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FULLY CLOSED MAPS AND NON-METRIZABLE
HIGHER-DIMENSIONAL ANDERSON–CHOQUET CONTINUA

BY

JERZY KRZEMPEK (Gliwice)

Abstract. Fedorchuk’s fully closed (continuous) maps and resolutions are applied
in constructions of non-metrizable higher-dimensional analogues of Anderson, Choquet,
and Cook’s rigid continua. Certain theorems on dimension-lowering maps are proved for
inductive dimensions and fully closed maps from spaces that need not be hereditarily
normal, and some of the examples of continua we construct have non-coinciding dimen-
sions.

Fully closed (continuous) maps and resolutions appear in numerous con-
structions (see S. Watson [48], V. V. Fedorchuk [26] for surveys), in particu-
lar, in constructions of homogeneous spaces with non-coinciding dimensions.
In this paper we apply such maps in order to obtain examples of continua
with strong hereditary rigidity properties.

A non-degenerate continuum X is called

• an Anderson–Choquet continuum if every non-degenerate subcontin-
uum P of X has exactly one embedding P → X, the identity idP ;
• a Cook continuum if every non-degenerate subcontinuum P of X has

exactly one non-constant map P → X, the identity idP .

Examples were constructed by R. D. Anderson and G. Choquet [2] (a plane
hereditarily decomposable continuum), and H. Cook [14] (a metric, one-
dimensional, hereditarily indecomposable continuum). T. Maćkowiak [37]
constructed a metric, chainable, hereditarily decomposable Cook continuum.

All known examples of such continua are one-dimensional. A metric
Cook continuum must have dimension ≤ 2 (Maćkowiak [38]), and if it is
hereditarily indecomposable, then it must be one-dimensional (Krzempek
[32]). On the other hand, several authors investigated rigidity properties of
higher-dimensional continua (J. J. Charatonik [8], M. Reńska [45], E. Pol
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[40–43, 34]; see [32] for more references). In [32] the present author con-
structed a metric, n-dimensional (for arbitrary n > 1), hereditarily inde-
composable continuum no two of whose disjoint n-dimensional subcontinua
are homeomorphic, but he was not able to ensure that the continuum be
Anderson–Choquet.

In this paper we achieve better results for the non-metric case: we con-
struct examples of non-metrizable higher-dimensional (with respect to the
dimensions dim, ind, and Ind) Anderson–Choquet continua and Cook con-
tinua. Another aim is to study the behavior of the Charalambous–Filippov–
Ivanov inductive dimension Ind0 under fully closed maps.

In Sections 1–3 we gather some facts about fully closed maps, ring-like
maps, and dimensions. Application of Ind0 simplifies estimating inductive
dimensions in some well-known examples. We show that if f is a fully closed
map from a non-empty compact space X to a first countable space, then
Ind0X ≤ Ind0 fX + Ind0 f . This enables us to prove that (1) Fedorchuk’s
first countable compact spaces [20] with dim=n<2n−1≤ ind≤2n also have
Ind ≤ Ind0 = 2n, and (2) V. A. Chatyrko’s chainable continua and homo-
geneous continua [11] with dim = 1 and ind = n also have Ind = Ind0 = n.
In Section 3 we slightly modify the Fedorchuk–Emeryk–Chatyrko resolution
theorem, and that is our main tool for constructions.

Section 4 contains a construction of hereditarily indecomposable Ander-
son–Choquet continua with dim = n (arbitrary n > 1) and a construction of
a Cook continuum with dim = 2. In Section 5 we obtain chainable (hence,
dim = 1), hereditarily decomposable Cook continua with n ≤ ind ≤ Ind ≤
Ind0 = n + 1. All the continua are separable and first countable, and some
have dim < ind.

1. Preliminaries: continua, maps, and covering dimension. By
a space we mean a regular T1 topological space, and all maps considered
are continuous and closed. A continuum is a non-empty connected compact
space. A subcontinuum A of a space X is said to be terminal if for every
continuum B ⊂ X, either A ∩ B = ∅, A ⊂ B, or B ⊂ A. A continuum is
said to be

• decomposable if it is the union of two proper subcontinua;
• hereditarily decomposable (abbrev. HD) if each of its non-degenerate

subcontinua is decomposable;
• hereditarily indecomposable (abbrev. HI) if none of its subcontinua is

decomposable (equivalently, each of its subcontinua is terminal);
• chainable if for every open cover, there exists a natural number n and

a closed refinement F1, . . . , Fn of the cover such that Fi ∩ Fj 6= ∅ iff
|i− j| ≤ 1.
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A (closed continuous) map f : X → Y is said to be

• irreducible if for every closed proper subset F  X, also fF  fX;
• monotone [atomic] if for every point y ∈ Y , the pre-image f−1y is a

continuum [respectively, a terminal continuum];
• ring-like if for every point x ∈ X and every pair of open sets U 3 x

and V 3 fx, there is an open set V ′ 3 fx such that V ′ ⊂ V and
f−1 bdV ′⊂U ;
• fully closed if for every pair of disjoint closed subsets F,G ⊂ X, the

intersection fF ∩ fG is a discrete subspace of Y (1).

We shall frequently use the simple fact that if f is a fully closed [ring-like]
map from a space X and X ′ ⊂ X is closed, then also the restriction f |X ′
is fully closed [respectively, ring-like].

The following proposition is well-known (cf. [26, Proposition II.3.10]).

1.1. Proposition. Suppose X and Y are compact spaces, and f :X→Y
is a map with every point-inverse metrizable. If the set C2f = {y ∈ Y :
card f−1y > 1} is countable and Y is metrizable, then X is metrizable. The
converse is true if moreover f is a fully closed map.

Proof. If C2f = {yi : i = 1, 2, . . . } and Y is metrizable, then let Bi and B
be countable bases for f−1yi and Y , respectively. As readily seen, the family
{f−1B : B ∈ B}∪

⋃
i Bi is a countable network for X. It follows that X has

a countable base (cf. R. Engelking [18, Theorem 3.1.19]).
Assume that f is fully closed and there is a metric on X. Using sequential

compactness of X, one easily checks that the set {y ∈ Y : diam f−1y ≥ 1/n}
is finite for every n. Thus, C2f is countable.

1.2. Proposition (A. Emeryk and Z. Horbanowicz [17, Theorem 1]).
A map f from a continuum X is atomic iff A = f−1fA for every continuum
A ⊂ X such that fA is not a single point.

The point of the foregoing proposition is that if the irreducibility condi-
tion A = f−1fA is satisfied for all subcontinua A ⊂ X with non-degenerate
images, then f is a monotone map.

1.3. Remark. It is easily seen that any ring-like map f : X → Y has
an even stronger property: it is connected irreducible, i.e. A = f−1fA for
every closed subspace A ⊂ X such that fA is connected and contains more
than one point (see [26, II.1.15]). In particular, f is irreducible whenever
Y = fX is connected and contains more than one point.

(1) An extensive survey [26] by Fedorchuk is devoted to fully closed maps, ring-like
maps, and their applications. See [26, Section II.1] for equivalent definitions of fully closed
maps. For terms not explicitly defined herein the reader is directed to the monographs by
R. Engelking [18, 19] and K. Kuratowski [35].
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1.4. Proposition. If f is a ring-like map from a compact space X onto
a non-degenerate continuum, then X is a continuum and f is an atomic
map.

Proof. Assume that f : X → Y is a ring-like map, X is compact, and fX
is a non-degenerate continuum. Suppose that X = A∪B, where A and B are
non-empty, closed, and disjoint. By Remark 1.3, the complement fX \ fA
is non-empty. Consider any component M of fX \ fA. By Janiszewski’s
boundary bumping theorem (see K. Kuratowski [35, §47, III, Theorem 2]),
the closure clM meets fA, and is not a single point. Since clM ⊂ fB
and f is connected irreducible, we obtain f−1 clM ⊂ B, a contradiction.
Therefore, X is a continuum. Finally, f is an atomic map by Proposition 1.2
and Remark 1.3.

The next useful proposition belongs to folklore (see Fedorchuk [26, proof
of Lemma III.3.3] and [27, Proposition 1.3]).

1.5. Proposition. Suppose that f is a (closed ) monotone map from a
space X, and A,B ⊂ fX are disjoint closed sets. If L is a partition (2) in X
between f−1A and f−1B, then fL is a partition in fX between A and B.

1.6. Proposition. Suppose that f : X → Y and g : Y → Z are surjec-
tive ring-like maps between compact spaces X, Y , and Z. If g is a monotone
map, then the composition gf is ring-like.

Proof. Take x ∈ X and open sets U 3 x and W 3 z = gfx. We can
assume that gfU ⊂ W . Since f is ring-like, there is an open set V ′ 3 fx
such that clV ′ ⊂ g−1W and f−1 bdV ′ ⊂ U . If g−1z is not a singleton, we
can moreover have g−1z 6⊂ clV ′. Clearly, bdV ′ ⊂ Y \ f(X \ U). There are
two cases.

(1) If g−1z is a non-degenerate continuum, then there is a point y ∈ bdV ′

with gy = z. The set Y \ f(X \U) is an open neighborhood of y, and there
is an open set W ′ 3 z such that W ′ ⊂ W and g−1 bdW ′ ⊂ Y \ f(X \ U).
Thus, (gf)−1 bdW ′ ⊂ U .

(2) If g−1z is a single point, then bdV ′ is a partition in Y between fx
and g−1(Z \W ). By Proposition 1.5, g bdV ′ is a partition in Z between z
and Z \W . Hence, there is an open set T ⊂ clT ⊂ W such that z ∈ T
and bdT ⊂ g bdV ′. As g is ring-like and bdT ⊂ W ∩ g[Y \ f(X \ U)],
for each t ∈ bdT there is an open set Wt ⊂ W such that g−1 bdWt ⊂
Y \ f(X \U). Then bdT ⊂Wt1 ∪ · · · ∪Wtn , where t1, . . . , tn ∈ bdT . We put
W ′ = T ∪Wt1 ∪ · · · ∪Wtn ⊂ W , and have bdW ′ ⊂ bdWt1 ∪ · · · ∪ bdWtn .
Thus, we obtain g−1 bdW ′ ⊂ Y \ f(X \ U) and (gf)−1 bdW ′ ⊂ U .

(2) We say that a closed set L ⊂ X is a partition in X if the complement X \ L is
not connected. Moreover, L is a partition in X between disjoint sets A,B ⊂ X if there are
disjoint open sets U, V ⊂ X such that X \ L = U ∪ V , A ⊂ U , and B ⊂ V .
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1.7. Proposition (cf. Chatyrko [11, Proposition 2]). Suppose f :X→Y
is a surjective ring-like map from a compact space X, and g : Y → Z
is a surjective monotone map without degenerate point-inverses. If every
partition in Y contains a point-inverse of g, then every partition in X
contains a point-inverse of the composition gf .

Proof. Assume that X 6= ∅ and every partition in Y contains a point-
inverse of g. Since the empty set is not a partition in Y , Y is a non-degenerate
continuum. Hence, f is irreducible by Remark 1.3, and monotone by Propo-
sition 1.4. Take a partition L in X. The irreducibility of f implies that L is
a partition between some point-inverses f−1a and f−1b, where a, b ∈ Y . By
Proposition 1.5, fL is a partition in Y between a and b. Then g−1z ⊂ fL
for some z ∈ Z, and again by Remark 1.3, f−1g−1z ⊂ L.

1.8. Proposition (implicit in Chatyrko [10]). If f is a ring-like map
from a compact space X, then dim fX ≤ dimX.

Proof (cf. Chatyrko [10, p. 124]). We shall prove that for every natural
number n, the inequality n ≤ dim fX implies n ≤ dimX. For n = 0, this is
obvious. For n = 1, fX contains a non-degenerate continuum Y . Then, by
Proposition 1.4, f−1Y is a non-degenerate continuum, and hence 1 ≤ dimX.

Let us recall that a normal space Y has dimY ≥ n iff there exists an
essential family (A1, B1), . . . , (An, Bn) in Y , i.e. Ai, Bi ⊂ Y are disjoint
closed subsets for each i, and for any partitions Li between Ai and Bi, the
intersection

⋂n
i=1 Li is non-empty (cf. Engelking [19, Theorem 3.2.6]).

Let 2 ≤ n ≤ dim fX. Since fX contains a component of dimension ≥ n,
we can assume that fX is a continuum. Then f is a monotone map by
Proposition 1.4. Take an essential family (A1, B1), . . . , (An, Bn) in fX. We
shall show that the pre-images (f−1A1, f

−1B1), . . . , (f−1An, f
−1Bn) form an

essential family in X. If Li are partitions in X between f−1Ai and f−1Bi,
then fLi are partitions in fX between Ai and Bi (Proposition 1.5). By
Lemma 5.2 in [47], the intersection

⋂n
i=2 fLi contains a continuum P which

meets both A1 and B1. Since f(Li∩f−1P ) = P for i = 2, . . . , n, Remark 1.3
implies that f−1P = Li ∩ f−1P and f−1P ⊂

⋂n
i=2 Li. As f is monotone,

f−1P is a continuum and meets L1, and hence
⋂n
i=1 Li is non-empty. There-

fore, n ≤ dimX.

The fiberwise covering dimension of a map f : X → Y is defined as

dim f = sup{dim f−1y : y ∈ Y }.
Other fiberwise dimension functions ind, Ind, etc. for maps are defined sim-
ilarly.

1.9. Theorem (Fedorchuk, see [26, Theorem III.2.4]). If f is a fully
closed map from a normal space X, then dimX ≤ max{dim fX,dim f}.
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The following is a consequence of Theorem 1.9 and Proposition 1.8.

1.10. Corollary. If f is a ring-like fully closed map from a compact
space X, then dimX = max{dim fX,dim f}.

2. Maps that reduce inductive dimensions. Since the theory of
Ind is unsatisfactory outside the class of hereditarily normal spaces, we
shall use another inductive dimension function Ind0, which was introduced
by M. G. Charalambous [5, 6] and A. V. Ivanov [31].

2.1. Definition. For normal spaces X, Ind0X ∈ {−1, 0, 1, 2, . . . ,∞} is
defined so that

(a) Ind0X = −1 iff X = ∅;
(b) Ind0X ≤ n ≥ 0 iff for every pair of disjoint closed sets A,B ⊂ X,

there is a Gδ partition L between A and B such that Ind0 L ≤ n−1;
(c) Ind0X = n iff Ind0X ≤ n and it is not true that Ind0X ≤ n− 1;
(d) Ind0X =∞ if for every n ∈ N, it is not true that Ind0X ≤ n.

It is clear that IndX ≤ Ind0X for every normal space X, and IndX =
Ind0X if X is perfectly normal.

2.2. Countable sum theorem for Ind0 (Charalambous [6], Ivanov
[31]). Suppose that X =

⋃∞
i=1 Fi is a normal space, and Fi are closed Gδ-

subsets of X. If Ind0 Fi ≤ n for every i, then Ind0X ≤ n.

The assumption that Fi are Gδ-sets is necessary in Theorem 2.2 even
if X is a hereditarily normal compact space (see [31]). Besides [6, 31], see
Charalambous and Chatyrko [7] for more (also bibliographical) information
on Ind0.

The following theorem on dimension-lowering fully closed maps seems to
be important because of its applications.

2.3. Theorem. If f is a fully closed map from a non-empty normal
space X to a space each of whose discrete closed subspaces is a Gδ-set, then
Ind0X ≤ Ind0 fX + Ind0 f .

We shall modify the proof of Theorem III.2.8 in [26]. First, we need some
standard preparation (see [26, pp. 4213–4216] for details). Let f : X → Y
be a map, and M ⊂ Y be an arbitrary set. Consider the decomposition

M = {f−1y : y ∈ Y \M} ∪ {{x} : x ∈ f−1M}
of X. Let YM = X/M be the quotient space, fM : X → YM the natural
quotient projection, and πM : YM → Y the only map such that f = πMfM .
If f is fully closed, then M is upper semicontinuous, YM is a regular space,
and fM , πM are fully closed maps.

A proof of this lemma (cf. [19, Lemma 1.2.9]) is routine:
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2.4. Lemma. Suppose that M,A,B ⊂ X are closed subsets of a normal
space X, A∩B = ∅, and L is a partition in M between M ∩A and M ∩B.
If X \L is a normal space, then there are disjoint open sets U, V ⊂ X such
that A ⊂ U , B ⊂ V , M \ L = (U ∪ V ) ∩M , and clU ∩ clV ⊂ L.

Proof of Theorem 2.3. We start with some general construction for ar-
bitrary X, f , Y = fX, and disjoint closed sets A,B ⊂ X. We can assume
that p = Ind0 Y < ∞ and q = Ind0 f < ∞. Clearly p, q ≥ 0. Since f
is fully closed, M = fA ∩ fB is a discrete closed subspace of Y . Con-
sider YM , fM : X → YM , and πM : YM → Y . The restriction fM |f−1M is
a homeomorphism onto N = (πM )−1M , and we shall construct a Gδ parti-
tion in YM between the disjoint sets fMA and fMB. The pre-image f−1M
is homeomorphic to the discrete sum of point-inverses f−1y, y ∈ M , and
hence Ind0N ≤ q. There is a Gδ partition L in N between N ∩ fMA and
N ∩ fMB, where Ind0 L ≤ q − 1. As fM is a closed map, YM is a normal
space. Since M ⊂ Y is a Gδ-set, YM \N and YM \L are Fσ-sets in YM , and
hence they are also normal spaces (see [18, Exercise 2.1.E]). By Lemma 2.4,
there are disjoint open sets U, V ⊂ YM such that fMA ⊂ U , fMB ⊂ V ,
N \L = (U∪V )∩N , and clU∩clV ⊂ L. As Y \M is an open Fσ-subset of Y ,
it is a countable union of closed Gδ-subsets Fi of Y . Since πM |YM \N is a
homeomorphism onto Y \M , we obtain Ind0(YM \N) ≤ p by Theorem 2.2.
Thus, there are disjoint open sets U ′, V ′ ⊂ YM \N such that clU \N ⊂ U ′,
clV \N ⊂ V ′, and L′ = YM \ (N ∪U ′∪V ′) is a Gδ-set with Ind0 L

′ ≤ p− 1.
Observe that

L ∪ L′ = YM \ (U ∪ U ′ ∪ V ∪ V ′)

is a Gδ partition in YM between fMA and fMB. Therefore, (fM )−1(L∪L′)
is a Gδ partition in X between A and B.

We now proceed by induction on p. If p = 0, then L′ is empty and
Ind0 (fM )−1(L ∪ L′) = Ind0 L ≤ q − 1. As we took arbitrary sets A and B,
we have Ind0X ≤ q = p+q. Assume the conclusion of the theorem is true for
fully closed maps whose images have Ind0 < p > 0. Then L′ is the countable
union of closed Gδ-sets Li = L′ ∩ (πM )−1Fi ⊂ YM with Ind0 Li ≤ p − 1.
The restrictions fM |(fM )−1Li : (fM )−1Li → Li are fully closed, and by
the induction hypothesis we obtain Ind0 (fM )−1Li ≤ p+ q− 1. Since L and
(fM )−1L are homeomorphic, we have Ind0 (fM )−1(L ∪ L′) ≤ p + q − 1 by
Theorem 2.2. We have shown that Ind0X ≤ p+ q because (fM )−1(L ∪ L′)
is a Gδ partition between disjoint closed sets A and B, which were taken
arbitrarily.

2.5. Corollary. Suppose that f is a fully closed map from a non-empty
normal space X onto a perfectly normal space. If every point-inverse of f is
perfectly normal, then IndX ≤ Ind fX + Ind f .
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The foregoing corollary may be considered as an Ind-analogue of Fe-
dorchuk’s Theorem 4 in [20], which was stated for ind and special, resolution
fully closed maps f . In a recent paper [28, pp. 117–120] Fedorchuk proves the
inequality for Ind and resolution maps f , where fX are (metric, compact)
two-manifolds.

Theorem 2.3 and Corollary 2.5 enable estimating inductive dimensions in
some well-known constructions (see [26] for a survey). In particular, Fedor-
chuk’s continua B ([20])—let us write Bn instead—were the first examples of
separable and first countable compact spaces with non-coinciding dimensions
dim and ind. Fedorchuk proved that dimBn = n and 2n− 1 ≤ indBn ≤ 2n.
Since each Bn has a fully closed map onto the n-dimensional sphere, and
every point-inverse of the map is homeomorphic to the n-dimensional torus,
we obtain

2.6. Corollary. Fedorchuk’s continua Bn also have

IndBn ≤ Ind0Bn ≤ 2n.

In fact, we shall see that Ind0Bn = 2n by Theorem 2.12.
Chatyrko [11] constructed separable first countable continua In and (S1)n.

He proved In are chainable, (S1)n are homogeneous, dim In = dim (S1)n = 1,
and ind In = ind (S1)n = n.

2.7. Corollary. Chatyrko’s continua In and (S1)n have also

Ind In = Ind (S1)n = Ind0 In = Ind0 (S1)n = n.

Proof. There is a sequence · · · π
n+1
n−→ In

πnn−1−→ · · ·
π3
2−→ I2

π2
1−→ I1 = [0, 1]

of fully closed onto maps πn+1
n (see [11]). For each n and every t ∈ In, the

pre-image (πn+1
n )−1t is homeomorphic to [0, 1]. Using induction and The-

orem 2.3, we obtain Ind0 In ≤ n.
In the case of (S1)n there exists an analogous sequence of maps, whose

point-inverses are homeomorphic to a circumference.

In Corollary 2.5 one can replace those perfectly normal spaces by another
class of spaces in which Ind = Ind0. This could be the class of hereditar-
ily perfectly κ-normal spaces (Fedorchuk [24]); surely, every discrete closed
subset of fX should be Gδ in fX.

The assumption that f is fully closed is necessary in Corollary 2.5. Un-
der a set-theoretical assumption consistent with ZFC, Fedorchuk [23] con-
structed a perfect map fF : XF → YF, where XF and YF are perfectly nor-
mal, locally compact, and countably compact spaces, dimXF = IndXF = 1,
IndYF = 0, and Ind f−1

F y = 0 for every y ∈ YF. On the other hand, it
is not sufficient to assume only that f is fully closed. Chatyrko [12] has
constructed a certain fully closed map fCh : XCh → Ac from a compact
space XCh with IndXCh = Ind0XCh = 2 onto a compact space Ac with
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a unique accumulation point y0 and cardAc = c. All point-inverses f−1
Ch y,

where y0 6= y ∈ Ac, are single points, and 1 = Ind f−1
Ch y0 < Ind0 f

−1
Ch y0 = 2.

For some other maps f : X → Y , even IndX − Ind fX − Ind f > 1. For
every pair of natural numbers m > n ≥ 1, the present author [33] has
constructed a compact space Xm,n such that IndXm,n = m and every com-
ponent of Xm,n is homeomorphic to the n-dimensional cube [0, 1]n. Conse-
quently, if D stands for the decomposition of Xm,n into components, and
fK : Xm,n → Xm,n/D is the natural quotient map (it is not fully closed),
then IndXm,n − IndXm,n/D − Ind fK = m− n.

2.8. Lemma. Suppose that f is a fully closed map from a normal space X,
L ⊂ X is a closed Gδ-set, and A,B ⊂ fX are disjoint closed sets. Then

(a) fL ∩ f(X \ L) is the countable union of discrete closed subspaces of
fX (cf. [25, Definition 3 and Lemma 2]).

If moreover every discrete closed subspace of fX is a Gδ-subset, then

(b) fL is a Gδ-set in fX;
(c) whenever L is a partition between f−1A and f−1B, there is a count-

able family of discrete closed sets Γi ⊂ fX \ (A ∪ B) such that the
union fL ∪

⋃
i Γi is a Gδ partition in fX between A and B.

Proof. (a) There is a sequence of closed sets Fi ⊂ X such that X \ L =⋃
i Fi. The intersections fFi∩fL are discrete and closed, and f(X\L)∩fL =⋃
i(fFi ∩ fL).
(b) If fFi ∩ fL are Gδ in fX, then fFi \ fL are Fσ. Since fX \ fL =⋃

i(fFi \ fL), fL is Gδ.
(c) appears to be implicitly shown in the proof of [26, Theorem III.2.6]

if one can use (b). The new point is to apply Lemma 2.8(b) and prove that
if P = L in [26, p. 4247] is Gδ, then fP , Ui ∪ f−1fP , f(Ui ∪ f−1fP ), and
K = f(U1 ∪ f−1fP ) ∩ f(U2 ∪ f−1fP ) = fP ∪

⋃
j,k Γjk are Gδ-sets.

Applying induction, Lemma 2.8(c), Theorem 2.2, and Proposition 1.4,
we obtain the following two theorems. (The first one is an Ind0-analogue of
Theorem III.2.6 on Ind in [26].)

2.9. Theorem. If f is a fully closed map from a normal space X to a
space each of whose discrete closed subspaces is a Gδ-set, then Ind0 fX ≤
Ind0X + 1.

2.10. Theorem. If f is a ring-like fully closed map from a compact
space X to a first countable space, then Ind0 fX ≤ Ind0X.

2.11. Lemma. If f is a ring-like fully closed map from a compact space X
onto a non-degenerate continuum, then every Gδ partition in X contains a
point-inverse of f .
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Proof. Take a Gδ partition L in X. There are two cases.
(1) If fL is uncountable, then by Lemma 2.8(a), fL∩ f(X \L) is count-

able, fL \ f(X \ L) 3 y for some y ∈ fX, and f−1y ⊂ L.
(2) Suppose that fL is countable. Then L contains a thin partition F ,

i.e. there are disjoint non-empty open sets U1, U2 ⊂ X such that X \ F =
U1 ∪ U2 and F = bdU1 = bdU2. By Remark 1.3 and Proposition 1.4, f is
a monotone irreducible map, and X is a continuum. By the same argument
as in Fedorchuk [25, proof of Lemma 4, p. 167], we infer that f−1x ⊂ F for
every point x ∈ fX isolated in fF .

2.12. Theorem. If f is a ring-like fully closed map from a non-empty
compact space X onto a first countable space Y , and Ind0 f

−1y = Ind0 f for
every y ∈ Y , then Ind0X = Ind0 Y + Ind0 f .

Proof. Theorem 2.3 yields the inequality “≤”. Fix m = Ind0 f . The
inequality “≥” will be proved by induction on n = Ind0X < ∞. Clearly,
n ≥ m. Let n = m, and suppose that Ind0 Y > 0. Then, Y has a non-
degenerate component Y ′. By Lemma 2.11, every Gδ partition L in X ′ =
f−1Y ′ contains a point-inverse of f and has Ind0 L ≥ m. Hence, Ind0X

′ > n,
a contradiction. Thus, Ind0 Y = 0 and the inequality “≥” is true.

Assume that n > m. In order to show that Ind0 Y ≤ n−m, take a pair of
disjoint closed sets A,B ⊂ Y . There is a Gδ partition L in X between f−1A
and f−1B, with Ind0 L ≤ n − 1. By Lemma 2.8(c) there is a Gδ partition
K ⊃ fL in Y between A and B, where K \ fL is countable. Lemma 2.8(a)
implies that also K ∩ f(X \ L) = {yi : i = 1, 2, . . .}. We have f−1K =
L ∪

⋃
i f
−1yi, and Ind0 f

−1K ≤ n − 1 by Theorem 2.2. By the induction
hypothesis, Ind0K ≤ n−m− 1. We have shown that Ind0 Y ≤ n−m.

The following statement may be considered as a generalization of Theo-
rem 3 in Fedorchuk [20].

2.13. Theorem. Suppose that f : X → Y is a surjective ring-like map
between compact spaces X and Y , and dimY ≥ 1. If ind f−1y ≥ m for
every y ∈ Y , then indX ≥ dimY +m− 1.

Proof. If dimY =∞, then indX ≥ dimX =∞ by Proposition 1.8 (and
[19, Theorem 3.1.29]). We can assume that dimY <∞. It suffices to prove
by induction that for every natural number k ≥ 1, the inequality dimY ≥ k
implies indX ≥ k +m− 1. For k = 1 the implication is obvious.

We shall use the following classical notion. A compact space M with
dimM = n is called an n-dimensional Cantor manifold provided that every
partition L in M has dimL ≥ n − 1. P. S. Aleksandrov [1] proved that
every compact space Z with 1 ≤ n = dimZ <∞ contains an n-dimensional
Cantor manifold (see also [19, Theorem 1.9.9 and Exercise 3.2.F]).
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Let n = dimY ≥ k ≥ 2. We can assume that Y is an n-dimensional
Cantor manifold. Then X is a continuum and f is an irreducible monotone
map by Remark 1.3 and Proposition 1.4. If L is a partition in X, then fL
is a partition in Y (Proposition 1.5), and dim fL ≥ n − 1 ≥ k − 1. Now,
fL contains a component P with dimP ≥ n − 1. Since P = f(L ∩ f−1P ),
Remark 1.3 implies f−1P ⊂ L. By the obvious induction hypothesis, indL ≥
ind f−1P ≥ k +m− 2. Therefore, indX ≥ k +m− 1.

3. Main tools for constructions. For our constructions we need in-
gredients of two types. The following resolution theorem (the first type) is
a modification of well-known results.

3.1. Theorem (cf. Chatyrko [10], Emeryk [15], Fedorchuk [20]). Sup-
pose that X is a first countable continuum, and for every x ∈ X, Yx is a
metrizable continuum. Then there exists a first countable continuum Z =
Z(X,Yx) with a map π : Z → X such that

(a) for every x ∈ X, the pre-image π−1x is homeomorphic to Yx;
(b) π is ring-like and fully closed.

Moreover, the conjunction of (a) and (b) implies that

(c) dimZ = max{dimX,dimπ};
(d) if X is perfectly normal, then IndZ ≤ IndX + Indπ;
(e) if X is separable, then so is Z;
(f) if all Yx are non-degenerate continua, and P ⊂ Z is a metrizable

continuum, then the image πP is a single point;
(g) if X and all Yx are hereditarily indecomposable [hereditarily decom-

posable ], then so is Z.

Sketch of proof. Since Chatyrko’s paper [10] has not been translated into
English, we sketch his construction for the convenience of the reader (3). We
can assume that each Yx is a subspace of the Hilbert cube [0, 1]∞. Using the
local connectedness of [0, 1]∞, one constructs a map gx : (0, 1] → [0, 1]∞

such that for each natural number n, Yx ⊂ cl gx(0, 1/n] ⊂ B(Yx, 1/n), where
B stands for a ball. One takes a map fx : X → [0, 1] with f−10 = {x},
and writes hx : X \ {x} → [0, 1]∞ for the composition gx(fx|X \ {x}). Set
Z =

⋃
{{x} × Yx : x ∈ X} ⊂ X × [0, 1]∞, and π : Z → X, π(x, y) = x.

The topology on Z is generated by a base of neighborhoods at any point
(x, y) ∈ Z; the base consists of all sets

W (V,U) = [{x} × (V ∩ Yx)] ∪ π−1(U ∩ h−1
x V ),

(3) In a forthcoming paper, joint with M. G. Charalambous, we describe a general-
ization of Chatyrko’s construction in more detail.
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where U ⊂ X and V ⊂ [0, 1]∞ are neighborhoods of x ∈ X and y ∈ Yx
respectively. The above is a generalization of Fedorchuk’s construction [20]
(cf. also Fedorchuk [25, the proof of Lemma 1] and [26, Section III.1]). One
checks that Z is a first countable continuum, and π satisfies (a) and (b).

Corollary 1.10 yields (c), and Corollary 2.5 yields (d). Statement (e) is an
easy consequence of the fact that π is an irreducible map (see Remark 1.3).
Statement (f) follows from Remark 1.3 and Proposition 1.1, and (g) is a
simple property of atomic maps.

3.2. Remarks. (1) If a subcontinuum P of Z = Z(X,Yx) in Theo-
rem 3.1 is non-metrizable, then P = π−1πP by Remark 1.3. Hence, if all
Yx are non-degenerate continua, then for every non-degenerate continuum
P ⊂ Z and any point z ∈ P , there is a non-degenerate metrizable continuum
Q such that z ∈ Q ⊂ P .

(2) One can combine the proofs by Chatyrko [10] and Fedorchuk [25,
Lemma 1] in order to obtain a map π that also satisfies assertion (2) of
Lemma 1 in [25]. This enables one to construct the continuum Z = Z(X,Yx)
under the continuum hypothesis (see [25, pp. 166–167]) so that

(†) if CH is true, and the continuum X in Theorem 3.1 is perfectly
normal and hereditarily separable, then Z is perfectly normal and
hereditarily separable.

We shall also need Cook continua (the second type of ingredients), whose
subcontinua will be taken as the Yx’s of Theorem 3.1.

3.3. Example (Cook [14]; see A. Pultr and V. Trnková [44, Appendix A]
for a detailed construction). There exists a metrizable, one-dimensional,
hereditarily indecomposable Cook continuum M1 that does not contain non-
degenerate continuous images of plane continua.

Proof. J. W. Rogers, Jr. [46] observed that Cook’s continuum [14] does
not contain non-degenerate continuous images of plane continua.

3.4. Example (Maćkowiak [37]). There exists a metrizable, chainable,
hereditarily decomposable Cook continuum.

4. Anderson–Choquet (and similar) continua with dim > 1. The
following continua are neither Anderson–Choquet nor Cook, but they are
HI analogues of Fedorchuk’s spaces with non-coinciding dimensions ([20], cf.
also our Corollary 2.6).

4.1. Theorem. For every natural number n ≥ 1, there exists a non-
metrizable, separable, first countable, hereditarily indecomposable continuum
Z such that dimZ = n and 2n− 1 ≤ indZ ≤ IndZ ≤ Ind0 Z = 2n.
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Proof. By a theorem of R. H. Bing [3], there exists a metric HI continuum
X with dimX = n. Let Yx = X for x ∈ X, apply Theorem 3.1, and put
Z = Z(X,Yx).

The properties of Z are consequences of 2.12, 2.13, and 3.1(c–g).

Let us notice that the first examples of non-metrizable HI continua were
constructed by Emeryk [16].

4.2. Theorem. For every natural number n ≥ 1, there exists a non-
metrizable, separable, first countable, hereditarily indecomposable Anderson–
Choquet continuum Z with n = dimZ ≤ indZ ≤ IndZ ≤ Ind0 Z = n+ 1.

Proof. Let X be a metric n-dimensional HI continuum (Bing [3]). Take
a family {Cx : x ∈ X} of pairwise disjoint non-degenerate subcontinua of
Cook’s continuum M1 (Example 3.3), apply Theorem 3.1, and put Z =
Z(X,Cx).

Most of the desired properties of Z follow from Theorems 2.12 and
3.1(c–g). It remains to prove that Z is an Anderson–Choquet continuum.
Let π : Z → X be the map of Theorem 3.1, and choose any non-degenerate
continuum P ⊂ Z and any embedding ϕ : P → Z. Take an arbitrary point
z ∈ P . By Remark 3.2(1), P contains a non-degenerate metrizable contin-
uum Q 3 z. Theorem 3.1(f) guarantees that Q ⊂ π−1x and ϕQ ⊂ π−1x′ for
some x, x′ ∈ X. Since π−1x and π−1x′ are homeomorphic to Cx and Cx′ ,
respectively, we obtain x = x′, ϕ|Q = idQ, and ϕz = z. We have shown that
ϕ = idP .

We shall adapt the foregoing construction and proof in order to obtain
hereditarily rigid finite-group actions. We start with some terminology. Let
X be a space, and G a finite group. We write H(X) for the group of all
homeomorphisms X → X. Every homomorphism ξ : G→ H(X) is called a
G-action on X; the value of ξ at g ∈ G will be denoted by gξ ∈ H(X). This
G-action is said to be fixed-point-free if for each g ∈ G \ {e}, the homeo-
morphism gξ : X → X does not have a fixed point. Let ζ : G → H(Y ) be
a G-action on a space Y . A map f : X → Y is said to be equivariant if
gζf = fgξ for each g ∈ G.

4.3. Theorem. Suppose that X is a first countable continuum, G is a
finite group, and ξ is a fixed-point-free G-action on X. Then there exists
a first countable continuum Z with a fixed-point-free isomorphic G-action
ζ : G→ H(Z) and an equivariant map π : Z → X such that

(a) π is a ring-like fully closed map, and all point-inverses of π are
metrizable one-dimensional continua;

(b) for every non-degenerate continuum P ⊂Z and embedding ϕ :P →Z,
there is a homeomorphism gζ ∈ H(Z) such that gζ |P = ϕ.
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An important point in this theorem is that dimZ = dimX by Corol-
lary 1.10, and Ind0 Z = Ind0X + 1 by Theorem 2.12. In the proof it will
be seen that we can ensure that all point-inverses of π are HI (if we use
subcontinua of Example 3.3 in our construction), or alternatively, that they
are HD (if we use Example 3.4).

We may apply this theorem to some standard examples of group actions.
It is well-known that for every finite group G and every n ≥ 2, there exists
a (compact metric) n-manifold without boundary with a fixed-point-free
G-action (see J. de Groot and R. J. Wille [30, p. 444]). In case n = 1, there
exists a connected finite graph with a fixed-point-free G-action (G acts on
its Cayley graph). Two simpler examples: Using Anderson and Choquet’s
original HD continuum [2], a Cayley graph of the group G, and the method
from [30], one easily constructs a metric one-dimensional HD continuum
Z with a fixed-point-free G-action ζ that is an isomorphism G → H(Z)
and satisfies assertion (b) of Theorem 4.3. Using our Anderson–Choquet
continuum (of Theorem 4.2) instead (and the same Cayley graph method),
one constructs a non-metrizable, separable, and first countable continuum
Z with dimZ = n and a similar G-action ζ on Z.

Let us notice that there are numerous papers on group representations
in topology (see de Groot [29] for example) and in the more general context
of category theory (see the bibliography in Pultr and Trnková [44]).

Proof of Theorem 4.3. (I) Consider the familyD of all orbits {gξx : g∈G},
x ∈ X, and the quotient space X ′ = X/D. The quotient projection qξ :
X → X ′ is a covering map. Take a family {Cx′ : x′ ∈ X ′} of pairwise disjoint
non-degenerate subcontinua of Cook’s continuum M1 (Example 3.3). Use
Theorem 3.1, and take Z ′ = Z(X ′, Cx′) and π′ : Z ′ → X ′, a map that satis-
fies statements (a–g) of Theorem 3.1. Consider the set Z =

⋃
x′∈X′(q

−1
ξ x′ ×

π′−1x′) ⊂ X × Z ′. We define π(x, t) = x, qζ(x, t) = t, and gζ(x, t) = (gξx, t)
for x ∈ X, t ∈ π′−1qξx, and g ∈ G. The following diagram commutes:

X X ′

Z Z ′

X

Z

���
���

���
���:

���
���

���
���:�

�
��+

�
�

��+

-

-

6 6

6

qξ

qζ

π

π
π′

qξ

qζ

gξ

gζ

and ζ, g 7→ gζ , is a monomorphism from G to the group of permutations
of Z. Finally, we equip Z with the smallest topology such that π and qζ are
continuous. Observe that if U ⊂ X is an open set such that qξ|U : U → qξU
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is a homeomorphism, then qζ |π−1U : π−1U → π′−1qξU is also a homeo-
morphism. Indeed, qζ |π−1U is one-to-one, all open subsets of π−1U have
the form q−1

ζ V ∩ π−1U , where V ⊂ Z ′ are open, and qζ(q−1
ζ V ∩ π−1U) =

V ∩ qζπ−1U = V ∩ π′−1qξU . It follows that qζ is a closed covering map, and
hence Z is a compact space by [18, Theorem 3.7.2]. Similarly, gζ are hom-
eomorphisms of Z. In view of the above diagram, π is an equivariant map.

(II) Every point-inverse π−1x is homeomorphic to qζπ
−1x = π′−1qξx

and Cqξx. As π is a monotone map, the connectedness of X implies the
connectedness of Z. Using the fact that π′ is ring-like, one easily checks that
also π is ring-like.

In order to prove that π is fully closed take disjoint closed sets A,B ⊂ Z.
By the compactness ofX, it is sufficient to show that if clU ⊂ X and qξ| clU
is one-to-one, then clU contains a finite number of points in πA ∩ πB.
Indeed, consider the set F = π−1 clU and the restriction π|F . The sets
gζF , g ∈ G, are pairwise disjoint, and qζ |F is a one-to-one function. Thus,
qζ(F∩A) and qζ(F∩B) are disjoint closed subsets of Z ′, and the intersection

π′qζ(F ∩A)∩ π′qζ(F ∩B) = qξπ(F ∩A)∩ qξπ(F ∩B) = qξ[clU ∩ πA∩ πB]

is finite since π′ is a fully closed map. Therefore, clU ∩ πA ∩ πB is finite,
and π is fully closed. Moreover, π satisfies statements analogous to The-
orem 3.1(c–g) and Remark 3.2(1).

(III) Let P ⊂ Z be a non-degenerate continuum, and ϕ : P → Z an
embedding. We claim that for every z ∈ P there is a g ∈ G such that
ϕz = gζz. Indeed, by Remark 3.2(1), P contains a non-degenerate metrizable
continuum Q 3 z. By a statement analogous to Theorem 3.1(f), there are
x, x′ ∈ X such that Q ⊂ π−1x and ϕQ ⊂ π−1x′. The restrictions qζ |Q
and qζϕ|Q are embeddings into π′−1qξx and π′−1qξx

′, respectively. Since
these point-inverses are homeomorphic to Cqξx and Cqξx′ , respectively, we
have qξx = qξx

′, qζ |Q = qζϕ|Q, and qζz = qζϕz. Hence, there is a g ∈ G
such that ϕz = gζz. The foregoing claim implies that P =

⋃
g∈G Fg, where

Fg = {z ∈ P : ϕz = gζz}. The sets Fg are closed, pairwise disjoint, and P
is connected. Hence, only one Fg is non-empty. Thus, there is a g ∈ G such
that P = Fg and ϕ = gζ |P .

When we apply (b) to P = Z, we infer that ζ is an isomorphism onto
H(Z).

A non-degenerate continuum X will be called a weak Cook continuum (4)
if for every subcontinuum P of X, every map f : P → X with P ∩ fP = ∅
is constant.

(4) There is some difference in terminology: in [36–38] our weak Cook continua are
just called Cook continua.



216 J. KRZEMPEK

4.4. Proposition (Maćkowiak [36, Proposition 29] (5)). Suppose that
X is a weak Cook continuum. If P is a subcontinuum of X and f : P → X
is a non-constant map, then fP ⊂ P and f is a monotone retraction.

4.5. Theorem. There exists a non-metrizable, separable, first countable
Cook continuum Z with 2 = dimZ ≤ indZ ≤ IndZ ≤ Ind0 Z = 3.

Proof. Take the square [0, 1]2 and a family {Cx : x ∈ [0, 1]2} of pairwise
disjoint non-degenerate subcontinua of Cook’s continuum M1. Put Z =
Z([0, 1]2, Cx), and let π : Z → [0, 1]2 be the map of Theorem 3.1.

Most of the desired properties of Z follow from Theorems 2.12 and
3.1(c–g). We shall prove that Z is a weak Cook continuum. Assume that
P is a subcontinuum of Z, and f : P → Z is a map with P ∩ fP = ∅.
We claim that for every metrizable continuum Q ⊂ P , the restriction f |Q is
constant. Indeed, fQ is a metrizable subcontinuum of Z. Theorem 3.1(f) im-
plies thatQ and fQ are homeomorphic to disjoint subcontinua of Cook’sM1.
Hence, fQ is a single point. Thus, if P is metrizable, we are done. If not,
P = π−1πP by Remark 1.3, and the above claim implies that there is a
factorization f = g(π|P ), where g : πP → Z is continuous. Hence, fP is a
metrizable continuum contained in a point-inverse of π. Since M1 contains
only degenerate images of plane continua, g and f are constant maps.

Now, choose a continuum P ⊂ Z and a non-constant map f : P → Z.
Suppose a contrario that f 6= idP . Take a point z ∈ P with fz 6= z. It is
a consequence of Proposition 4.4 that A = f−1fz and B = fP are non-
degenerate continua with A ∩ B = {fz}. Since A is a retract of A ∪ B 3 z
and π−1πz is a Cook continuum, π(A ∪ B) is not a single point. Hence,
A∪B = π−1π(A∪B) = π−1πA∪π−1πB by Remark 1.3, πA 6⊂ πB, πB 6⊂ πA,
A = π−1πA, and B = π−1πB. Thus, π−1πfz ⊂ A ∩ B, a contradiction.
Therefore, f = idP , and Z is a Cook continuum.

5. Chainable Cook continua with ind > 1. Let X be a chainable
continuum. Elements a 6= b of X are called opposite end points if every
open cover of X has a finite closed refinement F1, . . . , Fk such that a ∈ F1,
b ∈ Fk, and Fi∩Fj 6= ∅ iff |i−j| ≤ 1. Bing [4, Theorem 15] proved that every
non-degenerate metric chainable continuum contains a chainable continuum
with a pair of opposite end points.

The third ingredient for our construction in this section is the following
series of chainable continua, which were mentioned in Corollary 2.7 (now,
we need more detail).

5.1. Example (Chatyrko [11]; see also [9, 13] for n = 2, 3). There exists
an inverse sequence (In, πnm)∞n,m=1, where In are separable, first countable,
hereditarily decomposable chainable continua, and πnm : In → Im are surjec-

(5) The proof of Proposition 29(i) in [36] works for arbitrary Hausdorff continua.
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tive maps such that

(a) I1 is homeomorphic to [0, 1];
(b) each πn+1

n is atomic and fully closed, and each πn1 is ring-like;
(c) for each n > 1, m ∈ {1, n − 1}, and every t ∈ Im, the pre-image

(πnm)−1t is homeomorphic to In−m;
(d) for each n and every pair 0 ≤ s < t ≤ 1, the pre-image (πn1 )−1[s, t]

is a chainable continuum with opposite end points as,t ∈ (πn1 )−1s,
bs,t ∈ (πn1 )−1t;

(e) for each n, every partition in In contains some point-inverse (πn1 )−1t,
where t ∈ I1;

(f) ind In = Ind In = Ind0 In = n for each n (see our Corollary 2.7).

5.2. Lemma (Chatyrko [11, Lemma 1]). Suppose that X,Y are compact
spaces, and f : X → Y , g : Y → [0, 1] are surjective maps such that

(a) f is fully closed, and both g and gf are ring-like;
(b) for every t ∈ [0, 1], the pre-image (gf)−1t is a chainable continuum

with a pair of opposite end points;
(c) for every pair 0 ≤ s < t ≤ 1, the pre-image g−1[s, t] is a chainable

continuum with opposite end points as,t ∈ g−1s, bs,t ∈ g−1t.

Then X is a chainable continuum with a pair of opposite end points a ∈
(gf)−10, b ∈ (gf)−11.

5.3. Theorem. For every natural number n ≥ 1, there exists a non-
metrizable, separable, first countable, chainable, hereditarily decomposable
Cook continuum Z such that n ≤ indZ ≤ IndZ ≤ Ind0 Z = n + 1, and
every partition L in Z has indL ≥ n− 1.

Proof. Let M be Maćkowiak’s Cook continuum of Example 3.4, and In
Chatyrko’s continuum of Example 5.1. We claim that M contains an un-
countable family of pairwise disjoint non-degenerate subcontinua Mx, x ∈ In.
Indeed, M is HD, and by a theorem of Bing [4, Theorem 8], there is a mono-
tone surjective map f : M → [0, 1]. If 0 < t < 1 and f−1t were a single point,
f−1[0, t] would be a retract of M , and M would not be a Cook continuum.
Hence, f−1t is a non-degenerate continuum if 0 < t < 1. As card In = 2ℵ0 ,
the claim is proved (6). By [4, Theorem 15], we can assume that every Mx

(6) Recall that a continuumX is said to be Suslinian if every family of pairwise disjoint
non-degenerate subcontinua of X is countable. By a similar argument, we infer that no
metric Cook continuum X is Suslinian. If X contains an indecomposable continuum, then
it is obviously not Suslinian (see for instance [32, Lemma 5.5]). If X is HD, then we can
assume that it is irreducible by [35, §48 I, Theorem 1], and again there is a surjective
monotone map f : X → [0, 1] by Kuratowski’s theorems [35, pp. 200 and 216].

On the other hand, Maćkowiak [36, Theorem 30] constructed an example of a metriz-
able, Suslinian, chainable, weak Cook continuum.
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has a pair of opposite end points. Finally, we apply Theorem 3.1, and take
Z = Z(In,Mx) with π : Z → In.

Note that above we described a class of examples Z = Zn which have
surjective, ring-like, fully closed maps π : Zn → In whose point-inverses
are homeomorphic to pairwise disjoint non-degenerate subcontinua of M ,
and each of the continua has a pair of opposite end points. Thus, state-
ment 5.1(c) implies that for each t ∈ [0, 1], (πn1π)−1t belongs to the class of
examples Zn−1.

By Proposition 1.6, the composition πn1π is ring-like. Using induction
on n, Lemma 5.2 and assertions (a–d) of Example 5.1, we infer that Z is
a chainable continuum with a pair of opposite end points. Using induction,
Proposition 1.7, and assertions (c, e) of Example 5.1, we infer that every
partition L in Z has indL ≥ n− 1, and hence indZ ≥ n. By Theorem 2.12
applied to π, Ind0 Z = n+ 1.

Similarly to the proof of Theorem 4.5, we shall show that Z is a weak
Cook continuum. Take a continuum P ⊂ Z and a map f : P → Z with
P ∩ fP = ∅. Suppose that f is not constant. Our first claim is that πP is
not a single point and f has a factorization f = g(π|P ), where g : πP → Z
is continuous. Indeed, if Q ⊂ P is a metrizable continuum, then fQ is
metrizable, and is contained in some point-inverse π−1x, where x ∈ In.
Hence, Q and fQ are homeomorphic to disjoint subcontinua of M , and
the restriction f |Q must be constant. Thus, P is not metrizable, πP is
not a single point by Theorem 3.1(f), and moreover, f |π−1t is constant for
every t ∈ πP . The map g : πP → Z, gt = fπ−1t, is well defined and
continuous. Our claim ensures that the set below is non-empty, and we de-
fine

k0 = min{k : f has a factorization f = gk(πnkπ|P ),
where gk : πnkπP → Z}.

Now, observe that if Q ⊂ πnk0πP ⊂ Ik0 is a metrizable continuum, then gk0 |Q
is constant. Indeed, Q is an arc, gk0Q ⊂ Z is metrizable, and is contained
in some point-inverse π−1x, where x ∈ In. As Mx does not contain arcs,
gk0 |Q must be constant. This shows that πnk0πP is non-metrizable, k0 > 1,
and πnk0−1πP is not a single point. As πk0k0−1 is atomic, every point-inverse
(πk0k0−1)−1t, t ∈ πnk0−1πP , is a terminal continuum, and hence (πk0k0−1)−1t ⊂
πnk0πP . By the observation emphasized above, the restriction gk0 |(π

k0
k0−1)−1t

is constant for every t ∈ πnk0−1πP . Thus, the map gk0−1 : πnk0−1πP → Z,
gk0−1t = gk0(πk0k0−1)−1t, is well defined and continuous. We have f =
gk0−1(πnk0−1π|P ), and this contradicts the definition of k0. Therefore, f must
be a constant map.



FULLY CLOSED MAPS 219

In the same way as in the proof of Theorem 4.5, one shows that Z is a
Cook continuum.

6. Remarks and open problems. Proposition 1.7 or alternatively
Theorem 2.13 allow us to iterate the constructions in Section 4 in order
to obtain continua Z with arbitrarily large difference indZ − dimZ > 0.
For example, one can take Yx = [0, 1]2 for every x ∈ [0, 1]2 = Z1, apply
Theorem 3.1, and have Z2 = Z([0, 1]2, Yx), π2

1 : Z2 → [0, 1]2, dimZ2 = 2.
Then one takes pairwise disjoint non-degenerate subcontinua Cx of Cook’s
M1 for x ∈ Z2, and puts Z = Z(Z2, Cx) with π : Z → Z2. It follows from
1.6 and 2.13 that indZ ≥ 3 > 2 = dimZ. Moreover, Z is a Cook continuum
by the same argument as in the proof of Theorem 5.3.

It follows from Remark 1.8(2) that if CH is true, then all the examples
of continua Z constructed in Sections 4–5 can be perfectly normal, heredi-
tarily separable, and have indZ = IndZ = Ind0 Z. In Section 5, instead of
Chatyrko’s continua In one should use perfectly normal chainable continua
given by A. A. Odintsov [39].

We suggest the following open problems.
In most of our examples of continua Z we have got the annoying differ-

ence between a lower bound of indZ and the exact value of Ind0 Z.

6.1. Question. Suppose that f : X → Y is a surjective, fully closed
ring-like map from a continuum X, Y is the interval [0, 1] or another metriz-
able one-dimensional continuum, and every point-inverse of f is a metrizable
one-dimensional [n-dimensional ] continuum. Can it happen that indX = 1
[respectively, indX = n or even IndX = n]?

By Theorem 2.12, the above continuum X must have Ind0X = 2 [re-
spectively, Ind0X = n+ 1].

6.2. Question. Do there exist [hereditarily indecomposable] Cook con-
tinua whose dim = n for n ≥ 3 [respectively, n ≥ 2]?

Such continua do not exist in the metric case: see [32] and [38].

6.3. Question. Does there exist a continuum [a dense-in-itself zero-
dimensional compact space] no two of whose disjoint infinite closed subsets
are homeomorphic?

Fedorchuk [21, 22, 25] and Chatyrko [10] constructed examples of hered-
itarily n-dimensional (with respect to the covering dimension, n > 0 ar-
bitrary) continua. The example in [22] (with CH assumed) does not have
infinite zero-dimensional closed subspaces, and if it could be Anderson–
Choquet, it would not contain a pair of disjoint homeomorphic infinite closed
subsets.
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