the existence of an infinite set S0 ⊂ S such that S0 ⊂∗ C for each
C ∈ C. This in turn implies the existence of an infinite set S1 ⊂ S0 which is
contained in κ-many elements of C, in contrast with the hypothesis that B
is ω-in-<κ.

Lemma 3. If X is a countably compact T1 space with an ω-in-countable
base B, and Y is as in Lemma 2, then B(Y ) =

⋃
{B(y) : y ∈ Y } is countable

and Y is compact.

Proof. Since Y is countably compact and metaLindelöf, it is compact.
Now by Mishchenko’s lemma [E, 3.12.23(f), p. 242], there are only countably
many minimal open covers of Y by members of B, and the proof that B(Y )
is countable is the same as the proof using Mishchenko’s lemma that every
compact Hausdorff space with a point-countable base is metrizable [Ho1].

Proof of Theorem 6. To show (1) implies (2), let X, Y , and B be as in
Lemma 3. Then every open subset of X containing Y is cofinite, otherwise
countable compactness would give a countable set with a limit point in the
complement, contradicting the definition of Y . Since Y is compact, so is X.
Also, Y is a Gδ: {x} is closed for each point x of X \ Y , so there is a
minimal cover of Y by members of B that misses x, and as noted in the
proof of Lemma 3, there are only countably many such covers. So X \ Y is
countable. Hence, by the definition of Y , the points of X \ Y are isolated in
the relative topology of X \ Y . Now it is easy to see that B(Y )∪ {{x} : x is
isolated in X} is a countable base for X.

Obviously, (2) implies (3) implies (4). We show (4) implies (1) in The-
orem 6 by contrapositive. Let T = {Tα : α < t} be a complete tower on ω,
with 0 in every Tα and 1 in none of them. Define a topology on ω by letting
a base be B = B0 ∪ B1 where B0 is all cofinite subsets of ω and B1 is the
collection of all sets of the form {0} ∪ A where A is a cofinite subset of Tα
for some α.

This space is clearly compact and T1, and it is not sequential because
0 is nonisolated but there is no sequence converging to it from the rest of
the space. But if t = ω1 then B is ω-in-countable because an infinite subset
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can be contained in at most countably many tower members, hence in only
countably many members of B altogether.

In the same way, the space constructed in this last proof serves to show:

Corollary 5. If every countably compact T1 space with an ω-in-<κ
base is sequential, then κ < t.

The following simple example shows that some separation beyond T0 is
needed in Theorem 6.

Example 8. Let X = ω1 + 1 with the topology whose nonempty open
sets are the sets of the form (α, ω1]. Clearly, X is T0 and compact, and has a
2-in-countable, hence ω-in-countable topology. However, it is neither second
countable, nor first countable, nor sequential.

A more challenging theme is what happens if we try to improve the
separation axiom in Theorem 6. For instance:

Problem 7. Is p > ω1 equivalent to the statement that every count-
ably compact Hausdorff space with an ω-in-countable base is (a) second
countable? (b) first countable? (c) sequential?

Problem 7(a) is equivalent to asking for metrizability, thanks to Theo-
rem H, even if we weaken “Hausdorff” to “KC”: an easy proof by contrapos-
itive shows that every first countable space in which convergent sequences
have unique limits is Hausdorff. This suggests:

Problem 8. Is every countably compact KC space with an ω-in-count-
able base Hausdorff?

Problem 9. Is p > ω1 equivalent to the statement that every countably
compact T1 space with an ω-in-countable base is compact?

With “Hausdorff” in place of “T1,” Problem 9 becomes equivalent to
Problem 7(a), thanks to Theorem Z. With “KC” in both problems, the two
questions might be distinct, depending on how Problem 8 plays out.

Theorems G and H show that the statement “Every countably com-
pact Hausdorff space with an ω-in-countable base is compact” is ZFC-
independent, so it is actual equivalence with p > ω1 that is the issue in
Problems 7 and 9.

Theorem G also shows that some set-theoretic hypothesis is needed in
our next theorem, where we return to the theme of sequential compactness.

Lemma 4. Let B be a base for a countably compact space X that has a
sequence 〈xn : n ∈ ω〉 with no convergent subsequence. If C is a collection of
infinite members of B, and {xn : n ∈ S} is infinite and is almost contained
in each member of C, then there is a MAD family M on S such that each
set of the form {xn : n ∈M} (M ∈M) is contained in some BM ∈ B \ C.
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Proof. LetM be an almost disjoint family of infinite subsets of S which
is maximal with respect to the property that {xn : n ∈ M} is contained in
some BM ∈ B \ C for every M ∈ M. Let us verify that M is actually a
MAD family on S. Toward a contradiction, assume that there is an infinite
set T ⊂ S which is almost disjoint from every member ofM. As X is count-
ably compact, we may pick a complete accumulation point xT ∈ X of the
set {xn : n ∈ T}. By hypothesis the sequence 〈xn : n ∈ T 〉 does not converge
to xT and so there exists some B ∈ B such that xT ∈ B and {xn : n ∈ T}\B
is infinite. Since the set {xn : n ∈ S} is almost contained in each member
of C, it immediately follows that B /∈ C. The infinite set {n : n ∈ T and
xn ∈ B} contradicts the maximality of M and the proof is complete.

Theorem 7. Let κ be a cardinal of uncountable cofinality. If κ < h then
every countably compact space X with an ω-in-<κ base B is sequentially
compact.

Proof. Toward a contradiction, let σ = 〈xn : n ∈ ω〉 be a sequence in
X without a convergent subsequence. For each infinite subset A of ω let
σ(A) = {xn : n ∈ A}. According to Lemma 4, let M0 be a maximal almost
disjoint family of infinite subsets of ω such that σ(M) ⊂ BM ∈ B for any
M ∈M0.

Now suppose α < κ and that a MAD family Mβ of subsets of ω has
been defined for each β < α, in such a way that if γ < β < α then Mβ

refines Mγ . Furthermore, we assume that for every M ∈
⋃
{Mβ : β < α}

the set σ(M) is contained in some BM ∈ B and if M ′ ∈Mβ, M ′′ ∈Mγ and
M ′ ⊆∗ M ′′ then BM ′ 6= BM ′′ . As α < h, there exists a MAD family M on
ω which refines Mβ for each β < α. Next, we may apply Lemma 4, with
S = M ∈ M and CM = {BN : N ∈ Mβ, M ⊆∗ N, β < α}, to find a MAD
family Mα(M) on M in such a way that for any N ∈Mα(M) the set σ(N)
is contained in some BN ∈ B\CM . Finally, let Mα =

⋃
{Mα(M) : M ∈M}.

As h > κ, the tree T =
⋃
{Mα : α < κ} is not splitting and so there exists

some infinite set S ⊂ ω which is almost contained in some Mα ∈ Mα for
each α < κ.

Letting Bα = BMα , the way the tree T was constructed implies that
the family D = {Bα : α < κ} consists of pairwise distinct elements and
σ(S) ⊆∗ Bα for each α. Now, we can easily find an infinite set E ⊂ S and
an uncountable I ⊂ ω1 in such a way that σ(E) ⊂ Bα for each α ∈ I. This
is obviously in contrast with the hypothesis that B is ω-in-<κ.

Corollary 6. [h > ω1] Every countably compact space X with an ω-
in-countable base B is sequentially compact.

An immediate consequence of Corollary 6 and Theorem G is that h > ω1

is already enough to negate the existence of HFD subsets of 2ω1 .
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For compact spaces, we can improve h to s in Corollary 6; see Corollary 7,
which follows:

Theorem 8. If s > κ and p ≥ κ, then every compact space with an
ω-in-<κ base is sequentially compact.

Proof. Assume by contradiction that X is not sequentially compact and
let A be the range of a sequence 〈xn : n ∈ ω〉 with no convergent sub-
sequence. Denote by B′ the collection of all B ∈ B which have a finite
intersection with A. Let α ∈ p and let us assume to have chosen for each
β < α a finite collection Cβ ⊂ B such that (Cβ \B′)∩(Cγ \B′) = ∅ for distinct
β, γ < α and such that A ⊂

⋃
Cβ for each β < α. Fix x ∈ A. If x ∈

⋃
B′,

then choose Bx ∈ B′ such that x ∈ Bx. If x /∈
⋃
B′, let Dx be the collection

of all B ∈
⋃
{Cβ : β < α} such that x ∈ B.

As |Dx| < p and the family {B ∩ A : B ∈ Cx} has the strong finite
intersection property, there exists an infinite set Ax ⊂ A which is almost
contained in each B ∈ Cx. Since the sequence Ax cannot converge to x, we
may choose some Bx ∈ B in such a way that x ∈ Bx and Ax \Bx is infinite.
The latter condition implies in particular that Bx /∈ Cx. By compactness,
finitely many of these Bx cover A and we denote by Cα such a collection.
For any α ∈ ω1 the set A is almost contained in

⋃
(Cα \ B′) and the family

{B ∩ A : B ∈
⋃
{Cα \ B′ : α < ω1}} is not splitting on A. Therefore, there

exists an infinite set D ⊂ A and sets Cα ∈ Cα such that D ⊆∗ Cα for each
α ∈ p. We may now finish as in the proof of Theorem 7, using the family
{Cα : α ∈ p}.

We do not know whether the set-theoretic hypotheses can be eliminated
from Theorem 8, or from:

Corollary 7. [s > ω1] Every compact space X with an ω-in-countable
base B is sequentially compact.

Problem 10. Can the hypothesis κ ≤ p be eliminated from Theorem 8?

6. Other cardinal invariants. In this final section, we return to the
basic cardinal invariants, addressing both general themes mentioned in the
introduction. To save space, we call a space ponderous if it is an infinite,
countably compact space in which every convergent sequence is eventually
constant. [As noted in the introduction, all such spaces are T1.] This gives us
four questions for each cardinal invariant, two for countably compact spaces
in general and two for compact spaces, even without bringing in higher
separation axioms, but for some invariants a single example suffices for all
the questions.

For instance, the least π-weight (hence also π-character, density, and
cellularity) of a ponderous compact space (hence also of a countably compact
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space that is not sequentially compact, etc.) is ω, realized by the ponderous
Hausdorff space βω. Were it not for the convention that every cardinal
invariant gets multiplied by ω, we could even lower this figure to 1 for
[countably] compact spaces that are not sequentially compact: just add a
single point −∞ to any such space X, and have the topology be all unions
of {−∞} with open sets of X, including the empty set—and, of course, add
the empty set itself.

We also have a definitive example for the least character of a noniso-
lated point: it is ω1, while in a separable example it is p. The first figure
obviously cannot be lowered; nor can the second, by the comments follow-
ing Problem 6. Both figures are realized by ponderous compact Hausdorff
spaces. For the first, take a quotient space of the Stone–Čech remainder of
the discrete space of cardinality ω1: identify the closed subspace of uniform
ultrafilters to a single point. For the second, use a quotient space of βω: let
B be a filterbase on ω as in our definition of p, let F =

⋂
{B∗ : B ∈ B}, and

identify F to a point. [As usual, B∗ = c`βω(B) \B.]
In any infinite Hausdorff space, indeed in any space with with an infinite

family of disjoint open sets, precaliber and caliber are at least ω1, while
RO(X), the number of regular open sets, is at least c. All three are realized
by the ponderous βω. For more general spaces, we can lower all three to
ω where the two sequential compactness questions for them are concerned,
using the π-weight = 1 trick above. By making a small modification, we
can preserve the T1 property. Given a T1 space X that is not sequentially
compact, let S be an uncountable set disjoint from X and let the topology
on X ∪ S be

{∅} ∪ {U ∪ T : U ∈ τ(X) and T = S \ F where F ∈ [S]<ω}.
Then X∪S is not sequentially compact either, but it is [countably] compact
whenever X is, and is of caliber ω because every countable collection of
nonempty open sets has nonempty intersection. For precaliber and RO, it
is enough for S to be denumerable: every family of nonempty open sets is
centered, and the only regular open sets are the empty set and the whole
space X ∪ S!

The other two questions promise to be more difficult for all three invari-
ants:

Problem 11. Is there a ponderous space of countable precaliber? one
that is compact?

Although precaliber = caliber for compact Hausdorff spaces, they are
distinct in general, as the example of ω with the cofinite topology shows.

Problem 12. Is there a ponderous space of countable caliber? one that
is compact?
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Problem 13. Is there a ponderous space with countably many (or at
least fewer than c) regular open sets? one that is compact?

In Section 3, we said all we know about the least cardinality of a pon-
derous space. As for compact ponderous spaces, the best result to date is
Dow’s construction [D4] of a ponderous compact Hausdorff space of cardi-
nality ≤ 2s assuming the cofinality of ([s]ω,⊂) equals s. This hypothesis is so
“weak” that its negation implies that there is an inner model with a proper
class of measurable cardinals. This makes it reasonable to conjecture that
the least cardinality of a compact ponderous space is no greater than 2s,
and even this might not be optimal in all models.

The weight of Dow’s example is c, but we conjecture that s is the least
weight of a ponderous compact space. [By Theorem C, it cannot be less.]
There is an old construction of a ponderous compact Hausdorff space of
weight s in a model where ω1 = s < c: see [vDF] or the summary in [Ha].
More recently, Dow and Fremlin [DF] have shown that there is a ponderous
compact Hausdorff space of weight s = ω1 in any model obtained by adding
random reals to a model of CH. We know of no improvements to be had
in going to more general spaces. We have yet to develop a technology for
building non-Hausdorff compact ponderous spaces, and are only beginning
to develop one for ponderous non-Hausdorff spaces in general.

In [Ny] there is a ZFC construction of a ponderous, locally countable
space Y . Clearly, every compact subset of Y is finite, so it is KC by default.
Local countability implies that its pseudocharacter and tightness are ω. It
is also scattered, so its hereditary π-character is also ω. Hence ω is also
the least value of these invariants for a countably compact space that is
not sequentially compact. For compact spaces it is a different story, since
every locally countable compact space is countable and hence sequentially
compact.

Problem 14. Must a compact space be of uncountable pseudocharacter
if it is (a) ponderous, or (b) not sequentially compact?

The answer to both parts is affirmative in any model where c < n, be-
cause of Theorem 5 and Gryzlov’s theorem [G] that every compact T1 space
of countable pseudocharacter is of cardinality ≤ c. Of course, pseudochar-
acter is only defined for T1 spaces.

Obviously, no counterexample for Problem 14 can be T2. At present we
do not know of any improvement in ZFC on what we said about character
in Section 4, as far as the least pseudocharacter of a compact space that
is not sequentially compact is concerned. Where compact ponderous spaces
are concerned, we have nothing better than what we have said about weight
just now. These comments are also true of hereditary π-character, and for
it we do not even have consistency results.
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We can, however, restrict ourselves to T1 spaces where minimum hered-
itary π-character of compact spaces that are not sequentially compact is
concerned, just as we have been able to do already with all the invariants
considered earlier, and all four basic questions. The key is the relation x ≤ y
mentioned in the introduction, the one equivalent to x ∈ c`{y}. Minimal
closed sets (if any) in a space are obviously of the form c`{y}, and if the
space is T0, they are singletons. We use the word floor for the union of the
minimal closed subsets (if any) of a space. By Zorn’s lemma, every point in
a compact space is above some point in the floor, and if the space is T0 then
the floor is T1. We also have:

Theorem 9. The floor of a compact space is compact.

Proof. Since every point is above some point in the floor, every open
cover of the floor is automatically a cover of the whole space, and so it has
a finite subcover.

Theorem 10. A compact space is sequentially compact if, and only if,
its floor is sequentially compact.

Proof. Let X be compact. If its floor is sequentially compact and 〈xn :
n ∈ ω〉 is a sequence in X, let yn be any point on the floor below xn. If
there are only finitely many distinct points of the form yn, then there is an
infinite subsequence of 〈xn : n ∈ ω〉 above one of them, and it converges to
this point; otherwise, we can select a subsequence of 〈xn : n ∈ ω〉 such that
the correspondence xn → yn is one-to-one, and if yn → y then xn → y also.

Conversely, if X is sequentially compact and 〈yn : n ∈ ω〉 is a sequence
in the floor, let x be a limit of a convergent subsequence; then the sequence
also converges to any point in the floor below x.

So, if there is a compact space of hereditary π-character ≤ κ that is not
sequentially compact, then there is a T0 example as we saw in the intro-
duction, and its floor is a T1 example. The same reasoning applies to any
hereditary cardinal invariant, and this includes spread, tightness, hereditary
density, hereditary Lindelöf degree, and hereditary π-weight.

The least hereditary π-weight of a countably compact (without loss of
generality, T1) space which is not sequentially compact is ≤ h, because h is
the least value of this invariant in Example 3, but we do not know whether
this can be improved. Where the other three basic questions are concerned,
we have not been able to do better than we did with weight.

We are slightly better off where tightness is concerned. Fedorchuk’s [F]
ponderous hereditarily separable compact Hausdorff space constructed using
♦ shows that it is consistent that it be ω for all four basic questions. On
the other hand, the PFA implies that every compact Hausdorff space of
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countable tightness is sequential [B], and we have the following variation on
the Moore–Mrówka problem which this PFA result settled:

Problem 15. Is there a (without loss of generality, T1) compact space
of countable tightness that is (a) ponderous, or at least (b) not sequentially
compact?

The Moore–Mrówka problem asked whether there is a compact Haus-
dorff space of countable tightness which is not sequential, but the example
used in proving that (4) implies (1) in the proof of Theorem 6 is a compact
T1 space of countable tightness that is not sequential. Also, the one-point
compactification of the locally countable ponderous space Y of [Ny] is a
compact space of countable tightness that is not sequential, in which con-
vergent sequences have unique limits. It is, however, sequentially compact,
because every compact subset of Y is finite and so every infinite 1-1 sequence
converges to the extra point.

Fedorchuk’s example also shows it is consistent for there to be a ponder-
ous compact space of hereditary density and hence of spread ω. For these two
invariants we cannot do better in ZFC than s [resp. h] for [countably] com-
pact spaces that are not sequentially compact; this is due to both invariants
being bounded above by net weight. The same is true of hereditary Lindelöf
degree, which is uncountable in any model of ZFC. For ponderous spaces
we have nothing better than the results on µ1 in Section 3. For compact
ponderous spaces, all we can say is that all the invariants in this paragraph,
including net weight, are bounded above by weight and cardinality, and that
their net weight and hereditary Lindelöf degree are bounded below by what
we have established for compact spaces that are not sequentially compact.

The reasoning that gave us Theorem 10 also enables us to make short
work of a slight weakening of the concept of ponderousness. Call a space
almost ponderous if it is countably compact and has no convergent 1-1 se-
quences. This is clearly equivalent to being ponderous for a T1 space, while
in more general spaces it implies that each point is in the closure of only
finitely many singletons. In particular, there cannot be a descending se-
quence of points of order type ω + 1 with respect to the relation x ≤ y iff
x ∈ c`{y}. But in a countably compact space, this is equivalent to every
descending sequence being finite, and so every point is above some point in
the floor, while every point in the floor has only finitely many points above
it. It follows that if a countably compact T0 space is almost ponderous, then
its floor (which is T1) is ponderous, and also that the least value of a cardi-
nal invariant for an almost ponderous space is the same as for a ponderous
space.

Finally, we look at o(X) = |τ(X)|, the number of open sets. There is
still a range of uncertainty for all four questions. The Stone–Čech compact-



SEQUENTIAL COMPACTNESS VS. COUNTABLE COMPACTNESS 187

ification of ω is of little help here, since it has 2c open sets. From what we
have seen of RO(X), it is clear that c ≤ o(X) for every Hausdorff space
that is not sequentially compact, and the same is true of countably compact
spaces that are not sequentially compact. The T1 case is easy, even without
assuming countable compactness:

Theorem 11. Every T1 space is either sequentially compact or contains
an infinite discrete subspace.

Proof. Suppose X is T1 and not sequentially compact, and let 〈xn :
n ∈ ω〉 be a 1-1 sequence without a convergent subsequence. Let p0 be any
point of X and let U0 be an open neighborhood of p0 that omits infinitely
many xn. If pk and Uk have been defined, let pk+1 be outside

⋃k
i=0 Ui and let

Uk+1 be an open neighborhood of pk+1 that omits {p0, . . . , pk} along with
infinitely many xn that are also omitted by

⋃k
i=0 Ui. When the induction is

complete, {pn : n ∈ ω} is as desired.

For arbitrary spaces, we need to assume countable compactness: the
topology ω+1 on ω shows we cannot drop T1 from Theorem 11 [conciseness
made possible by the von Neumann convention of identifying each ordinal
with the set of smaller ordinals].

Theorem 12. Every countably compact space is either sequentially com-
pact or contains an infinite discrete subspace.

Proof. Let A = {pn : n ∈ ω} be as in the proof of Theorem 11, with the
additional feature that each pk is one of the points xn. There are two cases
to consider.

Case 1. Every infinite subset B of A contains a point q and an infinite
subset C ⊂ B such that each point of C has a neighborhood missing q. In
this case, let A0 = A and pick by induction a point qk of Ak and an infinite
Ak+1 ⊂ A such that each point of Ak+1 has a neighborhood missing qk.
Then {qn : n ∈ ω} is discrete.

Case 2. Otherwise. Let B be an infinite subset of A such that for every
point q of B, all but finitely many points of B are in the closure of q. Define
by induction {qn : n ∈ ω} such that each open set containing qn contains
{qk : k ≤ n}. Let x be a complete accumulation point of {qn : n ∈ ω}. Then
every neighborhood of x contains the whole of {qn : n ∈ ω}, which thus
converges to x, a contradiction.

Corollary 8. If X is a countably compact space that is not sequentially
compact, then o(X) ≥ c.

Proof. Let D be a discrete subspace and, for each d ∈ D, let Ud be
an open neighborhood of d such that Ud ∩ D = {d}. The sets of the form⋃
{Ud : d ∈ E} are open, and distinct for different E ⊂ D.
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Here is what we now know about the four basic questions for o(X):
(1) For the least cardinality κ1 of o(X) for countably compact, non-

sequentially-compact X, we can say c ≤ κ1 ≤ 2h, because of Corollary 8 and
Theorem 3. [Clearly, o(X) ≤ 2nw(X).]

(2) For the least cardinality κ2 of o(X) for compact, non-sequentially
compact X, we can say max{c, n} ≤ κ2 ≤ 2s, because of Corollary 8 and
Theorems 5, 10 and C: clearly, |X| ≤ o(X) for any T1 space X.

(3) The least o(X) for ponderous X is ≤ 2µ1 , which is consistently < 2c

as noted in Section 3. We have no improvement on the lower bound in (1).
(4) The least o(X) for compact ponderous X is bounded above by 2 to

the least weight, about which we have said all we can above. We have no
improvement on the lower bound in (2).

REFERENCES

[AW] O. T. Alas and R. G. Wilson, When is a compact space sequentially compact?,
Topology Proc. 29 (2005), 327–335.

[BPS] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by
nowhere dense sets, Fund. Math. 110, (1980) 11–24.

[B] Z. Balogh, On compact Hausdorff spaces of countable tightness, Proc. Amer.
Math. Soc. 105 (1989), 755–764.

[BG] Z. Balogh and G. Gruenhage, Base multiplicity in compact and generalized
compact spaces, Topology Appl. 115 (2001), 139–151.
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