C OLL O Q U I U M	M A THEMATICUM
VOL. 120	2010 NO. 2

Inductive dimensions modulo Simplicial Complexes AND ANR-COMPACTA

BY

V. V. FEDORCHUK (Moscow)

Abstract

We introduce and investigate inductive dimensions \mathcal{K} - Ind and \mathcal{L} - Ind for classes \mathcal{K} of finite simplicial complexes and classes \mathcal{L} of $A N R$-compacta (if \mathcal{K} consists of the 0 -sphere only, then the \mathcal{K} - Ind dimension is identical with the classical large inductive dimension Ind). We compare K-Ind to K-Ind introduced by the author [Mat. Vesnik 61 (2009)]. In particular, for every complex K such that $K * K$ is non-contractible, we construct a compact Hausdorff space X with K-Ind X not equal to K - $\operatorname{dim} X$.

Introduction. In [8] we introduced dimension functions \mathcal{K}-dim and \mathcal{L}-dim for classes \mathcal{K} of finite simplicial complexes and classes \mathcal{L} of $A N R$ compacta. For the definitions and necessary information see Section 1 . The theory of \mathcal{L}-dim is a part of extension theory introduced by A. Dranishnikov [2].

Here we introduce and investigate inductive functions \mathcal{K}-Ind and \mathcal{L}-Ind (Definitions 2.1 and 2.3). For \mathcal{K} and \mathcal{L} consisting of a two-point set $\{0,1\}$ the dimension functions \mathcal{K}-Ind and \mathcal{L}-Ind coincide with the classical large inductive dimension Ind.

If \mathcal{L} is a class of compact polyhedra and τ is an arbitrary triangulation of the class $\mathcal{L}(\tau$ consists of some triangulations of all elements of $\mathcal{L})$, then \mathcal{L}_{τ}-Ind $X \leq \mathcal{L}$-Ind X for every normal space X and \mathcal{L}_{τ}-Ind $X=\mathcal{L}$-Ind X for the hereditarily normal space X (Theorem 2.4).

If a hereditarily normal space X is represented as the union of two subspaces X_{1} and X_{2}, then \mathcal{L}-Ind $X \leq \mathcal{L}$-Ind $X_{1}+\mathcal{L}$-Ind $X_{2}+1$ (Theorem 2.8).

For homotopy equivalent classes \mathcal{L}_{1} and \mathcal{L}_{2} and an arbitrary hereditarily normal space X we have $\mathcal{L}_{1}-\operatorname{Ind} X=\mathcal{L}_{2}$-Ind X (Corollary 3.7). So, when we investigate the \mathcal{L}-Ind dimension of hereditarily normal spaces, we can consider only classes \mathcal{L} consisting of compact polyhedra, because by J. West's theorem every $A N R$-compactum has a homotopy type of some compact polyhedron.

[^0]For every \mathcal{K}, \mathcal{L}, and X we have \mathcal{K} - $\operatorname{Ind} X, \mathcal{L}$-Ind $X \leq \operatorname{Ind} X$ (Theorem 3.12). The equality \mathcal{K}-Ind $X=\operatorname{Ind} X$ holds for every normal space X if and only if \mathcal{K} contains a disconnected complex (Theorem 3.14). The same is true for \mathcal{L}-Ind and hereditarily normal spaces X (Theorem 3.15).

We also prove that \mathcal{K} - $\operatorname{dim} X \leq \mathcal{K}$-Ind X for every normal space X (Theorem 3.18) and \mathcal{K} - $\operatorname{dim} X=\mathcal{K}$-Ind X for every metrizable space X (Theorem 3.23).

In Section 5 we construct compact Hausdorff spaces X_{n}^{K} with

$$
K-\operatorname{dim} X_{n}^{K}=n<2 n-1 \leq K-\operatorname{Ind} X_{n}^{K} \leq 2 n,
$$

where $n \geq 2$ and K is a complex with $K * K$ non-contractible. To construct X_{n}^{K} we apply fully closed mappings and resolutions. In Section 4 we recall necessary information concerning this area.

1. Preliminaries

1.1. By a space we mean a normal T_{1}-space. For a space X we denote by $\exp X$ the set of all closed subsets of X (including \emptyset).

All mappings are assumed to be continuous. A metrizable compact space is called a compactum. By \simeq we denote homotopy equivalence, and $|S|$ stands for the cardinality of a set S. We denote by $\operatorname{Fin}_{s}(\exp X)$ the set of all finite sequences $\Phi=\left(F_{1}, \ldots, F_{m}\right), F_{j} \in \exp X$, i.e.

$$
\operatorname{Fin}_{s}(\exp X)=\bigcup\left\{(\exp X)^{m}: m=1,2, \ldots\right\} .
$$

Recall that an abstract simplicial complex K is said to be complete if every face of each simplex from K belongs to K. In what follows, complexes are finite abstract complete simplicial complexes. Sometimes we identify a complex K with its geometric realization, i.e. with a Euclidean complex \tilde{K} with the same vertex scheme.

In what follows, polyhedra are compact polyhedra. Hence every polyhedron is an $A N R$ in the class of all (normal) spaces.

For a complex K we denote by $v(K)$ the set of all its vertices. Let u be a finite family of sets and let $u_{0}=\{U \in u: U \neq \emptyset\}$. The nerve of the family u is a complex $N(u)$ such that $v(N(u))=\left\{a_{U}: U \in u_{0}\right\}$ and a non-empty set $\Delta \subset v(N(u))$ is a simplex of $N(u)$ if and only if $\bigcap\left\{U: a_{U} \in \Delta\right\} \neq \emptyset$.

We now recall several notions and facts. They are well known but important for this article.
1.2. Definition. A pair (X, Y) of spaces has the Homotopy Extension Property if, for every closed set $F \subset X$, each mapping $f:(X \times 0) \cup(F \times I)$ $\rightarrow Y$ extends over $X \times I$.
1.3. Theorem. (Borsuk's theorem on extension of homotopy; see [13], [14]). Every pair (X, L), where X is a space and L is an $A N R$-compactum, has the Homotopy Extension Property.
1.4. Theorem 15]. Every ANR-compactum is homotopy equivalent to some compact polyhedron.
1.5. Definition. Let X and Y be spaces and let $Z \subset X$. The property that all partial mappings $f: Z \rightarrow Y$ extend over X will be denoted by $Y \in A E(X, Z)$. If every mapping $f: Z \rightarrow Y$ extends over an open set $U_{f} \supset Z$, then we write $Y \in A N E(X, Z)$. If $Y \in A(N) E(X, Z)$ for every closed $Z \subset X$, then Y is called an absolute (neighbourhood) extensor of X (notation: $Y \in A(N) E(X)$). If $Y \in A(N) E(X)$ for all spaces X, then Y is said to be an absolute (neighbourhood) extensor (notation: $Y \in A(N) E)$.

The Brouwer-Tietze-Urysohn theorem on extension of functions yields
1.6. Theorem. If Y is an $A(N) R$-compactum, then $Y \in A(N) E$.
1.7. Lemma (Open enlargement lemma). Let $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in$ $\operatorname{Fin}_{s}(\exp X)$. Then there exists a sequence $u=\left(U_{1}, \ldots, U_{m}\right)$ of open subsets of X such that $F_{j} \subset U_{j}, j=1, \ldots, m$, and $N(\Phi)=N(u)$.

Now we are going to discuss new dim-type functions introduced in 8]. In what follows, K stands for a complex. For each complex K we fix an enumeration of its vertices: $v(K)=\left(a_{1}, \ldots, a_{m}\right)$.
1.8. Definition. Let K be a complex with $|v(K)|=m$ and let $\Phi=$ $\left(F_{1}, \ldots, F_{m}\right) \in \mathrm{Fin}_{s}(\exp X)$. We say that $N(\Phi)$ is embedded in K (notation: $N(\Phi) \subset K)$ if the correspondence $F_{j} \rightarrow a_{j}$ generates a simplicial embedding $e: N(\Phi) \rightarrow K$.

Put $\operatorname{Exp}_{K}(X)=\left\{\Phi \in(\exp X)^{m}: N(\Phi) \subset K\right\}$.
1.9. Definition. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Exp}_{K}(X)$. A sequence $u=$ $\left(U_{1}, \ldots, U_{m}\right)$ of open subsets of X is called a K-neighbourhood of Φ if $F_{j} \subset U_{j}$ and the correspondence $U_{j} \rightarrow a_{j}$ generates a simplicial embedding $N(u) \rightarrow K$.

According to Lemma 1.7 each $\Phi \in \operatorname{Exp}_{K}(X)$ has a K-neighbourhood.
1.10. Definition. A set $P \subset X$ is said to be a K-partition of $\Phi \in$ $\operatorname{Exp}_{K}(X)$ (notation: $P \in \operatorname{Part}(\Phi, K)$) if $P=X \backslash \bigcup u$, where u is a K neighbourhood of Φ.
1.11. Definition ([8]). A sequence $\left(K_{1} \ldots, K_{r}\right)$ of complexes is called inessential in X if for every sequence $\left(\Phi_{1}, \ldots, \Phi_{r}\right)$ such that $\Phi_{i} \in \operatorname{Exp}_{K_{i}}(X)$ there exist K_{i}-partitions P_{i} of Φ_{i} with $P_{1} \cap \cdots \cap P_{r}=\emptyset$.
1.12. Definition ([8]). Let \mathcal{K} be a non-empty class of complexes. To every space X one assigns the dimension \mathcal{K} - $\operatorname{dim} X$, which is an integer ≥-1 or ∞, defined in the following way:
(1) $\mathcal{K}-\operatorname{dim} X=-1 \Leftrightarrow X=\emptyset$;
(2) \mathcal{K} - $\operatorname{dim} X \leq n \geq 0$ if every sequence $\left(K_{1}, \ldots, K_{n+1}\right), K_{i} \in \mathcal{K}$, is inessential in X;
(3) $\mathcal{K}-\operatorname{dim} X=\infty$ if $\mathcal{K}-\operatorname{dim} X>n$ for all $n=-1,0,1, \ldots$.

If the class \mathcal{K} contains only one complex K we write $\mathcal{K}=K$ and \mathcal{K} - $\operatorname{dim} X=K$ - $\operatorname{dim} X$.

Hemmingsen's theorem on partitions ([3, Theorem 3.2.6]) can be reformulated as follows:
1.13. Theorem. $\{0,1\}-\operatorname{dim} X=\operatorname{dim} X$.

In what follows, \mathcal{L} stands for a non-empty class of $A N R$-compacta L. We denote by $X_{1} * \cdots * X_{n} \equiv *_{i=1}^{n} X_{i}$ the join of the spaces X_{1}, \ldots, X_{n}.
1.14. Definition. To every space X one assigns the dimension \mathcal{L} - $\operatorname{dim} X$, which is an integer ≥-1 or ∞, defined in the following way:
(1) $\mathcal{L}-\operatorname{dim} X=-1 \Leftrightarrow X=\emptyset$;
(2) \mathcal{L} - $\operatorname{dim} X \leq n \geq 0$ if $L_{1} * \cdots * L_{n+1} \in A E(X)$ for any $L_{1}, \ldots, L_{n+1} \in \mathcal{L}$;
(3) $\mathcal{L}-\operatorname{dim} X=\infty$ if $\mathcal{L}-\operatorname{dim} X>n$ for all $n \geq-1$.

If the class \mathcal{L} contains only one compactum L we write $\mathcal{L}=L$ and $\mathcal{L}-\operatorname{dim} X=L-\operatorname{dim} X$.
1.15. Remark. In [8, Definition 3.9], \mathcal{L}-dim was defined in a slightly different but equivalent way (see [8, Corollary 3.13]).

Since $S^{n}=\left(S^{0}\right)^{*(n+1)}$, from a characterization of the Lebesgue dimension by means of mappings to spheres we get
1.16. Theorem. For every space $X, S^{0}-\operatorname{dim} X=\operatorname{dim} X$.

Let \mathcal{L} be a non-empty class of polyhedra. For each $L \in \mathcal{L}$ we fix a triangulation $t=t(L)$ of L. The pair (L, t) is a simplicial complex which is denoted by L_{t}. The family $\tau=\{t(L): L \in \mathcal{L}\}$ is said to be a triangulation of the class \mathcal{L}. Let $\mathcal{L}_{\tau}=\left\{L_{t}: t \in \tau\right\}$.
1.17. THEOREM ([8]). Let \mathcal{L} be a non-empty class of polyhedra and let τ be a triangulation of \mathcal{L}. Then $\mathcal{L}_{\tau}-\operatorname{dim} X=\mathcal{L}-\operatorname{dim} X$ for every space X.
1.18. Definition. Let \mathcal{L}_{1} and \mathcal{L}_{2} be non-empty classes of $A N R$-compacta. We say that \mathcal{L}_{1} is dominated by \mathcal{L}_{2} (notation: $\mathcal{L}_{1} \leq_{h} \mathcal{L}_{2}$) if every $L_{1} \in \mathcal{L}_{1}$ is homotopically dominated by some $L_{2} \in \mathcal{L}_{2}$. The class \mathcal{L}_{1} is homotopy equivalent to \mathcal{L}_{2} (notation: $\mathcal{L}_{1} \simeq \mathcal{L}_{2}$) if both $\mathcal{L}_{1} \leq_{h} \mathcal{L}_{2}$ and $\mathcal{L}_{2} \leq_{h} \mathcal{L}_{1}$.
1.19. Proposition ([8]). If $\mathcal{L}_{1} \simeq \mathcal{L}_{2}$, then \mathcal{L}_{1} - $\operatorname{dim} X=\mathcal{L}_{2}$-dim X for every space X.

Theorem 1.4 and Proposition 1.19 yield
1.20. Theorem. For every non-empty class \mathcal{R} of $A N R$-compacta there exists a class $\mathcal{L}=\mathcal{L}(\mathcal{R})$ of polyhedra such that $\mathcal{R}-\operatorname{dim} X=\mathcal{L}-\operatorname{dim} X$ for every space X.

So, when we investigate dimension functions of type \mathcal{L}-dim, we can consider only classes \mathcal{L} consisting of compact polyhedra. In the remainder of this section, L stands for a compact polyhedron and \mathcal{L} for a non-empty class of compact polyhedra.
1.21. Definition. Let F be a closed subset of a space X. A mapping $f: F \rightarrow L$ is called a partial mapping of X to L (notation: $f \in P C(X, L)$).
1.22. Definition. Every mapping $f \in P C(X, L)$ extends over an open set $U \supset F=\operatorname{dom} f$. Such a set U is said to be an L-neighbourhood of f. Its complement $P=X \backslash U$ is called an L-partition of f (notation: $P \in$ $\operatorname{Part}(f, L))$.
1.23. Definition. A sequence $\left(f_{1}, \ldots, f_{r}\right), f_{i} \in P C\left(X, L_{i}\right)$, is said to be inessential in X if there exist partitions $P_{i} \in \operatorname{Part}\left(f_{i}, L_{i}\right)$ such that $P_{1} \cap \cdots \cap P_{r}=\emptyset$.

Theorem 1.3 implies
1.24. Lemma. Let X be a hereditarily normal space, $f_{1}, f_{2} \in P C(X, L)$, $\operatorname{dom} f_{1}=\operatorname{dom} f_{2}$, and $f_{1} \simeq f_{2}$. Then $\operatorname{Part}\left(f_{1}, L\right)=\operatorname{Part}\left(f_{2}, L\right)$.

The following statement is well known.
1.25. Lemma. Let X be a space, $u=\left(U_{1}, \ldots, U_{m}\right)$ be an open covering of X, and $F \subset X$ be a closed subset. Assume $\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ is a partition of unity on F subordinated to the covering $u \mid F$. Then the functions $\varphi_{j}, j=$ $1, \ldots, m$, can be extended over X to functions ψ_{j} so that $\left(\psi_{1}, \ldots, \psi_{m}\right)$ is a partition of unity on X subordinated to the covering u.

In what follows we identify a complex K with its geometric realization \tilde{K}. So K is both a complex and a polyhedron.
1.26. Definition. Let $u=\left(U_{1}, \ldots, U_{m}\right)$ be an open covering of a space X. A mapping $f: X \rightarrow N(u)$ is said to be u-barycentric if $f(x)=$ $\left(\varphi_{1}(x), \ldots, \varphi_{m}(x)\right)$, where $\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ is some partition of unity subordinated to the covering u, and $\varphi_{j}(x)$ is the barycentric coordinate of $f(x)$ corresponding to the vertex $a_{j} \equiv U_{j} \in v(N(u))$.

If $e: N(u) \rightarrow K$ is a simplicial embedding, then the composition $e \circ f$: $X \rightarrow K$ is also called a u-barycentric mapping.
1.27. Proposition. If $u=\left(U_{1}, \ldots, U_{m}\right)$ is an open covering of a space X, then there exists a u-barycentric mapping $f: X \rightarrow N(u)$.
1.28. Lemma. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Exp}_{K}(X)$ and let $F=F_{1} \cup \cdots \cup F_{m}$. Assume that u is a K-neighbourhood of Φ such that $U=\bigcup u$ is normal. Then the set $P=X \backslash U$ is a K-partition of any partial mapping $f: F \rightarrow K$ which is $(u \mid F)$-barycentric.

Proof. Since f is $(u \mid F)$-barycentric, $f(x)=\left(\varphi_{1}(x), \ldots, \varphi_{m}(x)\right)$, where $\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ is a partition of unity on F subordinated to the covering $u \mid F=$ ($\left.U_{1} \cap f, \ldots, U_{m} \cap F\right)$. From Lemma 1.25 and normality of U it follows that the functions $\varphi_{1}, \ldots, \varphi_{m}$ extend to functions $\psi_{j}: U \rightarrow I, j=1, \ldots, m$, so that $\left(\psi_{1}, \ldots, \psi_{m}\right)$ is a partition of unity on U subordinated to the covering u of U. Then the mapping $g: U \rightarrow K$ defined as $g(x)=\left(\psi_{1}(x), \ldots, \psi_{m}(x)\right)$ is an extension of f. Consequently, $P=X \backslash U \in \operatorname{Part}(f, K)$.
1.29. Definition. Let K be a complex with vertices $a_{1}, \ldots, a_{m}, \Phi=$ $\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Fin}_{s}(\exp X)$, and $F=F_{1} \cup \cdots \cup F_{m}$. The sequence Φ is f-generated by K, where $f: F \rightarrow K$ is a mapping, if there exists a closed covering $\left(\Gamma_{1}, \ldots, \Gamma_{m}\right)$ of K such that $\Gamma_{j} \subset O a_{j} \equiv \operatorname{St}\left(a_{j}, K\right)$ and $F_{j}=$ $f^{-1}\left(\Gamma_{j}\right)$.
1.30. Lemma. Let $f \in P C(X, K)$ with $F=\operatorname{dom} f$. If $P \in \operatorname{Part}(f, K)$, then $P \in \operatorname{Part}(\Phi, K)$ for any sequence $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ which is f-generated by K.

Proof. By Definition 1.29 there exists a closed covering $\left(\Gamma_{1}, \ldots, \Gamma_{m}\right)$ of K such that $\Gamma_{j} \subset O a_{j}$ and $F_{j}=f^{-1}\left(\Gamma_{j}\right)$. Since $P \in \operatorname{Part}(f, K), f$ extends to a mapping $g: X \backslash P \rightarrow K$. Put $U_{j}=g^{-1}\left(O a_{j}\right), j=1, \ldots, m$. Then

$$
F_{j}=f^{-1}\left(\Gamma_{j}\right) \subset g^{-1}\left(\Gamma_{j}\right) \subset g^{-1}\left(O a_{j}\right)=U_{j}
$$

Hence $u=\left(U_{1}, \ldots, U_{m}\right)$ is a K-neighbourhood of Φ. Moreover, u is a covering of $X \backslash P$, because $\left(O a_{1}, \ldots, O a_{m}\right)$ is a covering of K. Thus $P \in$ $\operatorname{Part}(\Phi, K)$.
1.31. Theorem. Let X be a space and let \mathcal{K} be a class of complexes. Then $\mathcal{K}-\operatorname{dim} X \leq n$ if and only if every sequence $\left(f_{1}, \ldots, f_{n+1}\right)$ with $f_{i} \in$ $P C\left(X, K_{i}\right)$ and $K_{i} \in \mathcal{K}$ is inessential.

Proof. Necessity. Let $\mathcal{K}-\operatorname{dim} X \leq n$ and let $f_{i} \in P C\left(X, K_{i}\right), K_{i} \in \mathcal{K}$, $i=1, \ldots, n+1$. Let $v\left(K_{i}\right)=\left(a_{1}^{i}, \ldots, a_{m_{i}}^{i}\right)$ and $\operatorname{dom} f_{i}=F^{i}$. There exist closed sets $\Gamma_{j}^{i} \subset K_{i}$ such that

- $\Gamma_{j}^{i} \subset O a_{j}^{i} \equiv \operatorname{St}\left(a_{j}^{i}, K_{i}\right)$;
- $\gamma_{i}=\left(\Gamma_{1}^{i}, \ldots, \Gamma_{m_{i}}^{i}\right)$ is a covering of K_{i}.

Put $F_{j}^{i}=f_{i}^{-1}\left(\Gamma_{j}^{i}\right), \Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m_{i}}^{i}\right)$, and $O_{j}^{i}=f_{i}^{-1}\left(O a_{j}^{i}\right)$. Then $\Phi_{i} \in$ $\operatorname{Exp}_{K_{i}}(X)$ and $F^{i}=F_{1}^{i} \cup \cdots \cup F_{m_{i}}^{i}=O_{1}^{i} \cup \cdots \cup O_{m_{i}}^{i}$. As \mathcal{K} - $\operatorname{dim} X \leq n$, there exist K_{i}-neighbourhoods $u_{i}=\left(U_{1}^{i}, \ldots, U_{m_{i}}^{i}\right)$ of Φ_{i} such that $P_{1} \cap \cdots \cap P_{n+1}$ $=\emptyset$, where $P_{i}=X \backslash \bigcup u_{i}$. By Lemma 1.7 and the Urysohn lemma we can enlarge partitions P_{i} to zero-sets P_{i}^{\prime} with $P_{1}^{\prime} \cap \cdots \cap P_{n+1}^{\prime}=\emptyset$. So we may assume that $U^{i}=\bigcup u_{i}$ are F_{σ}-sets and hence normal subspaces of X. We can also assume that

$$
\begin{equation*}
U_{j}^{i} \cap F^{i} \subset O_{j}^{i} \tag{1.1}
\end{equation*}
$$

In fact, if (1.1) is not satisfied, we can define new sets ${ }^{1} U_{j}^{i}=\left(U_{j}^{i} \backslash F^{i}\right) \cup$ $\left(U_{j}^{i} \cap O_{j}^{i}\right)$. Then the sequences $u_{i}^{1}=\left({ }^{1} U_{1}^{i}, \ldots,{ }^{1} U_{m_{i}}^{i}\right)$ are K_{i}-neighbourhoods of Φ_{i} with $\bigcup u_{i}^{1}=\bigcup u_{i}$.

Assuming (1.1) take some $\left(u_{i} \mid F^{i}\right)$-barycentric mappings $f_{i}^{1}: F^{i} \rightarrow K_{i}$. Since $O_{j}^{i}=f_{i}^{-1}\left(O a_{j}^{i}\right)$, condition (1.1) implies that

$$
\begin{equation*}
f_{i}(x) \in O a_{j}^{i} \Rightarrow f_{i}^{1}(x) \in O a_{j}^{i} \tag{1.2}
\end{equation*}
$$

By a result of R. Cauty [1] condition (1.2) yields $f_{i}^{1} \simeq f_{i}$. Then Lemma 1.24 implies that $\operatorname{Part}\left(f_{i}^{1}, K_{i}\right)=\operatorname{Part}\left(f_{i}, K_{i}\right)$. On the other hand, $P_{i} \in$ $\operatorname{Part}\left(f_{i}^{1}, K_{i}\right)$ in view of Lemma 1.28. Consequently, $P_{i} \in \operatorname{Part}\left(f_{i}, K_{i}\right)$ and the sequence $\left(f_{1}, \ldots, f_{n+1}\right)$ is inessential.

Sufficiency. Let $\Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m_{i}}^{i}\right) \in \operatorname{Exp}_{K_{i}}(X), F^{i}=F_{1}^{i} \cup \cdots \cup F_{m_{i}}^{i}$, $v\left(K_{i}\right)=\left(a_{1}^{i}, \ldots, a_{m_{i}}^{i}\right), i=1, \ldots, n+1$. According to Lemma 1.7 there exist sequences $\omega_{i}=\left(O_{1}^{i}, \ldots, O_{m_{i}}^{i}\right)$ of open subsets of F^{i} such that $F_{j}^{i} \subset O_{j}^{i}$ and $N\left(\omega_{i}\right)=N\left(\Phi_{i}\right)$.

By the usual procedure we construct partitions of unity $\left(\varphi_{1}^{i}, \ldots, \varphi_{m_{i}}^{i}\right)$ subordinated to the coverings ω_{i} so that

$$
\begin{equation*}
x \in F_{j}^{i} \Rightarrow \varphi_{j}^{i}(x) \geq 1 / m_{i} \tag{1.3}
\end{equation*}
$$

The functions $\left(\varphi_{1}^{i}, \ldots, \varphi_{m_{i}}^{i}\right)$ generate ω_{i}-barycentric mappings

$$
f_{i}: F^{i} \rightarrow K_{i}, \quad i=1, \ldots, n+1
$$

For $z \in K_{i}$, let $\mu_{j}^{i}(z), j=1, \ldots, m_{i}$, be the barycentric coordinates of z in K_{i}. Put

$$
\begin{equation*}
\Gamma_{j}^{i}=\left\{z \in K_{i}: \mu_{j}^{i}(z) \geq 1 / m_{i}\right\}, \quad j=1, \ldots, m_{i} ; i=1, \ldots, n+1 \tag{1.4}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\Gamma_{j}^{i} \subset O a_{j}^{i}=\left\{z \in K_{i}: \mu_{j}^{i}(z)>0\right\} \tag{1.5}
\end{equation*}
$$

Since $\varphi_{j}^{i}(x)=\mu_{j}^{i}\left(f_{i}(x)\right)$, (1.3) and (1.4) yield

$$
\begin{equation*}
F_{j}^{i} \subset f_{i}^{-1}\left(\Gamma_{j}^{i}\right) \tag{1.7}
\end{equation*}
$$

Put ${ }^{1} F_{j}^{i}=f_{i}^{-1}\left(\Gamma_{j}^{i}\right)$ and $\Phi_{i}^{1}=\left({ }^{1} F_{1}^{i}, \ldots,{ }^{1} F_{m_{i}}^{i}\right)$. From (1.4), (1.6), and (1.7) it follows that the sequence Φ_{i}^{1} is f_{i}-generated by K_{i}. Consequently,

$$
\begin{equation*}
\operatorname{Part}\left(f_{i}, K_{i}\right) \subset \operatorname{Part}\left(\Phi_{i}^{1}, K_{i}\right) \tag{1.8}
\end{equation*}
$$

according to Lemma 1.30 .
Since $\left(f_{1}, \ldots, f_{n+1}\right)$ is inessential, there exist partitions $P_{i} \in \operatorname{Part}\left(f_{i}, K_{i}\right)$ such that $P_{1} \cap \cdots \cap P_{n+1}=\emptyset$. Then $\left(\Phi_{1}^{1}, \ldots, \Phi_{n+1}^{1}\right)$ is inessential by (1.8). Hence $\left(\Phi_{1}, \ldots, \Phi_{n+1}\right)$ is inessential, because $\operatorname{Part}\left(\Phi_{i}^{1}, K_{i}\right) \subset \operatorname{Part}\left(\Phi_{i}, K_{i}\right)$ in view of (1.7). Thus $\mathcal{K}-\operatorname{dim} X \leq n$.
1.32. Proposition. If $\mathcal{L}-\operatorname{dim} X \leq n$ and F is a closed subspace of X, then \mathcal{L}-dim $F \leq n$.

Since $A N R$-compacta are $A N E$'s for normal spaces, we have
1.33. Proposition. If F is a closed subspace of a space X such that $\mathcal{L}-\operatorname{dim} X \leq n$ and $\mathcal{L}-\operatorname{dim} E \leq n$ for any closed subset $E \subset X$ with $E \cap F=\emptyset$, then $\mathcal{L}-\operatorname{dim} X \leq n$.
1.34. Proposition ([8]). If a space X is the union of its closed subspaces X_{1}, X_{2}, \ldots with $\mathcal{L}-\operatorname{dim} X_{i} \leq n, i \in \mathbb{N}$, then $\mathcal{L}-\operatorname{dim} X \leq n$.
1.35. Theorem ([8]).
(i) $\mathcal{L}-\operatorname{dim} X \leq \operatorname{dim} X$ for every \mathcal{L};
(ii) $\mathcal{L}-\operatorname{dim} X=\operatorname{dim} X$ if and only if \mathcal{L} contains a disconnected space.
1.36. THEOREM ([8). If a hereditarily normal space X is the union of subspaces X_{1} and X_{2} such that $\mathcal{L}-\operatorname{dim} X_{1} \leq m$ and $\mathcal{L}-\operatorname{dim} X_{2} \leq n$, then $\mathcal{L}-\operatorname{dim} X \leq m+n+1$
1.37. Theorem ([8]). If X is a metrizable space with $L-\operatorname{dim} X \leq n$, then $X=X_{1} \cup \cdots \cup X_{n+1}$, where L - $\operatorname{dim} X_{i} \leq 0, i=1, \ldots, n+1$.
1.38. THEOREM ([8]). If X is the limit space of an inverse system $\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ of compact Hausdorff spaces X_{α} with $\mathcal{L}-\operatorname{dim} X_{\alpha} \leq n$, then $\mathcal{L}-\operatorname{dim} X \leq n$.
1.39. ThEOREM ([9]). If $L * L$ is not contractible, then for every $n \geq 0$ there is m such that L - $\operatorname{dim} I^{m}=n$.
1.40. Proposition ([11]). Let X be a hereditarily normal space and let A be an arbitrary subspace of X. Then for every mapping $f: A \rightarrow L$ there exist an open subspace $U \subset X$ and a mapping $f_{1}: U \rightarrow L$ such that $A \subset U$ and $\left.f \simeq f_{1}\right|_{A}$.

2. Inductive dimensions and some of their properties

2.1. Definition. To every space X one assigns the dimension \mathcal{K}-Ind X, which is an integer $n \geq-1$ or ∞, defined in the following way:
(1) \mathcal{K}-Ind $X=-1 \Leftrightarrow X=\emptyset$;
(2) \mathcal{K}-Ind $X \leq n \geq 0$ if for every $\Phi \in \operatorname{Exp}_{K}(X), K \in \mathcal{K}$, there exists a K-partition P of Φ such that \mathcal{K}-Ind $P \leq n-1$;
(3) \mathcal{K}-Ind $X=\infty$ if \mathcal{K}-Ind $X>n$ for $n=-1,0,1, \ldots$

If the class \mathcal{K} contains only one complex K we write \mathcal{K}-Ind $X=K$-Ind X.
This dimension function is a generalization of the large inductive dimension in view of
2.2. Proposition. $\{0,1\}$-Ind $X=\operatorname{Ind} X$.
2.3. Definition. To every space X one assigns the dimension \mathcal{L}-Ind X, which is an integer $n \geq-1$ or ∞, defined in the following way:
(1) \mathcal{L}-Ind $X=-1 \Leftrightarrow X=\emptyset$;
(2) \mathcal{L}-Ind $X \leq n \geq 0$ if for every $f \in P C(X, L), L \in \mathcal{L}$, there exists a partition $P \in \operatorname{Part}(f, L)$ such that \mathcal{L}-Ind $P \leq n-1$;
(3) \mathcal{L}-Ind $X=\infty$ if \mathcal{L}-Ind $X>n$ for $n=-1,0,1, \ldots$

If the class \mathcal{L} contains only one $A N R$-compactum L we write \mathcal{L} - - nd $X=$ L-Ind X.
2.4. THEOREM. If X is a hereditarily normal space and τ is an arbitrary triangulation of a class \mathcal{L} of polyhedra, then \mathcal{L}-Ind $X=\mathcal{L}_{\tau}$-Ind X.

Proof. Denote the class \mathcal{L}_{τ} by $\mathcal{K}=\mathcal{K}(\mathcal{L})$ and its members L_{t} by $K=$ $K(L)$. We have to prove the inequalities

$$
\begin{align*}
\mathcal{K}-\operatorname{Ind} X & \leq \mathcal{L}-\operatorname{Ind} X \tag{2.1}\\
\mathcal{L}-\operatorname{Ind} X & \leq \mathcal{K}-\operatorname{Ind} X \tag{2.2}
\end{align*}
$$

To prove (2.1) we apply induction on \mathcal{L}-Ind X. Let \mathcal{L}-Ind $X=n$ and let $\Phi=$ $\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Exp}_{K}(X), K=K(L), L \in \mathcal{L}$. Let $v(K)=\left(a_{1}, \ldots, a_{m}\right)$. As in the proof of Theorem 1.31 (Sufficiency) we construct a mapping $f: F=$ $F_{1} \cup \cdots F_{m} \rightarrow K \stackrel{\text { top }}{=} L$ and a sequence $\Phi_{1}=\left(F_{1}^{1}, \ldots, F_{m}^{1}\right)$ such that $F_{j} \subset F_{j}^{1}$ and Φ_{1} is f-generated by K. Since \mathcal{L}-Ind $X=n$ there exists a partition $P \in \operatorname{Part}(f, K)$ with \mathcal{L}-Ind $P \leq n-1$. By the inductive assumption we have \mathcal{K}-Ind $P \leq n-1$. But, by (Lemma 1.30), $P \in \operatorname{Part}\left(\Phi_{1}, K\right) \subset \operatorname{Part}(\Phi, K)$. Thus \mathcal{K}-Ind $X \leq n$.

We prove (2.2) by induction on \mathcal{K}-Ind X. Let \mathcal{K}-Ind $X=n$ and let $f \in P C(X, L(K))=P C(X, K)$. Using the argument of the proof of Theorem 1.31 (Necessity) we construct a sequence $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ so that $\operatorname{dom} f \equiv F=F_{1} \cup \cdots \cup F_{m}$ and Φ is f-generated by K. Then we take a K-neighbourhood u of Φ with \mathcal{K}-Ind $P \leq n-1$, where $P=X \backslash \bigcup u$, and construct a $(u \mid F)$-barycentric mapping $f_{1}: F \rightarrow K$ such that $f_{1} \simeq f$. By the inductive assumption we have \mathcal{L}-Ind $P \leq n-1$. On the other hand, by Lemmas 1.28 and $1.24, P \in \operatorname{Part}\left(f_{1}, L(K)\right)=\operatorname{Part}(f, L(K))$. Thus \mathcal{L}-Ind $X \leq n$.
2.5. Proposition. If Y is closed in X, then \mathcal{L}-Ind $Y \leq \mathcal{L}$-Ind X.

Proof. Induction on \mathcal{L}-Ind X.
Applying induction and Proposition 2.5 we get
2.6. Proposition. Let X be the discrete union of subspaces $X_{\alpha}, \alpha \in A$. Then \mathcal{L}-Ind $X \leq n$ if and only if \mathcal{L}-Ind $X_{\alpha} \leq n$ for every $\alpha \in A$.
2.7. Proposition. Let X be a hereditarily normal space and let Y be a subspace of X such that \mathcal{L}-Ind $Y \leq n \geq 0$. Then for every $f \in P C(X, L)$, $L \in \mathcal{L}$, there exists an L-partition P of f such that $\mathcal{L}-\operatorname{Ind}(P \cap Y) \leq n-1$.

Proof. Let $\operatorname{dom} f=F$. Since \mathcal{L}-Ind $Y \leq n$, there exist an open subset V of Y and a mapping $f_{1}: V \cup F \rightarrow L$ such that $\left.f_{1}\right|_{F}=f$ and \mathcal{L}-Ind $Q \leq n-1$, where $Q=Y \backslash V$. By Proposition 1.40 there exist an open subset U of X and a mapping $f_{2}: U \rightarrow L$ such that $V \cup F \subset U$ and $\left.f_{1} \simeq f_{2}\right|_{V \cup F}$. Put $P=X \backslash U$. Then $P \in \operatorname{Part}\left(\left.f_{2}\right|_{F}, L\right)=\operatorname{Part}(f, L)$ by Lemma 1.24. On the other hand, $P \cap Y \subset Q$. Hence, by Proposition 2.5, \mathcal{L} - $\operatorname{Ind}(P \cap Y) \leq \mathcal{L}$-Ind $Q \leq n-1$.
2.8. Theorem. If a hereditarily normal space X is represented as the union of two subspaces X_{1} and X_{2}, then

$$
\mathcal{L} \text {-Ind } X \leq \mathcal{L} \text {-Ind } X_{1}+\mathcal{L} \text {-Ind } X_{2}+1
$$

Proof. The assertion is obvious if one of the subspaces is empty. So we assume that $X_{1} \neq \emptyset \neq X_{2}$ and apply induction on $p=m+n \geq 0$, where $\operatorname{Ind} X_{1}=m$ and $\operatorname{Ind} X_{2}=n$. We consider only the inductive step $p-1 \rightarrow p$, since the case $p=0$ is considered by the same argument. Let $f \in P C(X, L), L \in \mathcal{L}$. By Proposition 2.7 there exists an L-partition P of f such that $\mathcal{L}-\operatorname{Ind}\left(P \cap X_{1}\right) \leq m-1$. The set $P \cap X_{2}$ is closed in X_{2}. Applying Proposition 2.5 we get $\mathcal{L}-\operatorname{Ind}\left(P \cap X_{2}\right) \leq \mathcal{L}$-Ind $X_{2}=n$. Hence

$$
\mathcal{L}-\operatorname{Ind}\left(P \cap X_{1}\right)+\mathcal{L}-\operatorname{-Ind}\left(P \cap X_{2}\right) \leq m-1+n=p-1 .
$$

By the inductive assumption, \mathcal{L}-Ind $P \leq m+n$. Thus \mathcal{L}-Ind $X \leq m+n+1$.
2.9. Corollary. If a hereditarily normal space X can be represented as the union of $n+1$ subspaces X_{1}, \ldots, X_{n+1} such that \mathcal{L} - $\operatorname{Ind} X_{i} \leq 0, i=$ $1, \ldots, n+1$, then \mathcal{L}-Ind $X \leq n$.

Applying a standard argument (see, for example, 3, proof of Theorem 2.2.10]) one can prove the following statements.
2.10. Theorem. For every space X we have \mathcal{K}-Ind $\beta X=\mathcal{K}$-Ind X.
2.11. Theorem. For every space X we have \mathcal{L}-Ind $\beta X=\mathcal{L}$-Ind X.

To prove these theorems we use Lemma 1.7 and Theorem 1.6 respectively.
3. Comparison of dimensions. Since Lemma 1.30 holds for every normal space X, an analysis of the proof of Theorem 2.4 shows that

$$
\begin{equation*}
\mathcal{L}_{\tau}-\operatorname{Ind} X \leq \mathcal{L}-\operatorname{Ind} X \tag{3.1}
\end{equation*}
$$

for every (normal) space X and every class \mathcal{L} of polyhedra.
3.1. Question. Does the equality

$$
\begin{equation*}
\mathcal{L}_{\tau}-\text {-Ind } X=\mathcal{L}-\operatorname{Ind} X \tag{3.2}
\end{equation*}
$$

hold for an arbitrary space X ?
A partial answer to Question 3.1 is given by
3.2. Proposition. If $\mathcal{L}_{\tau}-\operatorname{Ind} X=0$, then \mathcal{L} - - nd $X=0$.

To prove Proposition 3.2 we use the argument of the second part of the proof of Theorem 2.4. We have a partition P there of dimension $\leq n-1=$ -1 . Hence P is empty and u is a cover of X. Consequently, we can construct a $(u \mid F)$-barycentric mapping f_{1} for a normal space X.
3.3. Proposition. If $\mathcal{K}_{1} \subset \mathcal{K}_{2}$, then \mathcal{K}_{1}-Ind $X \leq \mathcal{K}_{2}$ - $\operatorname{Ind} X$.
3.4. Proposition. If $\mathcal{L}_{1} \subset \mathcal{L}_{2}$, then \mathcal{L}_{1}-Ind $X \leq \mathcal{L}_{2}$ - $\operatorname{Ind} X$.■

Propositions 3.3 and 3.4 yield

$$
\begin{align*}
\sup \{K-\operatorname{Ind} X: K \in \mathcal{K}\} & \leq \mathcal{K}-\operatorname{Ind} X \tag{3.3}\\
\sup \{L-\operatorname{Ind} X: L \in \mathcal{L}\} & \leq \mathcal{L}-\operatorname{Ind} X \tag{3.4}
\end{align*}
$$

3.5. Question. Is it true that
$\mathcal{K}-\operatorname{Ind} X=\sup \{K-\operatorname{Ind} X: K \in \mathcal{K}\}, \quad \mathcal{L}$-Ind $X=\sup \{L-\operatorname{Ind} X: L \in \mathcal{L}\} ?$
3.6. Proposition. If $\mathcal{L}_{1} \leq_{h} \mathcal{L}_{2}$, then

$$
\begin{equation*}
\mathcal{L}_{1} \text {-Ind } X \leq \mathcal{L}_{2} \text {-Ind } X \tag{3.5}
\end{equation*}
$$

for every hereditarily normal space X.
Proof. We apply induction on \mathcal{L}_{2}-Ind $X=n \geq-1$. For $n=-1$ the assertion is obvious. Let \mathcal{L}_{2}-Ind $X=n \geq 0$ and let $f \in P C\left(X, L_{1}\right)$ for some $L_{1} \in \mathcal{L}_{1}$. We have to find a partition $P \in \operatorname{Part}\left(f, L_{1}\right)$ with \mathcal{L}_{1}-Ind $P \leq n-1$.

Since $\mathcal{L}_{1} \leq_{h} \mathcal{L}_{2}$ there exists $L_{2} \in \mathcal{L}_{2}$ such that $L_{1} \leq_{h} L_{2}$, i.e. there exist mappings $\alpha: L_{1} \rightarrow L_{2}$ and $\beta: L_{2} \rightarrow L_{1}$ with $\beta \circ \alpha \simeq \operatorname{id}_{L_{1}}$. Let

$$
g=\alpha \circ f: \operatorname{dom} f \rightarrow L_{2} .
$$

Then $g \in P C\left(X, L_{2}\right)$. Since \mathcal{L}_{2}-Ind $X=n$, there exists a partition $P \in$ $\operatorname{Part}\left(g, L_{2}\right)$ with \mathcal{L}_{2}-Ind $P \leq n-1$. Then $P \in \operatorname{Part}\left(\beta \circ g, L_{1}\right)$. But $\beta \circ g=$ $(\beta \circ \alpha) \circ f \simeq f$, because $\beta \circ \alpha \simeq \operatorname{id}_{L_{1}}$. Consequently, $P \in \operatorname{Part}\left(f, L_{1}\right)$ in view of Lemma 1.24. On the other hand, by the inductive assumption we have \mathcal{L}_{1}-Ind $P \leq \mathcal{L}_{2}$-Ind $P \leq n-1$.
3.7. Corollary. If $\mathcal{L}_{1} \simeq \mathcal{L}_{2}$, then

$$
\begin{equation*}
\mathcal{L}_{1} \text {-Ind } X=\mathcal{L}_{2} \text {-Ind } X \tag{3.6}
\end{equation*}
$$

for every hereditarily normal space X.
3.8. Question. Does equality (3.6) hold for an arbitrary space whenever $\mathcal{L}_{1} \simeq \mathcal{L}_{2}$?

Theorem 1.4 and Corollary 3.7 yield
3.9. Proposition. For every non-empty class \mathcal{R} of $A N R$-compacta there exists a class $\mathcal{L}=\mathcal{L}(\mathcal{R})$ of compact polyhedra such that $\mathcal{R}-\operatorname{Ind} X=$ \mathcal{L}-Ind X for every hereditarily normal space X.

So, when we investigate the \mathcal{L}-Ind dimension of hereditarily normal spaces, we can consider only classes \mathcal{L} consisting of compact polyhedra.
3.10. Lemma. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Exp}_{K}(X)$ and let $u=\left(U_{1}, \ldots, U_{m}\right)$ be a K-neighbourhood of Φ. Then every partition P in X between $F=\bigcup \Phi$ and $X \backslash \bigcup u$ is a K-partition of Φ.

Proof. There exist open sets U and V such that

$$
\begin{equation*}
U \sqcup P \sqcup V=X \tag{3.7}
\end{equation*}
$$

and

$$
F \subset U \subset U \cup P \subset \bigcup u
$$

We define a new K-neighbourhood $u_{1}=\left(U_{1}^{1}, \ldots, U_{m}^{1}\right)$ of Φ as follows:

$$
U_{1}^{1}=\left(U_{1} \cap U\right) \cup V, \quad U_{j}^{1}=U_{j} \cap U, \quad j=2, \ldots, m
$$

Then $P=X \backslash \bigcup u_{1}$.
3.11. Lemma. Let $f \in P C(X, L)$ and let W be a neighbourhood of $F=$ dom f such that $X \subset W \in \operatorname{Part}(f, L)$. Then every partition P in X between F and $X \backslash W$ is an L-partition of f.

Proof. There exist open sets U and V satisfying (3.7) and $F \subset U \subset$ $U \cup P \subset W$. Since $X \backslash W \in \operatorname{Part}(f, L)$, there exists a mapping $f_{1}: W \rightarrow L$ such that $\left.f_{1}\right|_{F}=f$. We define an extension f_{2} of f putting $\left.f_{2}\right|_{U}=f_{1}$ and $f_{2}(W)=\mathrm{pt} \in L$. Then $\operatorname{dom} f_{2}=X \backslash P$, so $P \in \operatorname{Part}(f, L)$.
3.12. Theorem. For every \mathcal{K}, \mathcal{L}, and X we have

$$
\begin{align*}
\mathcal{K} \text {-Ind } X & \leq \operatorname{Ind} X \tag{3.8}\\
\mathcal{L} \text {-Ind } X & \leq \operatorname{Ind} X \tag{3.9}
\end{align*}
$$

Proof. We prove (3.8) by induction on $n=\operatorname{Ind} X$. For $n=-1$ the assertion is obvious. Let $X=n \geq 0$ and let $\Phi \in \operatorname{Exp}_{K} X, K \in \mathcal{K}$. By Lemma 3.10 there exists a K-partition P of Φ with $\operatorname{Ind} P \leq n-1$. By the inductive assumption we have \mathcal{K}-Ind $P \leq$ Ind P. Consequently, \mathcal{K}-Ind $X \leq n$. To prove (3.9) we apply Lemma 3.11 instead of Lemma 3.10.

In connection with Theorem 3.12 two problems arise.
Problem 1. For what classes \mathcal{K} of complexes,

$$
\mathcal{K} \text {-Ind } X=\operatorname{Ind} X \quad \text { for every } X ?
$$

Problem 2. For what classes \mathcal{L} of $A N R$-compacta,

$$
\mathcal{L} \text {-Ind } X=\operatorname{Ind} X \quad \text { for every } X ?
$$

To solve Problem 1 we need the following statement.
3.13. Lemma. If \mathcal{L} consists of connected compacta, then $\mathcal{L}-\operatorname{Ind} I=0$.

Proof. If L is a connected $A N R$-compactum, then it is path-connected, and consequently $L \in A E(I)$. Hence \mathcal{L}-Ind $I=0$.

The next theorem solves Problem 1.
3.14. Theorem. The equality \mathcal{K} - $\operatorname{In} \mathrm{X} X=\operatorname{Ind} X$ holds for every space X if and only if \mathcal{K} contains a disconnected complex.

Proof. Necessity is a consequence of Lemma 3.13 and Theorem 2.4.
Sufficiency. In view of Theorem 3.12 it suffices to show that

$$
\begin{equation*}
\operatorname{Ind} X \leq \mathcal{K}-\operatorname{Ind} X \tag{3.10}
\end{equation*}
$$

We shall prove (3.10) by induction on $n=\mathcal{K}$-Ind X. The assertion is obvious for $n=-1$. Assume that \mathcal{K}-Ind $X=n \geq 0$. Let F_{1} and F_{2} be disjoint closed subsets of X. We have to find a partition P between F_{1} and F_{2} with Ind $P \leq n-1$.

Take a disconnected complex $K=K_{1} \sqcup K_{2} \in \mathcal{K}$. We can enumerate its vertices as $v(K)=\left(a_{1}, \ldots, a_{m}\right)$ so that $a_{1} \in K_{1}$ and $a_{2} \in K_{2}$. Let $\Phi=\left(F_{1}, F_{2}, F_{3}, \ldots, F_{m}\right)$, where $F_{3}=\cdots=F_{m}=\emptyset$. Then $\Phi \in \operatorname{Exp}_{K}(X)$. Since \mathcal{K}-Ind $X=n$, there exists a K-neighbourhood $u=\left(U_{1}, \ldots, U_{m}\right)$ of Φ such that \mathcal{K}-Ind $P \leq n-1$, where $P=X \backslash\left(U_{1} \cup \cdots \cup U_{m}\right)$. Let

$$
A_{i}=\left\{j \in\{1, \ldots, m\}: a_{j} \in K_{i}\right\}, \quad V_{i}=\bigcup\left\{U_{j}: j \in A_{i}\right\}, \quad i=1,2
$$

Since the embedding $N(u) \rightarrow K$ is generated by the correspondence $U_{j} \mapsto a_{j}$, we have

$$
V_{1} \cap V_{2}=\emptyset, \quad F_{1} \subset V_{1}, \quad F_{2} \subset V_{2}
$$

Hence $P=X \backslash\left(V_{1} \cup V_{2}\right)$ is a partition between F_{1} and F_{2}. By the inductive assumption we have $\operatorname{Ind} P \leq \mathcal{K}$ - $\operatorname{Ind} P \leq n-1$.

The next theorem gives a partial solution of Problem 2. It is a corollary of Theorems 2.4 and 3.14.
3.15. Theorem. The equality \mathcal{L}-Ind $X=\operatorname{Ind} X$ holds for every hereditarily normal space X if and only if \mathcal{L} contains a disconnected compactum.
3.16. Question. Is it true that \mathcal{L}-Ind $X=$ Ind X for every space X whenever \mathcal{L} contains a disconnected compactum?

Question 3.16 has a positive answer if the next question has a positive answer.
3.17. Question. Is it true that \mathcal{L}_{1}-Ind $X \leq \mathcal{L}_{2}$-Ind X for every space X whenever $\mathcal{L}_{1} \leq_{h} \mathcal{L}_{2}$?

In connection with Theorem 3.12 another two problems arise.
Problem 3. For what classes \mathcal{K} of complexes, \mathcal{K} - $\operatorname{Ind} X<\infty \Rightarrow \operatorname{Ind} X$ $<\infty$?

Problem 4. For what classes \mathcal{L} of $A N R$-compacta, \mathcal{L} - $\operatorname{Ind} X<\infty \Rightarrow$ Ind $X<\infty$?
3.18. Theorem. The inequality $\mathcal{K}-\operatorname{dim} X \leq \mathcal{K}$-Ind X holds for every space X and every class \mathcal{K}.

To prove Theorem 3.18 we need some additional information.
3.19. Lemma. Let $X=Y \sqcup Z, \alpha=\left(A_{1}, \ldots, A_{m}\right)$ be a sequence of subsets of Y, and $\beta=\left(B_{1}, \ldots, B_{m}\right)$ be a sequence of subsets of Z such that $N(\alpha), N(\beta) \subset K$. Let $\gamma=\left(C_{1}, \ldots, C_{m}\right)$, where $C_{j}=A_{j} \cup B_{j}$. Then $N(\gamma) \subset K$.

Proof. For $a_{j_{1}}, \ldots, a_{j_{r}} \in v(K)$ we denote by $K\left(a_{j_{1}}, \ldots, a_{j_{r}}\right) \equiv K_{1}$ the biggest subcomplex of K with $v\left(K_{1}\right)=\left(a_{j_{1}}, \ldots, a_{j_{r}}\right)$. We have to prove that

$$
C_{j_{1}} \cap \cdots \cap C_{j_{r}} \neq \emptyset \Rightarrow K\left(a_{j_{1}}, \ldots, a_{j_{r}}\right) \text { is a simplex. }
$$

Let $x \in C_{j_{1}} \cap \cdots \cap C_{j_{r}}$. If $x \in Y$, then $x \in A_{j_{1}} \cap \cdots \cap A_{j_{r}}$, and consequently $K\left(a_{j_{1}}, \ldots, a_{j_{r}}\right)$ is a simplex, because $N(\alpha) \subset K$. If $x \in Z$, then $x \in B_{j_{1}} \cap$ $\cdots \cap B_{j_{r}}$, and so $K\left(a_{j_{1}}, \ldots, a_{j_{r}}\right)$ is a simplex, since $N(\beta) \subset K$.

Lemma 3.19 yields
3.20. Lemma. Let Y be a subspace of a space $X, \alpha=\left(A_{1}, \ldots, A_{m}\right)$ be a sequence of subsets of X, and $\beta=\left(B_{1}, \ldots, B_{m}\right)$ be a sequence of subsets of Y such that $N(\alpha), N(\beta) \subset K$ and $A_{j} \cap Y \subset B_{j}, j=1, \ldots, m$. Let $C_{j}=A_{j} \cup B_{j}$ and $\gamma=\left(C_{1}, \ldots, C_{m}\right)$. Then $N(\gamma) \subset K$.

Proof of Theorem 3.18. We apply induction on \mathcal{K} - $\operatorname{Ind} X=n \geq-1$. If $n=-1$ the assertion is obvious. Assume that we have proved it for all X with \mathcal{K}-Ind $X=k \leq n-1 \geq-1$ and let \mathcal{K}-Ind $X=n \geq 0$.

We have to prove that every sequence $\left(K_{1}, \ldots, K_{n+1}\right), K_{i} \in \mathcal{K}$, is inessential in X. Take an arbitrary sequence $\left(\Phi_{1}, \ldots, \Phi_{n+1}\right), \Phi_{i} \in \operatorname{Exp}_{K_{i}}(X)$. We are looking for K_{i}-partitions P_{i} of Φ_{i} such that $P_{1} \cap \cdots \cap P_{n+1}=\emptyset$. Since $\mathcal{K}-\operatorname{Ind} X=n$, there exists a K_{n+1}-partition P_{n+1} of Φ_{n+1} such that \mathcal{K}-Ind $P_{n+1} \leq n-1$. Let $\Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m_{i}}^{i}\right)$ and $F_{i}=F_{1}^{i} \cup \cdots \cup F_{m_{i}}^{i}$. Since \mathcal{K}-Ind $P_{n+1} \leq n-1$, by the inductive assumption we have \mathcal{K} - $\operatorname{dim} P_{n+1} \leq$ $n-1$. Hence the sequence $\left(\Phi_{1}\left|P_{n+1}, \ldots, \Phi_{n}\right| P_{n+1}\right)$ is inessential in P_{n+1}, and consequently there exist partitions $Q_{i} \in \operatorname{Part}\left(\Phi_{i} \mid P_{n+1}, K_{i}\right)$ with $Q_{1} \cap$ $\cdots \cap Q_{n}=\emptyset$. By Lemma 1.7 there exist sets V_{i} open in P_{n+1} such that

$$
\begin{gather*}
Q_{i} \subset V_{i} \subset P_{n+1} \backslash F_{i}, \quad i=1, \ldots, n \tag{3.11}\\
V_{1} \cap \cdots \cap V_{n}=\emptyset \tag{3.12}
\end{gather*}
$$

In view of the definition of the K_{i}-partitions Q_{i} there exist sequences $u_{i}=$ $\left(U_{1}^{1}, \ldots, U_{m_{i}}^{i}\right)$ of open subsets of P_{n+1} such that

$$
\begin{gather*}
F_{j}^{i} \cap P_{n+1} \subset U_{j}^{i}, \quad j=1, \ldots, m_{i} \tag{3.13}\\
U_{1}^{i} \cup \cdots \cup U_{m_{i}}^{i}=P_{n+1} \backslash Q_{i} \tag{3.14}\\
N\left(u_{i}\right) \subset K_{i}, \quad i=1, \ldots, n \tag{3.15}
\end{gather*}
$$

Put $H_{i}=P_{n+1} \backslash V_{i}$. The sequences $u_{i} \mid H_{i}$ are open coverings of H_{i} in view of (3.11) and (3.14). Shrinking them to closed coverings we get sequences
$\Phi_{i}^{0}=\left({ }^{0} F_{1}^{i}, \ldots,{ }^{0} F_{m_{i}}^{i}\right)$ of closed sets such that

$$
\begin{align*}
F_{j}^{i} \cap P_{n+1} \subset{ }^{0} F_{j}^{i} \subset U_{j}^{i}, & j=1, \ldots, m_{i}, \tag{3.16}\\
{ }^{0} F_{1}^{i} \cup \cdots \cup{ }^{0} F_{m_{i}}^{i}=H_{i}, & i=1, \ldots, n . \tag{3.17}
\end{align*}
$$

From (3.15) and (3.16) it follows that

$$
\begin{equation*}
N\left(\Phi_{i}^{0}\right) \subset K_{i}, \quad i=1, \ldots, n \tag{3.18}
\end{equation*}
$$

Put $\Phi_{i}^{1}=\left({ }^{0} F_{1}^{i} \cup F_{1}^{i}, \ldots,{ }^{0} F_{m_{i}}^{i} \cup F_{m_{i}}^{i}\right)$. According to (3.18) and Lemma 3.20 we have $N\left(\Phi_{i}^{1}\right) \subset K_{i}, i=1, \ldots, n$. Take arbitrary K_{i}-neighbourhoods $w_{i}=$ $\left(W_{1}^{i}, \ldots, W_{m_{i}}^{i}\right)$ of Φ_{i}^{1} in X and put $P_{i}=X \backslash \bigcup w_{i}$. Then $P_{1} \cap \cdots \cap P_{n} \subset$ $X \backslash P_{n+1}$ because of (3.12) and (3.17).

From the definition we get
3.21. Proposition. \mathcal{K}-Ind $X=0 \Leftrightarrow \mathcal{K}$ - $\operatorname{dim} X=0$.

Corollary 2.9 and Proposition 3.21 imply
3.22. Proposition. If a hereditarily normal space X can be represented as the union of $n+1$ subspaces X_{1}, \ldots, X_{n+1} such that $\mathcal{K}-\operatorname{dim} X_{i} \leq 0$, $i=1, \ldots, n+1$, then \mathcal{K}-Ind $X \leq n$.

Theorems 1.17, 1.37, 3.18, and Proposition 3.22 yield
3.23. Theorem. If X is metrizable space, then \mathcal{K}-Ind $X=\mathcal{K}$ - $\operatorname{dim} X$.

Theorem 3.23 is a generalization of a theorem by M. Katětov 10 and K. Morita [12] for the classical dimensions dim and Ind.

We conclude this section with another application of Lemmas 3.19 and 3.20 , which we will need in Section 5.
3.24. Theorem. Let $f: X \rightarrow Y$ be a mapping of a compact Hausdorff space X onto a space Y with $\operatorname{dim} Y=0$. Then

$$
\mathcal{K}-\operatorname{dim} X \leq \sup \left\{\mathcal{K}-\operatorname{dim} f^{-1}(y): y \in Y\right\}
$$

Proof. It suffices to consider the case

$$
\begin{equation*}
\sup \left\{\mathcal{K}-\operatorname{dim} f^{-1}(y): y \in Y\right\}=n<\infty \tag{3.19}
\end{equation*}
$$

Let $\Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m_{i}}^{i}\right) \in \operatorname{Exp}_{K_{i}}(X), K_{i} \in \mathcal{K}, i=1, \ldots, n+1$. For $y \in Y$, put

$$
\begin{equation*}
\Phi_{i}^{y}=\left(F_{1}^{i} \cap f^{-1}(y), \ldots, F_{m_{i}}^{i} \cap f^{-1}(y)\right) \tag{3.20}
\end{equation*}
$$

Since \mathcal{K}-dim $f^{-1}(y) \leq n$, there exist partitions $P_{i}^{y} \in \operatorname{Part}\left(\Phi_{i}^{y}, K_{i}\right)$ such that

$$
\begin{equation*}
P_{1}^{y} \cap \cdots \cap P_{n+1}^{y}=\emptyset, \quad y \in Y \tag{3.21}
\end{equation*}
$$

This means that there exist families $v_{i}^{y}=\left(V_{i, 1}^{y}, \ldots, V_{i, m_{i}}^{y}\right), i=1, \ldots, n+1$, of open subsets of $f^{-1}(y)$ such that

$$
\begin{gather*}
F_{j}^{i} \cap f^{-1}(y) \subset V_{i, j}^{y}, \quad j=1, \ldots, m_{i} \tag{3.22}\\
N\left(v_{i}^{y}\right) \subset K_{i}, \quad y \in Y \tag{3.23}
\end{gather*}
$$

$$
\begin{equation*}
v^{y}=v_{1}^{y} \cup \cdots \cup v_{n+1}^{y} \in \operatorname{cov}\left(f^{-1}(y)\right) \tag{3.24}
\end{equation*}
$$

We can shrink the covering v^{y} to a closed covering

$$
\Phi^{y}=\left\{F_{i, j}^{y}: i=1, \ldots, n+1 ; j=1, \ldots, m_{i}\right\}
$$

so that

$$
\begin{equation*}
F_{j}^{i} \cap f^{-1}(y) \subset F_{i, j}^{y} \subset V_{i, j}^{y} \tag{3.25}
\end{equation*}
$$

$\operatorname{Put}^{i} \Phi^{y}=\left(F_{i, 1}^{y}, \ldots, F_{i, m_{i}}^{y}\right)$. From (3.23) and (3.25) it follows that

$$
\begin{equation*}
N\left({ }^{i} \Phi^{y}\right) \subset K_{i}, \quad i=1, \ldots, n+1 \tag{3.26}
\end{equation*}
$$

Put ${ }^{1} F_{i, j}^{y}=F_{i, j}^{y} \cup F_{j}^{i}$ and ${ }^{i} \Phi_{1}^{y}=\left({ }^{1} F_{i, 1}^{y}, \ldots,{ }^{1} F_{i, m_{i}}^{y}\right)$. From (3.25), (3.26), and Lemms 3.20 it follows that

$$
\begin{equation*}
N\left({ }^{i} \Phi_{1}^{y}\right) \subset K, \quad i=1, \ldots, n+1 \tag{3.27}
\end{equation*}
$$

By Lemma 1.7 and (3.27) there exist families $w_{i}^{y}=\left(W_{i, 1}^{y}, \ldots, W_{i, m_{i}}^{y}\right)$ of open subsets of X such that

$$
\begin{align*}
{ }^{1} F_{i, j}^{y} \subset W_{i, j}^{y}, & j=1, \ldots, m_{i} \tag{3.28}\\
N\left(w_{i}^{y}\right) \subset K_{i}, & i=1 \ldots, n+1 \tag{3.29}
\end{align*}
$$

Put $W_{y}=\bigcup\left\{W_{i, j}^{y}: i=1, \ldots, n+1 ; j=1, \ldots, m_{i}\right\}$. Since $\bigcup \Phi^{y}=f^{-1}(y)$, from (3.28) we get $f^{-1}(y) \subset W_{y}$. Hence there exists a neighbourhood $O y$ of y such that

$$
\begin{equation*}
f^{-1}(y) \subset f^{-1} O y \subset W_{y} \tag{3.30}
\end{equation*}
$$

The covering $\{O y: y \in Y\}$ of Y admits a refinement $\gamma=\left\{G_{1}, \ldots, G_{r}\right\}$ consisting of pairwise disjoint clopen sets. For every $s=1, \ldots, r$ fix a point $y(s)$ so that $G_{s} \subset O y(s)$. Put

$$
\begin{align*}
U_{i, j}^{s} & =W_{i . j}^{y(s)} \cap f^{-1} G_{s}, & & s=1, \ldots, r \tag{3.31}\\
u_{i}^{s} & =\left(U_{i, 1}^{s}, \ldots, U_{i, m_{i}}^{s}\right), & & i=1, \ldots, n+1
\end{align*}
$$

From (3.29) it follows that

$$
\begin{equation*}
N\left(u_{i}^{s}\right) \subset K_{i} \tag{3.33}
\end{equation*}
$$

Let $U_{i, j}=U_{i, j}^{1} \cup \cdots \cup U_{i, j}^{r}$ and $u_{i}=\left(U_{i, 1}, \ldots, U_{i, m_{i}}\right)$. From Lemma 3.19 and (3.33) we get

$$
\begin{equation*}
N\left(u_{i}\right) \subset K_{i} \tag{3.34}
\end{equation*}
$$

From (3.28), (3.30), and (3.31) it follows that

$$
\begin{gather*}
F_{j}^{i} \subset U_{i, j}, \tag{3.35}\\
u_{1} \cup \cdots \cup u_{n+1} \in \operatorname{cov}(X) \tag{3.36}
\end{gather*}
$$

Put $P_{i}=X \backslash \bigcup u_{i}$. Then conditions (3.34)-(3.36) imply that $P_{i} \in \operatorname{Part}\left(\Phi_{i}, K_{i}\right)$ and $P_{1} \cap \cdots \cap P_{n+1}=\emptyset$.
4. Fully closed mappings. Let $f: X \rightarrow Y$ be a mapping and $A \subset X$. Recall that the set

$$
f^{\#} A=\left\{y \in Y: f^{-1}(y) \subset A\right\}=Y \backslash f(X \backslash A)
$$

is said to be the small image of A. If α is a family of subsets of X then we put $f^{\#} \alpha=\left\{f^{\#} A: A \in \alpha\right\}$.
4.1. Definition ([4]). A continuous surjective mapping $f: X \rightarrow Y$ is called fully closed if for every point $y \in Y$ and for every finite family u of open sets in X with $f^{-1}(y) \subset \bigcup u$, the set $\{y\} \cup \bigcup f^{\#} u$ is a neighbourhood of y.

Obviously, every fully closed mapping is closed.
4.2. Proposition. If $f: X \rightarrow Y$ is a fully closed mapping and u is a finite open cover of X, then the set $Y \backslash \bigcup f^{\#} u$ is discrete.
4.3. Proposition. If $f: X \rightarrow Y$ is a fully closed mapping and $Z \subset Y$, then the mapping $\left.f\right|_{f^{-1}(Z)}: f^{-1}(Z) \rightarrow Z$ is fully closed.
4.4. Proposition. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are mappings whose composition $g \circ f$ is fully closed, then g is also fully closed.
4.5. For a mapping $f: X \rightarrow Y$ and an arbitrary set $M \subset Y$, we put

$$
M^{f}=\left\{f^{-1} y: y \in Y \backslash M\right\} \cup\left\{\{x\}: x \in f^{-1} M\right\}
$$

The family M^{f} is an upper semicontinuous decomposition of the space X. We denote the quotient space with respect to this decomposition by Y_{f}^{M} and the corresponding quotient mapping $X \rightarrow Y_{f}^{M}$ by f_{M}. Since the decomposition M^{f} refines the decomposition corresponding to the mapping f, there exists a unique mapping $\pi_{f}^{M}: Y_{f}^{M} \rightarrow Y$ such that $f=\pi_{f}^{M} \circ f_{M}$. The mapping π_{f}^{M} is continuous, because f is continuous and f^{M} is quotient. If $M=\emptyset$, then $Y_{f}^{\emptyset}=Y, f_{\emptyset}=f, \pi_{f}^{\emptyset}=\operatorname{id}_{Y}$.
4.6. Proposition ([7]). For a closed surjective mapping $f: X \rightarrow Y$ of a regular space X to a regular space Y, the following conditions are equivalent:
(1) f is fully closed;
(2) for any set $M \subset Y$, the space Y_{f}^{M} is regular.
4.7. Proposition ([7). If $f: X \rightarrow Y$ is a fully closed mapping and $M \subset Y$, then both mappings f_{M} and π_{f}^{M} are fully closed. -
4.8. Proposition. If $f: X \rightarrow Y$ is a closed surjective mapping of a normal space X onto a T_{1}-space Y, then Y is a normal space.

Propositions 4.6-4.8 yield
4.9. Proposition. If $f: X \rightarrow Y$ is a fully closed mapping between normal spaces, then Y_{f}^{M} is a normal space for any $M \subset Y$.
4.10. Definition. A family \mathcal{M} of subsets of Y is said to be a direction in Y if it satisfies the following conditions:
0) $\emptyset \in \mathcal{M}$;

1) \mathcal{M} is a covering of Y;
2) if $M_{1}, M_{2} \in \mathcal{M}$, then there exists $M \in \mathcal{M}$ such that $M_{1} \cup M_{2} \subset M$.
4.11. The inverse system $S_{\mathcal{M}}^{f}$. Let $f: X \rightarrow Y$ be a fully closed mapping and let \mathcal{M} be a direction in Y. If $M_{1}, M_{2} \in \mathcal{M}$ and $M_{1} \subset M_{2}$, then the decomposition M_{2}^{f} refines the decomposition M_{1}^{f}. Hence there exists a unique mapping $\pi_{M_{1}}^{M_{2}}: Y_{f}^{M_{2}} \rightarrow Y_{f}^{M_{1}}$ such that $\pi_{f}^{M_{2}}=\pi_{f}^{M_{1}} \circ \pi_{M_{1}}^{M_{2}}$. It is easy to check that if $M_{1} \subset M_{2} \subset M_{3}, M_{i} \in \mathcal{M}$, then

$$
\pi_{M_{1}}^{M_{3}}=\pi_{M_{1}}^{M_{2}} \circ \pi_{M_{2}}^{M_{3}} .
$$

So the family $S_{\mathcal{M}}^{f}=\left\{Y_{f}^{M}, \pi_{M^{\prime}}^{M}, \mathcal{M}\right\}$ is an inverse system. We denote by π_{M} the limit projection $\lim S_{\mathcal{M}}^{f} \rightarrow Y_{f}^{M}$.
4.12. Theorem. Let $f: Y \rightarrow Y$ be a fully closed mapping between compact Hausdorff spaces and let \mathcal{M} be a direction in Y. Then f_{M} is homeomorphic to the limit projection π_{M} of the inverse system $S_{\mathcal{M}}^{f}, M \in \mathcal{M}$.

The proof is a routine.
For a mapping $f: X \rightarrow Y$ the number $\mathcal{L}-\operatorname{dim} f$ is defined as follows:

$$
\mathcal{L}-\operatorname{dim} f=\sup \left\{\mathcal{L}-\operatorname{dim} f^{-1}(y): y \in Y\right\} .
$$

4.13. Theorem (9). If $f: X \rightarrow Y$ is a fully closed mapping between compact spaces, then

$$
\mathcal{L}-\operatorname{dim} X \leq \max \{\mathcal{L}-\operatorname{dim} Y, \mathcal{L}-\operatorname{dim} f\}
$$

In applications, fully closed mappings appear as resolutions.
4.14. Definition (7). Given a space X, spaces Y_{x}, and continuons mappings $h_{x}: X \backslash\{x\} \rightarrow Y_{x}$ for each point $x \in X$, a resolution of (the set) X (at each point x to the space Y_{x} by means of the mappings h_{x}) is the set

$$
R(X) \equiv R\left(X, Y_{x}, h_{x}\right)=\bigcup\left\{\{x\} \times Y_{x}: x \in X\right\}
$$

The mapping $\pi=\pi_{X}: R(X) \rightarrow X$ taking (x, y) to x is called the resolution mapping or simply the resolution.

We define a topology on $R(X)$. Given a triple (U, x, V), where U is an open subset of $X, x \in U$, and V is an open subset of Y_{x}, put

$$
U \otimes_{x} V=\{x\} \times V \cup \pi^{-1}\left(U \cap h_{x}^{-1}(V)\right)
$$

The family of sets of the form $U \otimes_{x} V$ is the base for a topology on $R(X)$ called the resolution topology.
4.15. Theorem ([5]). If X and all Y_{x} are compact Hausdorff spaces, then $R(X)$ is also a compact Hausdorff space, π is fully closed, and each fibre $\pi^{-1}(x)$ is homeomorphic to Y_{x}. Moreover, $R(X)$ is first countable if and only if X and all Y_{x} are first countable.
4.16. Definition. A closed mapping $f: X \rightarrow Y$ is called atomic if $F=f^{-1} f(F)$ for every closed $F \subset X$ such that $f(F)$ is a continuum (connected closed non-singleton).
4.17. Definition. A closed mapping $f: X \rightarrow Y$ is said to be ring-like if, for any point $x \in X$ and any neighbourhoods $O x$ and $O f(x)$, the set $O f(x) \cap f^{\#} O x$ contains a partition between $f(x)$ and $Y \backslash O f(x)$.
4.18. Proposition. Every ring-like mapping is atomic.

A number of applications of resolutions are based on the following statement.
4.19. Lemma ([6]). Let X be a first countable connected compact Hausdorff space and let $Y_{x}, x \in X$, be AR-compacta. Then we can choose mappings $h_{x}: X \backslash\{x\} \rightarrow Y_{x}$ so that
(i) the resolution $\pi_{X}: R(X) \rightarrow X$ is a ring-like mapping.

If X is perfectly normal and hereditarily separable then, under the continuum hypothesis, the mappings h_{x} can be chosen so that, in addition to (i),
(ii) the space $R(X)$ is perfectly normal and hereditarily separable.
4.20. Reduced resolution. Applying the construction from 4.5 to the mapping $\pi: R(X) \rightarrow X$ and a set $M \subset X$ we get a space $R^{M}(X)$ and mappings $\pi_{M}: R(X) \rightarrow R^{M}(X)$ and $\pi^{M}: R^{M}(X) \rightarrow X$ such that $\pi=$ $\pi^{M} \circ \pi_{M}$ and

$$
\begin{array}{ll}
\left(\pi^{M}\right)^{-1}(x)=\pi^{-1}(x) & \text { for } x \in M \\
\left|\left(\pi^{M}\right)^{-1}(x)\right|=1 & \text { for } x \in X \backslash M \tag{4.2}
\end{array}
$$

The space $R^{M}(X)$ is called a reduced resolution of the resolution $R(X)$ with respect to M.
4.21. The inverse system $S_{\mathcal{M}}^{\pi}$. If $M_{1} \subset M_{2} \subset X$, then there exists a unique mapping $\pi_{M_{1}}^{M_{2}}: R^{M_{2}}(X) \rightarrow R^{M_{1}}(X)$ such that $\pi^{M_{2}}=\pi^{M_{1}} \circ \pi_{M_{1}}^{M_{2}}$. If \mathcal{M}
is a direction in X, then according to 4.11 the family $S_{\mathcal{M}}^{\pi}=\left\{R^{M}(X), \pi_{M^{\prime}}^{M}, \mathcal{M}\right\}$ is an inverse system.

Theorems 4.12 and 4.15 yield
4.22. ThEOREM. Let $\pi: R(X) \rightarrow R$ be a resolution of a Hausdorff compact space X and let \mathcal{M} be a direction in X. Then π_{M} is homeomorphic to the limit projection $\lim S_{\mathcal{M}}^{\pi} \rightarrow R^{M}(X)$ of the inverse system $S_{\mathcal{M}}^{\pi}, M \in \mathcal{M}$.
5. Compact spaces with non-coinciding dimensions. The main result of this section is
5.1. Theorem.
(i) For an arbitrary complex K with $K * K$ non-contractible and any $n \geq 2$ there exists a separable first countable compact Hausdorff space X_{n} such that

$$
\begin{equation*}
K-\operatorname{dim} X_{n}=n<2 n-1 \leq K-\operatorname{Ind} X_{n} \leq 2 n \tag{5.1}
\end{equation*}
$$

(ii) Under the continuum hypothesis there exists a perfectly normal space X_{n}^{0} with properties from (i).
To prove Theorem 5.1 we need some auxiliary information.
Just from the definition we get
5.2. Proposition. Let $f: X \rightarrow Y$ be a ring-like mapping and let $U \subset$ X be an open subset. Then $\operatorname{ind}_{y}\left(Y \backslash f^{\#} U\right) \leq 0$ for every $y \in f(U) \backslash f^{\#} U$.

The next statement is an immediate consequence of Proposition 5.2.
5.3. Proposition. Let $f: X \rightarrow Y$ be a ring-like mapping and let U_{1}, \ldots, U_{m} be open subsets of X. Then

$$
\operatorname{ind}\left(f\left(U_{1}\right) \cup \cdots \cup f\left(U_{m}\right) \backslash\left(f^{\#} U_{1} \cup \cdots \cup f^{\#} U_{m}\right)\right) \leq 0
$$

5.4. Proposition. Let X be a compactum with $K-\operatorname{dim} X=k \geq 1$ and let $R(X)$ be the resolution from Lemma 4.19 with $Y_{x}=I^{m}, x \in X$, and

$$
\begin{equation*}
m \geq n=K-\operatorname{dim} I^{m} \geq k \tag{5.2}
\end{equation*}
$$

Then K-Ind $R(X) \geq k+n-1$.
Proof. We apply induction on k. Let $k=1$. Take an arbitrary point $x \in X$. Then
$K-\operatorname{Ind} R(X) \stackrel{2.5}{\geq} K-\operatorname{Ind}\left(\pi^{-1}(x)\right)=K-\operatorname{Ind} I^{m} \stackrel{3.23}{=} K-\operatorname{dim} I^{m} \stackrel{(5.2)}{=} n=k+n-1$.
Assume that the assertion holds for dimensions K - $\operatorname{dim} X$ less than $k \geq 2$ and consider a space X with K - $\operatorname{dim} X=k$. There exists $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in$ $\operatorname{Exp}_{K}(X)$ such that
(5.3) $\quad K$ - $\operatorname{Ind} P \geq k-1 \quad$ for an arbitrary K-partition P of Φ.

Put $\Psi=\left(\pi^{-1} F_{1}, \ldots, \pi^{-1} F_{m}\right)$. Then $\Psi \in \operatorname{Exp}_{K}(R(X))$. Let $O \Psi=$ $\left(U_{1}, \ldots, U_{m}\right)$, be an arbitrary K-neighbourhood of Ψ existing by Lemma 1.7. The sequence $O \Phi=\left(\pi^{\#} U_{1}, \ldots, \pi^{\#} U_{m}\right)$ is a K-neighbourhood of Φ. Then

$$
\begin{equation*}
P=X \backslash\left(\pi^{\#} U_{1} \cup \cdots \cup \pi^{\#} U_{m}\right) \tag{5.4}
\end{equation*}
$$

is a K-partition of Φ. In view of (5.3) we have

$$
\begin{equation*}
K-\operatorname{Ind} P \geq k-1 \geq 1 \tag{5.5}
\end{equation*}
$$

Put $U=U_{1} \cup \cdots \cup U_{m}$ and $Q=R(X) \backslash U$. Then Q is a K-partition of Ψ. Let

$$
\begin{equation*}
G=\pi^{\#} U \backslash\left(\pi^{\#} U_{1} \cup \cdots \cup \pi^{\#} U_{m}\right) . \tag{5.6}
\end{equation*}
$$

By (5.4) we have

$$
\begin{equation*}
P=G \sqcup f(Q) . \tag{5.7}
\end{equation*}
$$

Since X is a compactum, from Theorem 3.23 and (5.5) it follows that

$$
\begin{equation*}
K-\operatorname{dim} P \geq k-1 \geq 1 \tag{5.8}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
K-\operatorname{dim} G \leq \operatorname{dim} G \leq 0 \tag{5.9}
\end{equation*}
$$

by Theorems 1.17, 1.35, and Proposition 5.3. Consequently, from (5.7)-(5.9) and Proposition 1.33 it follows that $K-\operatorname{dim} f(Q) \geq k-1$. Hence by Theorem 3.24 there exists a continuum $C \subset \pi(Q)$ such that $K-\operatorname{dim} C \geq k-1$. Then

$$
\begin{equation*}
K-\operatorname{Ind} \pi^{-1}(C) \geq n+k-2 \tag{5.10}
\end{equation*}
$$

by the inductive assumption. Since π is ring-like mapping, we have $\pi^{-1}(C) \subset$ Q by Proposition 4.18. Thus from (5.10) it follows that K - $\operatorname{Ind} Q \geq n+k-2$. But Q is an arbitrary K-partition of Ψ. Consequently, K - Ind $R(X) \geq n+$ $k-1$.
5.5. Lemma. Let X be a hereditarily normal space and let Y be a closed subspace such that $\mathcal{K}-\operatorname{Ind}(X \backslash Y) \leq n \geq 0$. Then for every $\Phi \in \operatorname{Exp}_{K}(X)$, $K \in \mathcal{K}$, and every $Q \in \operatorname{Part}(\Phi \mid Y, K)$ there exists a K-partition P of Φ such that

$$
\begin{gather*}
P \cap Y=Q \tag{5.11}\\
\mathcal{K}-\operatorname{Ind}(P \backslash Y) \leq n-1
\end{gather*}
$$

Proof. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ and $F=F_{1} \cup \cdots \cup F_{m}$. There exists a family $v=\left(V_{1}, \ldots, V_{m}\right)$ of open subsets of Y such that

$$
\begin{gather*}
F_{j} \cap Y \subset V_{j}, \quad j=1, \ldots, m, \tag{5.13}\\
V_{1} \cup \cdots \cup V_{m}=Y \backslash Q, \tag{5.14}\\
N(v) \subset K . \tag{5.15}
\end{gather*}
$$

The family v is an open covering of a normal space $Y_{0}=Y \backslash Q$. Hence there exists a family $h=\left(H_{1}, \ldots, H_{m}\right)$ of closed subsets of Y_{0} such that

$$
\begin{gather*}
F_{j} \cap Y \subset H_{j} \subset V_{j}, \quad j=1, \ldots, m, \tag{5.16}\\
H_{1} \cup \cdots \cup H_{m}=Y \backslash Q \tag{5.17}\\
N(h) \subset K . \tag{5.18}
\end{gather*}
$$

Since Y_{0} is a closed subset of the space $X_{0}=X \backslash Q$, the sets $F_{j}^{1}=F_{j} \cup H_{j}$ are closed in X_{0}. Put $\Phi_{1}=\left(F_{1}^{1}, \ldots, F_{m}^{1}\right)$. Since $\Phi \in \operatorname{Exp}_{K}(X)$, conditions (5.16), (5.18), and Lemma 3.20 imply that

$$
\begin{equation*}
N\left(\Phi_{1}\right) \subset K . \tag{5.19}
\end{equation*}
$$

By (5.19) and Lemma 1.7 there exists a family $u=\left(U_{1}, \ldots, U_{m}\right)$ of open subsets of X_{0} such that

$$
\begin{gather*}
F_{j}^{1} \subset U_{j}, \quad j=1, \ldots, m, \tag{5.20}\\
N(u)=N\left(\Phi_{1}\right) \subset K . \tag{5.21}
\end{gather*}
$$

Since X_{0} is normal, there exists a family $u_{1}=\left(U_{1}^{1}, \ldots, U_{m}^{1}\right)$ of open subsets of X_{0} such that

$$
\begin{equation*}
F_{j}^{1} \subset U_{j}^{1} \subset{\overline{U_{j}^{1}}}^{X_{0}} \subset U_{j}, \quad j=1, \ldots, m . \tag{5.22}
\end{equation*}
$$

Put $E_{j}={\overline{U_{j}^{1}}}^{X_{0}} \backslash Y$ and $e=\left(E_{1}, \ldots, E_{m}\right)$. From (5.21) it follows that

$$
\begin{equation*}
N(e) \subset K \tag{5.23}
\end{equation*}
$$

Since \mathcal{K} - $\operatorname{Ind}(X \backslash Y) \leq n$, condition (5.23) implies the existence of a family $w=\left(W_{1}, \ldots, W_{m}\right)$ of open subsets of $X \backslash Y$ such that

$$
\begin{gather*}
E_{j} \subset W_{j}, \quad j=1, \ldots, m, \tag{5.24}\\
N(w) \subset K, \tag{5.25}
\end{gather*}
$$

Put $U_{j}^{2}=U_{j}^{1} \cup W_{j}$ and $u_{2}=\left(U_{1}^{2}, \ldots, U_{m}^{2}\right)$. As unions of open sets, U_{j}^{2} are open subsets of X_{0}, and hence of X. Conditions (5.21), (5.25), and Lemma 3.20 imply that $N\left(u_{2}\right) \subset K$. Moreover, from (5.22) and (5.24) it follows that

$$
F_{j} \subset U_{j}^{2}, \quad j=1, \ldots, m
$$

Hence u_{2} is a K-neighbourhood of Φ. Put $U_{j}^{3}=U_{j}^{2} \backslash Q$ and $u_{3}=\left(U_{1}^{3}, \ldots, U_{m}^{3}\right)$. Since $Q \cap F=\emptyset, u_{3}$ is a K-neighbourhood of Φ. We claim that

$$
\begin{equation*}
P=X \backslash\left(U_{1}^{3} \cup \cdots \cup U_{m}^{3}\right) \tag{5.27}
\end{equation*}
$$

is the required partition. To check (5.11) it suffices to show that

$$
Y \backslash\left(U_{1}^{2} \cup \cdots \cup U_{m}^{2}\right) \subset Q .
$$

But this follows from (5.17) and (5.22). As for (5.12), it will be a consequence of (5.27), as soon as we prove that

$$
\begin{equation*}
P \backslash Y=X \backslash\left(Y \cup W_{1} \cup \cdots \cup W_{m}\right) . \tag{5.28}
\end{equation*}
$$

By (5.27) we have $P \backslash Y=X \backslash\left(Y \cup U_{1}^{3} \cup \cdots \cup U_{m}^{3}\right)$. But since $Q \subset Y$, we have $Y \cup U_{1}^{3} \cup \cdots \cup U_{m}^{3}=Y \cup U_{1}^{2} \cup \cdots \cup U_{m}^{2}=Y \cup W_{1} \cup \cdots \cup W_{m}$ in view of (5.22) and (5.24). Thus equality (5.28) is proved.
5.6. Proposition. Let X be a compactum with $K-\operatorname{dim} X=k \geq 0$ and let $R(X)$ be the resolution from Lemma 4.19, $Y_{x}=I^{m}, x \in X$, and

$$
\begin{equation*}
m \geq n=K-\operatorname{dim} I^{m} \geq k . \tag{5.29}
\end{equation*}
$$

Then K-Ind $R(X) \leq k+n$.
Proof. We apply induction on k. Let $k=0$ and $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in$ $\operatorname{Exp}_{K}(R(X))$. Let \mathcal{M} be the family of all finite subsets of X, i.e. $\mathcal{M}=$ $\operatorname{Fin}(X) \cup\{\emptyset\}$. By Theorem 4.22 there exists a finite set $M=\left\{x_{1}, \ldots, x_{l}\right\} \subset X$ such that

$$
\begin{equation*}
N\left(\pi_{M}(\Phi)\right)=N(\Phi) . \tag{5.30}
\end{equation*}
$$

Put $Z=\left(\pi^{M}\right)^{-1} M$ and $Y=R^{M}(X) \backslash Z$. The set $Z=\left(\pi^{M}\right)^{-1}\left\{x_{1}, \ldots, x_{l}\right\}$ is homeomorphic to the disjoint union of l copies of I^{m} according to (4.1). Hence

$$
\begin{equation*}
n \stackrel{(5.29)}{=} K-\operatorname{dim} Z \stackrel{3.23}{=} K-\operatorname{Ind} Z . \tag{5.31}
\end{equation*}
$$

On the other hand, Y is homeomorphic to $X \backslash M$ by (4.2). Thus

$$
\begin{equation*}
K-\operatorname{Ind} Y=K-\operatorname{Ind}(X \backslash M) \stackrel{3.23}{=} K-\operatorname{dim}(X \backslash M) \leq K-\operatorname{dim} X=0 \tag{5.32}
\end{equation*}
$$

From (5.31) it follows that there exists a partition $Q \in \operatorname{Part}\left(\pi_{M}(\Phi) \mid Z, K\right)$ with K-Ind $Q \leq n-1$. According to (5.32) and Lemma 5.5 there exists a K-partition P of $\pi_{M}(\Phi)$ such that

$$
P \cap Z=Q, \quad K-\operatorname{Ind}(P \backslash Z) \leq-1 .
$$

Consequently, $P \subset Z$ and $P=Q$.
But if $P \in \operatorname{Part}\left(\pi_{M}(\Phi), K\right)$, then $P_{1}=\pi_{M}^{-1}(P) \in \operatorname{Part}(\Phi, K)$. From (4.1) it follows that

$$
\left.\pi_{M}\right|_{\pi^{-1}(M)}: \pi^{-1}(M) \rightarrow\left(\pi^{M}\right)^{-1}(M)
$$

is a homeomorphism. So K - $\operatorname{Ind} P_{1}=K$-Ind $P=K$ - $\operatorname{Ind} Q \leq n-1$. Thus K-Ind $R(X) \leq k+n$ for $k=0$.

Assume that our assertion holds for all compacta X with K - $\operatorname{dim} X \leq$ $k-1 \geq 0$ and consider a compactum X with $K-\operatorname{dim} X=k$. Let $\Phi \in$ $\operatorname{Exp}_{K}(R(X))$. Repeating the previous proof we find a finite set $M \subset X$ with $N\left(\pi_{M}(\Phi)\right)=N(\Phi)$ and a K-partition P of $\pi_{M}(\Phi)$ such that

$$
K-\operatorname{Ind}(P \backslash Z) \leq k-1
$$

As $\left.\pi^{M}\right|_{P \backslash Z}$ is a homeomorphism, K - $\operatorname{dim} \pi^{M}(P \backslash Z)=K$-Ind $\pi^{M}(P \backslash Z) \leq$ $k-1$. Consequently, $K-\operatorname{dim} \pi^{M}(P) \leq K-\operatorname{dim}\left(M \cup \pi^{M}(P \backslash Z)\right) \leq k-1$, because M is finite. By the inductive assumption $\left(X=\pi^{M}(P)\right)$ we have

$$
\operatorname{dim} \pi^{-1}\left(\pi^{M}(P)\right) \leq n+k-1
$$

But $\pi_{M}^{-1}(P) \subset \pi^{-1}\left(\pi^{M}(P)\right)$. Thus $P_{1} \equiv \pi_{M}^{-1}(P)$ is a K-partition of Φ with K-dim $P_{1} \leq n+k-1$. Hence $K-\operatorname{dim} X \leq n+k$.

Proof of Theorem 5.1. By Theorem 1.39 there is m such that K-dim I^{m} $=n$. Put $X_{n}=R(X)$, where $R(X)$ is a resolution from Lemma 4.19(i) with $Y_{x}=I^{m}, x \in X$. Then the required properties of X_{n} are consequences of Theorems 4.13, 4.15, Proposition 4.8, Lemma 4.19, and Propositions 5.4 and 5.6 with $k=n$.

For X_{n}^{0} we apply Lemma 4.19(ii) instead of Lemma 4.19(i).
Acknowledgments. The author was supported by the Russian Foundation for Basic Research (Grant 09-01-00741) and the Program "Development of the Scientific Potential of Universities" of the Ministry for Education of the Russian Federation (Grant 2.1.1. 3704).

REFERENCES

[1] R. Cauty, Sur le prolongement des fonctions continues à valeurs dans les CWcomplexes, C. R. Acad. Sci. Paris 274 (1972), A35-A37.
[2] A. N. Dranishnikov, Extension of mappings into CW-complexes, Mat. Sb. 182 (1991), 1300-1310 (in Russian).
[3] R. Engelking, Theory of Dimensions. Finite and Infinite, Sigma Ser. Pure Math. 10, Heldermann, Lemgo, 1995.
[4] V. V. Fedorchuk, On mappings not reducing dimension, Dokl. Akad. Nauk SSSR 185 (1969), 54-57 (in Russian).
[5] -, A bicompactum all of whose infinite closed subsets are n-dimensional, Math. USSR-Sb. 25 (1976), 37-57.
[6] -, On the dimension of hereditarily normal spaces, Proc. London Math. Soc. 34 (1978), 163-175.
[7] -, Fully closed maps and their applications, J. Math. Sci. 136 (2006), 4201-4292.
[8] -, Finite dimensions modulo simplicial complexes and ANR-compacta, Mat. Vesnik 61 (2009), 25-52.
[9] -, Several remarks on dimensions modulo ANR-compacta, Topology Appl. 157 (2010), 716-723.
[10] M. Katětov, On the dimension of non-separable spaces I, Czechoslovak Math. J. 2 (1952), 333-368.
[11] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
[12] K. Morita, Normal families and dimension theory for metric spaces, Math. Ann. 128 (1954), 350-362.
[13] -, On generalizations of Borsuk's homotopy extension theorem, Fund. Math. 88 (1975), 1-6.
[14] M. Starbird, The Borsuk homotopy extension without binormality condition, ibid. 87 (1975), 207-211.
[15] J. E. West, Mapping Hilbert cube manifolds to ANRs. A solution of a conjecture of Borsuk, Ann. of Math. 106 (1977), 1-18.
V. V. Fedorchuk

Faculty of Mechanics and Mathematics
Moscow State University
Moscow 119992, Russia
E-mail: vvfedorchuk@gmail.com

Received 1 September 2009;
revised 5 October 2009

[^0]: 2010 Mathematics Subject Classification: Primary 54F45.
 Key words and phrases: dimension, inductive dimension, simplicial complex, $A N R$ compactum, join.

