COLLOQUIUM MATHEMATICUM
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">VOL. 120</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2010</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">NO. 2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. 120 | 2010 | NO. 2 |
| :--- | :--- | :--- |</table-markdown></div>

POLYNOMIAL ALGEBRA OF CONSTANTS
 OF THE FOUR VARIABLE LOTKA-VOLTERRA SYSTEM

BY
PIOTR OSSOWSKI and JANUSZ ZIELIŃSKI (Toruń)

Abstract

We describe the ring of constants of a specific four variable Lotka-Volterra derivation. We investigate the existence of polynomial constants in the other cases of Lotka-Volterra derivations, also in n variables.

1. Introduction. Let k be a field of characteristic zero. Let R be a commutative k-algebra. A k-linear mapping $d: R \rightarrow R$ is called a k derivation (or simply a derivation) of R if $d(a b)=a d(b)+b d(a)$ for all $a, b \in R$. By R^{d} we denote the kernel of the mapping d. It forms a ring and we call it the ring of constants of the derivation d. Then $k \subseteq R^{d}$ and a nontrivial constant of the derivation d is an element of the set $R^{d} \backslash k$. By $k[X]$ we denote $k\left[x_{1}, \ldots, x_{n}\right]$, the polynomial ring in n variables. If $f_{1}, \ldots, f_{n} \in k[X]$, then there exists exactly one derivation $d: k[X] \rightarrow k[X]$ such that $d\left(x_{1}\right)=f_{1}, \ldots, d\left(x_{n}\right)=f_{n}$.

There is no general effective procedure for determining the ring of constants. Even for a given specific derivation the problem may be difficult; see for instance various counterexamples to Hilbert's fourteenth problem (for example by Deveney and Finston [1]), the derivations of Jouanolou type (for example Maciejewski et al. [2]), the three variable Lotka-Volterra derivation (Moulin Ollagnier and Nowicki [3]).

The Lotka-Volterra derivations, besides multiple applications in various branches of science, especially in biology, play an important role in the derivation theory itself. A derivation $d: k[X] \rightarrow k[X]$ is said to be factorizable if $d\left(x_{i}\right)=x_{i} f_{i}$, where $f_{i} \in k[X]$ for $i=1, \ldots, n$. The most useful case is when all f_{i} are of degree 1 . Examples of such derivations are Lotka-Volterra derivations. How to associate with any given derivation a factorizable derivation having all f_{i} of degree 1 is shown in [6]. The construction helps to establish new facts on constants of the initial derivation (see, for instance, Nowicki and Zieliński [5]). For details and discussion we refer the reader to [5] and [2].

[^0]The aim of this paper is to present some method of determining the ring of constants. Section 2 contains several properties of specific Lotka-Volterra derivations. In Section 3 we prove Theorem 3.1. It gives a full description of the ring of polynomial constants of the derivation $d: k[x, y, z, t] \rightarrow$ $k[x, y, z, t]$ of the form

$$
d=x(t-y) \frac{\partial}{\partial x}+y(x-z) \frac{\partial}{\partial y}+z(y-t) \frac{\partial}{\partial z}+t(z-x) \frac{\partial}{\partial t}
$$

It is the main result of the paper. Finally, in Section 4, we make some further considerations on various cases.

Let \mathbb{N} denote the set of nonnegative integers. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, we denote by X^{α} the monomial $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \in k[X]$ and by $|\alpha|$ the sum $\alpha_{1}+\cdots+\alpha_{n}$. An element of \mathbb{N}^{n} with i th coordinate equal to 1 and the remaining coordinates equal to 0 is designated by ε_{i} (moreover, we assume that $\varepsilon_{0}=\varepsilon_{n}$ and $\left.\varepsilon_{n+1}=\varepsilon_{1}\right)$. A derivation $d: k[X] \rightarrow k[X]$ is called homogeneous of degree s if the image of a homogeneous form of degree t under d is a homogeneous form of degree $s+t$ for all $t \in \mathbb{N}$.
2. Preliminary lemmas and propositions. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$. Throughout this section, $n \geq 3$ and $d: R \rightarrow R$ is the derivation defined by

$$
\begin{equation*}
d\left(x_{i}\right)=x_{i}\left(x_{i-1}-x_{i+1}\right) \tag{2.1}
\end{equation*}
$$

for $i=1, \ldots, n$, and we adhere to the convention that $x_{n+1}=x_{1}$ and $x_{0}=x_{n}$. Denote by $R_{(i)}$ the homogeneous component of R of degree i. Let $R_{(i)}^{d}=R_{(i)} \cap R^{d}$. Since d is homogeneous, we have $R^{d}=\bigoplus_{i=0}^{\infty} R_{(i)}^{d}$.

LEMMA 2.1. Let $m \geq 1$. Let $\varphi=\sum_{|\alpha|=m} b_{\alpha} X^{\alpha} \in R_{(m)}$, where $b_{\alpha} \in k$. Then $\varphi \in R_{(m)}^{d}$ if and only if for every $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$ such that $|\beta|=m+1$ we have $\sum_{i=1}^{n} \beta_{i}\left(b_{\beta-\varepsilon_{i-1}}-b_{\beta-\varepsilon_{i+1}}\right)=0$.

Proof. We compute the value of d at $\varphi=\sum_{|\alpha|=m} b_{\alpha} X^{\alpha} \in R_{(m)}$, where $m \geq 1$, as follows:

$$
\begin{aligned}
d(\varphi) & =\sum_{|\alpha|=m} b_{\alpha} d\left(X^{\alpha}\right)=\sum_{|\alpha|=m} b_{\alpha} \sum_{i=1}^{n} \alpha_{i} X^{\alpha-\varepsilon_{i}} d\left(x_{i}\right) \\
& =\sum_{|\alpha|=m} b_{\alpha} \sum_{i=1}^{n} \alpha_{i} X^{\alpha-\varepsilon_{i}} x_{i}\left(x_{i-1}-x_{i+1}\right) \\
& =\sum_{|\alpha|=m} b_{\alpha} \sum_{i=1}^{n} \alpha_{i}\left(X^{\alpha+\varepsilon_{i-1}}-X^{\alpha+\varepsilon_{i+1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{|\alpha|=m} \sum_{i=1}^{n} b_{\alpha} \alpha_{i} X^{\alpha+\varepsilon_{i-1}}-\sum_{|\alpha|=m} \sum_{i=1}^{n} b_{\alpha} \alpha_{i} X^{\alpha+\varepsilon_{i+1}} \\
& =\sum_{\substack{|\beta|=m+1 \\
\beta_{i-1}>0}} \sum_{i=1}^{n} b_{\beta-\varepsilon_{i-1}} \beta_{i} X^{\beta}-\sum_{\substack{|\beta|=m+1 \\
\beta_{i+1}>0}} \sum_{i=1}^{n} b_{\beta-\varepsilon_{i+1}} \beta_{i} X^{\beta}
\end{aligned}
$$

We adopt the convention that $b_{\alpha}=0$ when $\alpha_{i}<0$ for some $1 \leq i \leq n$. Therefore

$$
\begin{aligned}
d(\varphi) & =\sum_{|\beta|=m+1} \sum_{i=1}^{n} b_{\beta-\varepsilon_{i-1}} \beta_{i} X^{\beta}-\sum_{|\beta|=m+1} \sum_{i=1}^{n} b_{\beta-\varepsilon_{i+1}} \beta_{i} X^{\beta} \\
& =\sum_{|\beta|=m+1} X^{\beta} \sum_{i=1}^{n}\left(b_{\beta-\varepsilon_{i-1}} \beta_{i}-b_{\beta-\varepsilon_{i+1}} \beta_{i}\right)
\end{aligned}
$$

Hence $d(\varphi)=0$ if and only if $\sum_{i=1}^{n} \beta_{i}\left(b_{\beta-\varepsilon_{i-1}}-b_{\beta-\varepsilon_{i+1}}\right)=0$ for all $|\beta|=$ $m+1$.

Corollary 2.2. Let $\varphi=\sum_{|\alpha|=m} b_{\alpha} X^{\alpha} \in R_{(m)}^{d}$, where $m \geq 1$. If $r, s \in$ $\mathbb{N} \backslash\{0\}$ and $r+s=m+1$, then $r b_{r \varepsilon_{i}+(s-1) \varepsilon_{i+1}}=s b_{(r-1) \varepsilon_{i}+s \varepsilon_{i+1}}$.

Proof. Let $\beta=r \varepsilon_{i}+s \varepsilon_{i+1}$. According to Lemma 2.1,

$$
\beta_{i}\left(b_{\beta-\varepsilon_{i-1}}-b_{\beta-\varepsilon_{i+1}}\right)+\beta_{i+1}\left(b_{\beta-\varepsilon_{i}}-b_{\beta-\varepsilon_{i+2}}\right)=0
$$

because $\beta_{j}=0$ for $j \notin\{i, i+1\}$. Then $\beta_{i}=r, \beta_{i+1}=s, b_{\beta-\varepsilon_{i-1}}=0$, $b_{\beta-\varepsilon_{i+2}}=0$, hence

$$
-r b_{r \varepsilon_{i}+(s-1) \varepsilon_{i+1}}+s b_{(r-1) \varepsilon_{i}+s \varepsilon_{i+1}}=0
$$

Let $\varphi \in R$ and $1 \leq q \leq n$. Then for every subset $\left\{i_{1}, \ldots, i_{q}\right\} \subseteq\{1, \ldots, n\}$ we denote by $\varphi^{\left\{i_{1}, \ldots, i_{q}\right\}}$ the sum of monomials of φ that depend on variables $x_{i_{1}}, \ldots, x_{i_{q}}$, that is, $\varphi^{\left\{i_{1}, \ldots, i_{q}\right\}}=\left.\varphi\right|_{x_{j}=0 \text { for } j \notin\left\{i_{1}, \ldots, i_{q}\right\}}$.

Lemma 2.3. If $\varphi \in R_{(m)}^{d}$, then $\varphi^{\{i, i+1\}}=c\left(x_{i}+x_{i+1}\right)^{m}$ for $c \in k$.
Proof. Let $\varphi^{\{i, i+1\}}=\sum_{r=0}^{m} b_{r \varepsilon_{i}+(m-r) \varepsilon_{i+1}} x_{i}^{r} x_{i+1}^{m-r}$. By Corollary 2.2 we have $r b_{r \varepsilon_{i}+(m-r) \varepsilon_{i+1}}=(m+1-r) b_{(r-1) \varepsilon_{i}+(m+1-r) \varepsilon_{i+1}}$ for $r=1, \ldots, m$.

We show that $b_{r \varepsilon_{i}+(m-r) \varepsilon_{i+1}}=\binom{m}{r} b_{m \varepsilon_{i+1}}$. We proceed by induction on r. If $r=1$, then $b_{\varepsilon_{i}+(m-1) \varepsilon_{i+1}}=m b_{m \varepsilon_{i+1}}=\binom{m}{1} b_{m \varepsilon_{i+1}}$. Let $r>1$. Then $b_{r \varepsilon_{i}+(m-r) \varepsilon_{i+1}}=\frac{m+1-r}{r} b_{(r-1) \varepsilon_{i}+(m+1-r) \varepsilon_{i+1}}=\frac{m+1-r}{r}\binom{m}{r-1} b_{m \varepsilon_{i+1}}$, by the inductive assumption. Therefore $b_{r \varepsilon_{i}+(m-r) \varepsilon_{i+1}}=\binom{m}{r} b_{m \varepsilon_{i+1}}$. Hence

$$
v a^{\{i, i+1\}}=\sum_{r=0}^{m}\binom{m}{r} b_{m \varepsilon_{i+1}} x_{i}^{r} x_{i+1}^{m-r}=b_{m \varepsilon_{i+1}}\left(x_{i}+x_{i+1}\right)^{m} .
$$

Proposition 2.4. $R_{(1)}^{d}=k \sum_{j=1}^{n} x_{j}$.
Proof. Let $\varphi=\sum_{j=1}^{n} b_{\varepsilon_{j}} x_{j} \in R_{(1)}^{d}$. By Lemma 2.3, $b_{\varepsilon_{i}} x_{i}+b_{\varepsilon_{i+1}} x_{i+1}=$ $c_{i}\left(x_{i}+x_{i+1}\right)$ for $i=1, \ldots, n-1$. Thus $b_{\varepsilon_{i}}=b_{\varepsilon_{i+1}}$ for $i=1, \ldots, n-1$. Therefore $\varphi=b_{\varepsilon_{1}} \sum_{j=1}^{n} x_{j}$. Obviously then $d(\varphi)=0$.

Here and throughout, $\operatorname{supp}(\alpha)=\left\{i: \alpha_{i} \neq 0\right\}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$.
LEMMA 2.5. If $\varphi \in R_{(m)}^{d}$, then $\varphi=c\left(\sum_{j=1}^{n} x_{j}\right)^{m}+\sum b_{\alpha} X^{\alpha}$, where the latter sum is taken over all $|\alpha|=m$ such that either $\# \operatorname{supp}(\alpha) \geq 3$, or $\# \operatorname{supp}(\alpha)=2$ and the two nonzero exponents are not on consecutive variables (in the cyclic sense).

Proof. Let $\varphi \in R_{(m)}^{d}$. It follows from Lemma 2.3 that for every $1 \leq i \leq n$ there exists $c \in k$ such that $\varphi^{\{i, i+1\}}=c\left(x_{i}+x_{i+1}\right)^{m}$. Then c is the coefficient of x_{i}^{m} (and of x_{i+1}^{m}, and of x_{i+2}^{m}, \ldots) in the polynomial φ. Likewise, $c\binom{m}{l}$ is the coefficient of $x_{i}^{l} x_{i+1}^{m-l}$ in φ. Thus $\varphi-c\left(\sum_{j=1}^{n} x_{j}\right)^{m}$ does not contain monomials associated to $x_{i}^{l} x_{i+1}^{m-l}$ for any $0 \leq l \leq m$, which proves the assertion.

PROPOSITION 2.6. $R_{(2)}^{d}= \begin{cases}k\left(\sum x_{j}\right)^{2} & \text { for } n=3, \\ k\left(\sum x_{j}\right)^{2}+k x_{1} x_{3}+k x_{2} x_{4} & \text { for } n=4 .\end{cases}$
Proof. According to Lemma 2.5, if $\varphi \in R_{(2)}^{d}$, then

$$
\varphi=c\left(\sum x_{j}\right)^{2}+\sum_{\substack{|\alpha|=2 \\ \# \operatorname{supp}(\alpha) \geq 3}} b_{\alpha} X^{\alpha}+\sum_{0<j-i \notin\{1, n-1\}} b_{i j} x_{i} x_{j}
$$

for $c \in k$. Since the conditions $\# \operatorname{supp}(\alpha) \geq 3$ and $|\alpha|=2$ are contradictory, it follows that

$$
\sum_{\substack{|\alpha|=2 \\ \operatorname{supp}(\alpha) \geq 3}} b_{\alpha} X^{\alpha}=0
$$

For $n=3$, we also have $\sum_{0<j-i \notin\{1, n-1\}} b_{i j} x_{i} x_{j}=0$, because then there do not exist nonconsecutive variables (in the cyclic sense). For $n=4$, we easily check that $\varphi=c\left(\sum x_{j}\right)^{2}+p x_{1} x_{3}+q x_{2} x_{4}$ is a constant of d for all $c, p, q \in k$.

As an obvious consequence of the fact that $x_{i} \mid d\left(x_{i}\right)$ for $i=1, \ldots, n$ we obtain the following:

Proposition 2.7. If $A \subseteq\{1, \ldots, n\}$, then for every homogeneous polynomial $\varphi \in R_{(m)}$ we have $d\left(\varphi^{A}\right)^{A}=d(\varphi)^{A}$.

Corollary 2.8. If $A \subseteq\{1, \ldots, n\}$, then for every $\varphi \in R_{(m)}^{d}$ we have $d\left(\varphi^{A}\right)^{A}=0$.

Lemma 2.9. If $B \subseteq A \subseteq\{1, \ldots, n\}$ and $d\left(\varphi^{A}\right)^{A}=0$, then also $d\left(\varphi^{B}\right)^{B}=0$.
Proof. Let $\varphi^{A}=\varphi^{B}+\psi$, where each monomial in ψ has x_{j} in a positive power for some $j \in A \backslash B$. Then $d\left(\varphi^{A}\right)=d\left(\varphi^{B}\right)+d(\psi)$. If $d\left(\varphi^{A}\right)^{A}=0$, then clearly $d\left(\varphi^{A}\right)^{B}=0$. Therefore $0=d\left(\varphi^{A}\right)^{B}=d\left(\varphi^{B}\right)^{B}+d(\psi)^{B}$. Moreover $d(\psi)^{B}=0$, because every monomial in $d(\psi)$ has x_{j} in a positive power for some $j \in A \backslash B$, by the definition of d. Finally, $d\left(\varphi^{B}\right)^{B}=0$.

Lemma 2.10. If $\varphi \in R_{(m)}, A=\{i, i+1\} \subseteq\{1, \ldots, n\}$ and $d\left(\varphi^{A}\right)^{A}=0$, then $\varphi^{A}=c\left(x_{i}+x_{i+1}\right)^{m}$ for some $c \in k$.

Proof. Let $\varphi^{A}=\sum_{r=0}^{m} b_{r} x_{i}^{m-r} x_{i+1}^{r}$. Then

$$
\begin{aligned}
d\left(\varphi^{A}\right) & =\sum_{r=0}^{m} b_{r}\left(d\left(x_{i}^{m-r}\right) x_{i+1}^{r}+x_{i}^{m-r} d\left(x_{i+1}^{r}\right)\right) \\
& =\sum_{r=0}^{m} b_{r}\left((m-r) x_{i}^{m-r} x_{i+1}^{r}\left(x_{i-1}-x_{i+1}\right)+r x_{i}^{m-r} x_{i+1}^{r}\left(x_{i}-x_{i+2}\right)\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
d\left(\varphi^{A}\right)^{A} & =\sum_{r=0}^{m} b_{r}\left(r x_{i}^{m-r+1} x_{i+1}^{r}-(m-r) x_{i}^{m-r} x_{i+1}^{r+1}\right) \\
& =\sum_{r=1}^{m} r b_{r} x_{i}^{m-r+1} x_{i+1}^{r}-\sum_{r=0}^{m-1}(m-r) b_{r} x_{i}^{m-r} x_{i+1}^{r+1} \\
& =\sum_{r=1}^{m} r b_{r} x_{i}^{m-r+1} x_{i+1}^{r}-\sum_{r=1}^{m}(m-r+1) b_{r-1} x_{i}^{m-r+1} x_{i+1}^{r} \\
& =\sum_{r=1}^{m}\left(r b_{r}-(m-r+1) b_{r-1}\right) x_{i}^{m-r+1} x_{i+1}^{r}=0 .
\end{aligned}
$$

Hence for $r=1, \ldots, m$ we have $r b_{r}=(m-r+1) b_{r-1}$, that is, $b_{r}=$ $\frac{m-r+1}{r} b_{r-1}$. Thus an easy induction on r shows that $b_{r}=\binom{m}{r} b_{0}$ for $r=$ $0, \ldots, m$. Therefore, $\varphi^{A}=b_{0}\left(x_{i}+x_{i+1}\right)^{m}$.

Proposition 2.11. Let $n \geq$ 4. If $\varphi \in R_{(m)}$, $A=\{i, i+1, i+2\} \subseteq$ $\{1, \ldots, n\}$ and $d\left(\varphi^{A}\right)^{A}=0$, then $\varphi^{A} \in k\left[x_{i}+x_{i+1}+x_{i+2}, x_{i} x_{i+2}\right]$.

Proof. The proof is by induction on m. Let $m=1$. By assumption and Lemma 2.9, $d\left(\varphi^{\{i, i+1\}}\right)^{\{i, i+1\}}=0$. In view of Lemma 2.10 we have $\varphi^{\{i, i+1\}}=c_{1}\left(x_{i}+x_{i+1}\right)$. Similarly, we obtain $\varphi^{\{i+1, i+2\}}=c_{2}\left(x_{i+1}+x_{i+2}\right)$. Thus $c_{1}=c_{2}$ and $\varphi^{A}=c_{1}\left(x_{i}+x_{i+1}+x_{i+2}\right)$. Now let $m=2$. Since $d\left(\varphi^{\{i, i+1\}}\right){ }^{\{i, i+1\}}=0$, it follows that $\varphi^{\{i, i+1\}}=c_{1}\left(x_{i}+x_{i+1}\right)^{2}$. Analogously $\varphi^{\{i+1, i+2\}}=c_{2}\left(x_{i+1}+x_{i+2}\right)^{2}$. Therefore, $\varphi^{A}=c_{1}\left(x_{i}+x_{i+1}+x_{i+2}\right)^{2}+b x_{i} x_{i+2}$ for some $b \in k$.

Assume $m \geq 3$. Let $\varphi^{A}=\sum b_{\alpha} X^{\alpha}$, where the sum is taken over all α with $|\alpha|=m$ such that $\operatorname{supp}(\alpha) \subseteq\{i, i+1, i+2\}$. We have $\varphi^{\{i, i+1\}}=c_{1}\left(x_{i}+x_{i+1}\right)^{m}$ and $\varphi^{\{i+1, i+2\}}=c_{2}\left(x_{i+1}+x_{i+2}\right)^{m}$ for $c_{1}, c_{2} \in k$. Thus $c_{1}=c_{2}=: c$. The terms of the form $x_{i}^{r} x_{i+1}^{m-r}$ and $x_{i+1}^{r} x_{i+2}^{m-r}$ for $r=0, \ldots, m$ have the same coefficients in φ^{A} and in $c\left(x_{i}+x_{i+1}+x_{i+2}\right)^{m}$. Therefore

$$
\varphi^{A}=c\left(x_{i}+x_{i+1}+x_{i+2}\right)^{m}+\sum_{\operatorname{supp}(\alpha)=\{i, i+2\}} b_{\alpha} X^{\alpha}+\sum_{\operatorname{supp}(\alpha)=\{i, i+1, i+2\}} b_{\alpha} X^{\alpha}
$$

that is, $\varphi^{A}=c\left(x_{i}+x_{i+1}+x_{i+2}\right)^{m}+x_{i} x_{i+2} \psi$, where $\psi \in R_{(m-2)}$.
Obviously, $\psi^{A}=\psi$. We show that $d\left(\psi^{A}\right)^{A}=0$. First,

$$
\begin{aligned}
d\left(\varphi^{A}\right) & =c d\left(\left(x_{i}+x_{i+1}+x_{i+2}\right)^{m}\right)+d\left(x_{i} x_{i+2}\right) \psi+x_{i} x_{i+2} d(\psi) \\
& =c d\left(\left(\left(\sum_{j=1}^{n} x_{j}\right)^{m}\right)^{A}\right)+d\left(\left(\sum_{0<s-r \notin\{1, n-1\}} x_{r} x_{s}\right)^{A}\right) \psi+x_{i} x_{i+2} d\left(\psi^{A}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
0 & =d\left(\varphi^{A}\right)^{A} \\
& =c d\left(\left(\left(\sum_{j=1}^{n} x_{j}\right)^{m}\right)^{A}\right)^{A}+d\left(\left(\sum_{0<s-r \notin\{1, n-1\}} x_{r} x_{s}\right)^{A}\right)^{A} \psi+x_{i} x_{i+2} d\left(\psi^{A}\right)^{A} .
\end{aligned}
$$

Because $\left(\sum_{j=1}^{n} x_{j}\right)^{m}$ and $\sum_{0<s-r \notin\{1, n-1\}} x_{r} x_{s}$ belong to the ring of constants of the derivation d, it follows from Corollary 2.8 that $d\left(\left(\left(\sum_{j=1}^{n} x_{j}\right)^{m}\right)^{A}\right)^{A}$ $=0$ and $d\left(\left(\sum_{0<s-r \notin\{1, n-1\}} x_{r} x_{s}\right)^{A}\right)^{A}=0$. Hence indeed $d\left(\psi^{A}\right)^{A}=0$.

By the inductive assumption, $\psi=\psi^{A} \in k\left[x_{i}+x_{i+1}+x_{i+2}, x_{i} x_{i+2}\right]$. Thus $\varphi^{A}=c\left(x_{i}+x_{i+1}+x_{i+2}\right)^{m}+x_{i} x_{i+2} \psi \in k\left[x_{i}+x_{i+1}+x_{i+2}, x_{i} x_{i+2}\right]$.

3. Main theorem

Theorem 3.1. Let $R=k\left[x_{1}, \ldots, x_{4}\right]$. Let $d: R \rightarrow R$ be the derivation of the form

$$
d\left(x_{i}\right)=x_{i}\left(x_{i-1}-x_{i+1}\right)
$$

for $i=1, \ldots, 4$. Then

$$
R^{d}=k\left[x_{1}+x_{2}+x_{3}+x_{4}, x_{1} x_{3}, x_{2} x_{4}\right]
$$

Proof. It suffices to show that $R_{(m)}^{d} \subseteq k\left[x_{1}+x_{2}+x_{3}+x_{4}, x_{1} x_{3}, x_{2} x_{4}\right]$ for all $m \geq 1$. We proceed by induction on m. In view of Proposition 2.4, if $\varphi \in R_{(1)}^{d}$, then $\varphi=c \sum_{j=1}^{4} x_{j}$ for $c \in k$. From Proposition 2.6, if $\varphi \in R_{(2)}^{d}$, then $\varphi=c_{1}\left(\sum_{j=1}^{4} x_{j}\right)^{2}+c_{2} x_{1} x_{3}+c_{3} x_{2} x_{4}$ for $c_{1}, c_{2}, c_{3} \in k$.

Let $\varphi \in R_{(3)}^{d}$. By Lemma 2.5.

$$
\begin{aligned}
\varphi= & c\left(\sum_{j=1}^{4} x_{j}\right)^{3}+p_{1} x_{1} x_{3}^{2}+p_{2} x_{1}^{2} x_{3}+q_{1} x_{2} x_{4}^{2}+q_{2} x_{2}^{2} x_{4} \\
& +r_{1} x_{2} x_{3} x_{4}+r_{2} x_{1} x_{3} x_{4}+r_{3} x_{1} x_{2} x_{4}+r_{4} x_{1} x_{2} x_{3}
\end{aligned}
$$

Therefore, putting $x_{4}=0$ we get

$$
\begin{aligned}
\varphi^{\{1,2,3\}} & =c\left(\sum_{j=1}^{3} x_{j}\right)^{3}+p_{1} x_{1} x_{3}^{2}+p_{2} x_{1}^{2} x_{3}+r_{4} x_{1} x_{2} x_{3} \\
& =c\left(\sum_{j=1}^{3} x_{j}\right)^{3}+x_{1} x_{3}\left(p_{2} x_{1}+r_{4} x_{2}+p_{1} x_{3}\right)
\end{aligned}
$$

According to Corollary 2.8 and Proposition 2.11,

$$
\varphi^{\{1,2,3\}} \in k\left[x_{1}+x_{2}+x_{3}, x_{1} x_{3}\right] .
$$

Hence $p_{1}=p_{2}=r_{4}=$: p. For $\varphi^{\{1,3,4\}}$ we similarly obtain $p_{1}=p_{2}=r_{2}=p$. Analogously, $q_{1}=q_{2}=r_{1}=r_{3}=: q$. Thus

$$
\varphi=c\left(\sum_{j=1}^{4} x_{j}\right)^{3}+p x_{1} x_{3}\left(\sum_{j=1}^{4} x_{j}\right)+q x_{2} x_{4}\left(\sum_{j=1}^{4} x_{j}\right)
$$

Assume $m \geq 4$. Let $\varphi \in R_{(m)}^{d}$. Denote by \sum_{A} the sum $\sum_{\operatorname{supp}(\alpha)=A} b_{\alpha} X^{\alpha}$. Then by Lemma 2.5.

$$
\varphi=c\left(\sum_{j=1}^{4} x_{j}\right)^{m}+\sum_{\{1,3\}}+\sum_{\{2,4\}}+\sum_{\{1,2,3\}}+\sum_{\{1,2,4\}}+\sum_{\{1,3,4\}}+\sum_{\{2,3,4\}}+\sum_{\{1,2,3,4\}}
$$

and this decomposition is unique. By Corollary 2.8 and Proposition 2.11,

$$
\varphi^{\{1,2,3\}}=c\left(\sum_{j=1}^{3} x_{j}\right)^{m}+\sum_{\{1,3\}}+\sum_{\{1,2,3\}} \in k\left[x_{1}+x_{2}+x_{3}, x_{1} x_{3}\right]
$$

Then we have

$$
\begin{equation*}
\sum_{\{1,3\}}+\sum_{\{1,2,3\}}=c_{1}\left(\sum_{j=1}^{3} x_{j}\right)^{m-2} x_{1} x_{3}+c_{2}\left(\sum_{j=1}^{3} x_{j}\right)^{m-4}\left(x_{1} x_{3}\right)^{2}+\cdots \tag{3.1}
\end{equation*}
$$

Let $\Phi_{1}(u, v)=c_{1} u^{m-2} v+c_{2} u^{m-4} v^{2}+c_{3} u^{m-6} v^{3}+\cdots \in k[u, v]$. Then $\operatorname{deg}_{(1,2)} \Phi_{1}$ equals m and Φ_{1} is uniquely determined, since $k\left[x_{1}+x_{2}+x_{3}, x_{1} x_{3}\right]$ is a polynomial ring.

Moreover, Φ_{1} is uniquely determined by $\sum_{\{1,3\}}$, because c_{1} is the coefficient of $x_{1}^{m-1} x_{3}$ on the right-hand side of 3.1 , whereas $x_{1}^{m-1} x_{3}$ appears on the left-hand side in $\sum_{\{1,3\}}$ only, that is, c_{1} equals the coefficient of $x_{1}^{m-1} x_{3}$
in $\sum_{\{1,3\}}$. Similarly, the coefficient of $x_{1}^{m-2} x_{3}^{2}$ on the right-hand side of 3.1$\}$ is equal to $c_{2}+c_{1}(m-2)$, while the monomial $x_{1}^{m-2} x_{3}^{2}$ appears only in $\sum_{\{1,3\}}$ on the left-hand side of (3.1). Analogously, by recursion, we conclude that every c_{i} is determined by $\sum_{\{1,3\}}$.

Let us now consider

$$
\varphi^{\{1,3,4\}}=c\left(x_{1}+x_{3}+x_{4}\right)^{m}+\sum_{\{1,3\}}+\sum_{\{1,3,4\}}
$$

Then we have

$$
\sum_{\{1,3\}}+\sum_{\{1,3,4\}}=b_{1}\left(x_{1}+x_{3}+x_{4}\right)^{m-2} x_{1} x_{3}+b_{2}\left(x_{1}+x_{3}+x_{4}\right)^{m-4}\left(x_{1} x_{3}\right)^{2}+\cdots
$$

The coefficients b_{1}, b_{2}, \ldots are determined by $\sum_{\{1,3\}}$ in the same way as c_{1}, c_{2}, \ldots, hence $b_{i}=c_{i}$ for all i. Consequently, $\sum_{\{1,3\}}+\sum_{\{1,3,4\}}=\Phi_{1}\left(x_{1}+\right.$ $\left.x_{3}+x_{4}, x_{1} x_{3}\right)$.

Therefore

$$
\begin{aligned}
\Phi_{1}\left(\sum_{j=1}^{4} x_{j}, x_{1} x_{3}\right) & =c_{1}\left(\sum_{j=1}^{4} x_{j}\right)^{m-2} x_{1} x_{3}+c_{2}\left(\sum_{j=1}^{4} x_{j}\right)^{m-4}\left(x_{1} x_{3}\right)^{2}+\cdots \\
& =\sum_{\{1,3\}}+\sum_{\{1,2,3\}}+\sum_{\{1,3,4\}}+x_{1} x_{2} x_{3} x_{4} \Psi_{1}
\end{aligned}
$$

for some $\Psi_{1} \in R$.
The reasoning above shows that there exists $\Phi_{1} \in k[u, v]$ such that

$$
\varphi=c\left(\sum_{j=1}^{4} x_{j}\right)^{m}+\Phi_{1}\left(\sum_{j=1}^{4} x_{j}, x_{1} x_{3}\right)+\sum_{\{2,4\}}+\sum_{\{1,2,4\}}+\sum_{\{2,3,4\}}+x_{1} x_{2} x_{3} x_{4} \bar{\Psi}_{1}
$$

for some $\bar{\Psi}_{1} \in R$.
Analogously, there exist $\Phi_{2} \in k[u, v]$ and $\Psi_{2} \in R$ such that

$$
\Phi_{2}\left(\sum_{j=1}^{4} x_{j}, x_{2} x_{4}\right)=\sum_{\{2,4\}}+\sum_{\{1,2,4\}}+\sum_{\{2,3,4\}}+x_{1} x_{2} x_{3} x_{4} \Psi_{2}
$$

Consequently,

$$
\varphi=c\left(\sum_{j=1}^{4} x_{j}\right)^{m}+\Phi_{1}\left(\sum_{j=1}^{4} x_{j}, x_{1} x_{3}\right)+\Phi_{2}\left(\sum_{j=1}^{4} x_{j}, x_{2} x_{4}\right)+x_{1} x_{2} x_{3} x_{4} \Psi
$$

for some $\Psi \in R$.
All the polynomials $c\left(\sum_{j=1}^{4} x_{j}\right)^{m}, \Phi_{1}\left(\sum_{j=1}^{4} x_{j}, x_{1} x_{3}\right), \Phi_{2}\left(\sum_{j=1}^{4} x_{j}, x_{2} x_{4}\right)$, $x_{1} x_{2} x_{3} x_{4}$ belong to R^{d}. Thus $\varphi \in R_{(m)}^{d}$ implies $\Psi \in R_{(m-4)}^{d}$. Hence, by the inductive assumption, $\Psi \in k\left[\sum_{j=1}^{4} x_{j}, x_{1} x_{3}, x_{2} x_{4}\right]$. Finally, we deduce that $\varphi \in k\left[\sum_{j=1}^{4} x_{j}, x_{1} x_{3}, x_{2} x_{4}\right]$.
4. Further results. It follows from Proposition 2.4 that for every $n \geq 3$ the derivation $d: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}\right]$ defined by $d\left(x_{i}\right)=$ $x_{i}\left(x_{i-1}-x_{i+1}\right)$ for $i=1, \ldots, n$ has a nontrivial polynomial constant. A simple calculation shows that the derivation d always has a nontrivial monomial constant. Namely, we have the following proposition.

Proposition 4.1. Let d be a derivation of the form 2.1. If n is odd, then a monomial f belongs to R^{d} if and only if $f=c\left(x_{1} \ldots x_{n}\right)^{a}$ for $c \in k$ and $a \in \mathbb{N}$. If $n=2 k$, then a monomial f belongs to R^{d} if and only if $f=c\left(x_{1} x_{3} \ldots x_{2 k-1}\right)^{a}\left(x_{2} x_{4} \ldots x_{2 k}\right)^{b}$ for $c \in k$ and $a, b \in \mathbb{N}$.

By the definition, d has the property:
Proposition 4.2. The ring of constants R^{d} is invariant under the action of the subgroup of the group of permutations generated by the cycle (2 $3 \ldots n 1$).

Note that this does not mean that each particular constant is invariant.
Proposition 4.3 is a simple extension of Proposition 2.6 .
Proposition 4.3. $R_{(2)}^{d}=k\left(\sum x_{j}\right)^{2}+k \sum_{0<j-i \notin\{1, n-1\}} x_{i} x_{j}$ for $n \geq 5$.
Let $d: k[x, y, z, t] \rightarrow k[x, y, z, t]$ be a derivation of the form

$$
\begin{equation*}
d=x(D y+t) \frac{\partial}{\partial x}+y(A z+x) \frac{\partial}{\partial y}+z(B t+y) \frac{\partial}{\partial z}+t(C x+z) \frac{\partial}{\partial t} \tag{4.1}
\end{equation*}
$$

where $A, B, C, D \in k$. Then linear algebra calculations give the following proposition.

Proposition 4.4. Let d be a derivation of the form 4.1). Then the ring $k[x, y, z, t]^{d}$ has a nonzero homogeneous constant of degree 2 if and only if at least one of the following conditions holds:
(1) $A B C D=1$,
(2) $A=-1$ and $C=-1$,
(3) $B=-1$ and $D=-1$,
(4) $A B C D=-1$ and at least one of the elements A or C equals -1 and at least one of the elements B or D equals -1 .

The next proposition is easily verified.
Proposition 4.5. Let d be a derivation of the form (4.1). Then the ring $k[x, y, z, t]^{d}$ has a nontrivial monomial constant if and only if at least one of the following two conditions is fulfilled:
(1) D and B are negative rational numbers and $D B=1$,
(2) A and C are negative rational numbers and $A C=1$.

Let $R=k\left[x_{1}, \ldots, x_{n}\right]$, where $n \geq 3$. From now on, let $d: R \rightarrow R$ be the derivation defined by

$$
d\left(x_{i}\right)=x_{i}\left(x_{i-1}-C_{i} x_{i+1}\right)
$$

where $C_{i} \in k$ for $i=1, \ldots, n$. The following propositions are analogs of Lemmas 2.1, 2.3, Proposition 2.4 and Lemmas 2.10, 2.5 respectively. Their proofs are analogous as well.

Proposition 4.6. Let $\varphi=\sum_{|\alpha|=m} b_{\alpha} X^{\alpha} \in R_{(m)}$, where $m \geq 1$. Then $\varphi \in R_{(m)}^{d}$ if and only if for every $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$ such that $|\beta|=m+1$ we have $\sum_{i=1}^{n} \beta_{i}\left(b_{\beta-\varepsilon_{i-1}}-C_{i} b_{\beta-\varepsilon_{i+1}}\right)=0$.

Proposition 4.7. If $\varphi \in R_{(m)}^{d}$, then $\varphi^{\{i, i+1\}}=c\left(x_{i}+C_{i} x_{i+1}\right)^{m}$ for some $c \in k$.

Proposition 4.8. If $C_{1} \ldots C_{n} \neq 1$, then $R_{(1)}^{d}=0$. If $C_{1} \ldots C_{n}=1$, then $R_{(1)}^{d}=k\left(x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+\cdots+C_{1} \ldots C_{n-1} x_{n}\right)$.

Proposition 4.9. If $\varphi \in R_{(m)}, A=\{i, i+1\} \subseteq\{1, \ldots, n\}$ and $d\left(\varphi^{A}\right)^{A}$ $=0$, then $\varphi^{A}=c\left(x_{i}+C_{i} x_{i+1}\right)^{m}$ for some $c \in k$.

Proposition 4.10. If $\varphi \in R_{(m)}^{d}$, then $\varphi=a\left(x_{1}+C_{1} x_{2}+C_{1} C_{2} x_{3}+\cdots+\right.$ $\left.C_{1} \ldots C_{n-1} x_{n}\right)^{m}+\sum b_{\alpha} X^{\alpha}$, where the latter sum is taken over all α with $|\alpha|=m$ such that either $\# \operatorname{supp}(\alpha) \geq 3$, or $\# \operatorname{supp}(\alpha)=2$ and the two nonzero exponents are not on consecutive variables (in the cyclic sense). Moreover, if $\left(C_{1} \ldots C_{n}\right)^{m} \neq 1$, then $a=0$.

We hope that the results presented in the paper will be useful in further investigations of the Lotka-Volterra derivations.

Acknowledgements. The authors wish to express their gratitude to Professor Andrzej Nowicki for suggesting the problem.

REFERENCES

[1] J. K. Deveney and D. R. Finston, A proper G_{a} action on \mathbb{C}^{5} which is not locally trivial, Proc. Amer. Math. Soc. 123 (1995), 651-655.
[2] A. J. Maciejewski, J. Moulin Ollagnier, A. Nowicki and J.-M. Strelcyn, Around Jouanolou non-integrability theorem, Indag. Math. 11 (2000), 239-254.
[3] J. Moulin Ollagnier and A. Nowicki, Polynomial algebra of constants of the LotkaVolterra system, Colloq. Math. 81 (1999), 263-270.
[4] A. Nowicki, Polynomial Derivations and Their Rings of Constants, N. Copernicus Univ. Press, Toruń, 1994.
[5] A. Nowicki and J. Zieliński, Rational constants of monomial derivations, J. Algebra 302 (2006), 387-418.
[6] J. Zieliński, Factorizable derivations and ideals of relations, Comm. Algebra 35 (2007), 983-997.

Piotr Ossowski, Janusz Zieliński
Faculty of Mathematics and Computer Science
N. Copernicus University

Chopina 12/18
87-100 Toruń, Poland
E-mail: ossowski@mat.uni.torun.pl
ubukrool@mat.uni.torun.pl

Received 23 December 2009;
revised 28 January 2010

[^0]: 2010 Mathematics Subject Classification: Primary 13N15; Secondary 12H05.
 Key words and phrases: Lotka-Volterra derivation, polynomial constant.

