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Abstract. We give a proof of a theorem of Maćkowiak on the existence of universal
n-dimensional hereditarily indecomposable continua, based on the Baire-category method.

1. Introduction. Our terminology follows [2]. All spaces are assumed
to be normal. A subset A of the space X is residual if its complement
X \ A is a first category set, equivalently, if A contains a dense Gδ-subset
in X. By C(X, Iω) we denote the function space of all continuous mappings
from X into the Hilbert cube Iω, endowed with the supremum metric dsup.
By a hereditarily indecomposable (briefly, HI) compactum we mean a com-
pact topological space X such that for any two intersecting subcontinua
of X, one is contained in the other. We say that a space X has the prop-
erty (KM) if for any two disjoint closed sets C and D in X and disjoint
open sets U and V in X with C ⊂ U and D ⊂ V there exist closed sets
X0, X1 and X2 in X such that X = X0 ∪ X1 ∪ X2, C ⊂ X0, D ⊂ X2,
X0 ∩X1 ⊂ V , X1 ∩X2 ⊂ U and X0 ∩X2 = ∅. We call a triple 〈X0, X1, X2〉
a fold of X for the quadruple 〈C,D,U, V 〉. As proved by J. Krasinkiewicz
and P. Minc [6], a compact space is hereditarily indecomposable iff it has
the property (KM).

Let us recall that the first examples of hereditarily indecomposable n-
dimensional continua were constructed by B. Knaster [5] for n = 1 and
by R. H. Bing [1] for arbitrary n = 2, 3, . . . ,∞ (for other constructions of
such continua see [3] or [11, §3.8]). The existence of universal n-dimensional
hereditarily indecomposable metric continua was proved by T. Maćkowiak
[10], who used McCord’s method of constructing universal continua, which
applies inverse limits. The paper [4] of K. P. Hart and E. Pol contains another
proof of Maćkowiak’s theorem, which exploits a factorization theorem for
HI compacta and the fact that the Čech–Stone compactification of a normal
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space with the property (KM) has itself the property (KM) (see Theorems
2.3 and 2.1 in [4]).

We will show that the proof of the theorem of Maćkowiak, as well as the
proof of Theorem 1.1 from [4], can be obtained by yet another method, which
uses some ideas from [4], but applies the Baire category theorem instead of
Theorems 2.3 and 2.1 from [4].

Our proofs are based on the following theorem.

Theorem 1. If Xis a normal space having the property (KM), then the
set H = {f ∈ C(X, Iω) : f(X) is hereditarily indecomposable} is a dense
Gδ-set in the function space C(X, Iω).

We will prove Theorem 1 in Section 2, and in Section 3 we will point out
connections between this theorem and some results from [4].

Now we will give some corollaries and applications of Theorem 1.

Corollary 1. Let n ∈ {1, 2, . . . ,∞}. If X is a metrizable separable
n-dimensional space with the property (KM), then the set E consisting of all
mappings f ∈ C(X, Iω) such that

(i) f is an embedding,
(ii) dim f(X) ≤ n,
(iii) f(X) is hereditarily indecomposable,

is residual in the function space C(X, Iω).

Indeed, the set of mappings satisfying each of the conditions (i), (ii) or
(iii) separately is residual in C(X, Iω) (see [8, Ch. IV, §44, VI, Theorem 2,
and §45, VII, Theorem 4′]). As an immediate consequence of Corollary 1 we
obtain

Corollary 2 (Proposition 4.4 of [4] for τ = ℵ0). Every metrizable
separable space X with the property (KM) has an HI metric compactification
X̃ such that dim X̃ ≤ dimX.

In our proof of the Maćkowiak theorem and Theorem 1.1 of [4] we will
also use the following proposition (needed only for metrizable separable
spaces).

Theorem 2 ([4, Theorem 3.1]). Let f : X → Y be a perfect mapping
from a space X onto a strongly zero-dimensional paracompact space Y such
that for every y ∈ Y the fiber f−1(y) is hereditarily indecomposable. Then
X has the property (KM).

Corollary 3 (T. Maćkowiak [10]). For every n ∈ {1, 2, . . . ,∞} there
exists a hereditarily indecomposable metric continuum Zn of dimension n
containing a copy of every hereditarily indecomposable metric continuum of
dimension at most n.
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Proof. It suffices to modify slightly the proof of the theorem of Maćko-
wiak given in [4, Corollary 4.1], using Corollary 2 and Theorem 2 instead
of Theorem 1.1 of [4]. For the convenience of the reader, let us describe
this modification. Let P be the subset of the hyperspace 2I

ω
of the Hilbert

cube consisting of all HI continua of dimension n or less. Since P is a Gδ-
subset of 2I

ω
(see [8, §45, IV, Theorem 4 and §48, V, Remark 5]), there

exists a continuous surjection ϕ : Y → P, where Y is the space of ir-
rationals. Let X = {(x, t) : t ∈ Y and x ∈ ϕ(t)} be the subspace of
Iω × Y and let π : Iω × Y → Y be the projection. Then the restric-
tion f = π|X : X → Y is a perfect map (see [7, §18] or [11, Exercise
1.11.26]) with hereditarily indecomposable fibers, hence X has the prop-
erty (KM) by Theorem 2. Since the dimension of the fibers of f does not
exceed n, we have dimX = n by a theorem on dimension-lowering map-
pings (see [2, Theorem 1.12.4]). From Corollary 2 it follows that X has an
n-dimensional HI compactification X?. Now, applying the pseudosuspension
method of Maćkowiak, one constructs an n-dimensional HI continuum Zn
containing X? (see [4, proof of Corollary 4.1]). Since X? contains a copy
of every HI continuum of dimension ≤ n, Zn satisfies the required condi-
tions.

Note that in the case when n =∞, the above theorem states that there
exists a universal hereditarily indecomposable metric continuum. The next
corollary is a strengthening of Theorem 1.1 from [4].

Corollary 4. Let f : X → Y be a perfect mapping with HI fibers
from an n-dimensional metrizable separable space X onto a zero-dimensional
metrizable separable space Y . Let Y ? be any 0-dimensional metric compact-
ification of Y . Then the set H of all embeddings h : X → Iω such that
h(X) is HI, dimh(X) ≤ n and the mapping f ◦ h−1 : h(X)→ Y extends to
f? : h(X)→ Y ? is residual in the function space C(X, Iω).

Proof. By Theorem 2, the space X has the property (KM), so by Corol-
lary 1, the set E of all embeddings h : X → Iω such that h(X) is HI and
dimh(X) ≤ n is residual in C(X, Iω). By Theorem 3.4 of [13], the set F of
all embeddings h : X → Iω such that the map f ◦ h−1 : X → Y extends
to f? : h(X)→ Y ? is residual in the function space C(X, Iω). Thus the set
H = E ∩ F is residual in C(X, Iω).

2. Proof of Theorem 1. For the convenience of the reader, we will
give all the details of the proof.

Let F be a countable base for closed sets in Iω which is closed under
finite intersections. Let D = {〈C,D,U, V 〉 : C ⊂ U , D ⊂ V , U ∩ V = ∅ and
all C,D, Iω \ U, Iω \ V belong to F}.
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For D = 〈C,D,U, V 〉 ∈ D let us define

GD = {f ∈ C(X, Iω) : there exists a fold 〈X0, X1, X2〉 in f(X)

for 〈C ∩ f(X), D ∩ f(X), U ∩ f(X), V ∩ f(X)〉}.

By a theorem of Krasinkiewicz and Minc [6], for f ∈ C(X, Iω), f(X) is HI
iff f(X) has the property (KM), which is equivalent to f ∈

⋂
D∈D GD (as

observed in [3], a compact space Z has the property (KM) iff there exists
a fold in Z for every quadruple 〈C,D,U, V 〉 such that C ⊂ U , D ⊂ V ,
U ∩ V = ∅ and the sets C,D,X \U,X \ V belong to a given base for closed
sets in Z that is closed under finite intersections). Thus H =

⋂
D∈D GD, and

therefore to prove Theorem 1 it suffices to show that for every D ∈ D the
set GD is open and dense in C(X, Iω).

Fix D = 〈C,D,U, V 〉 ∈ D. First we will show that

(i) the set GD is open in C(X, Iω).

Suppose that f ∈ GD and let 〈X0, X1, X2〉 be a fold in f(X) for 〈C ∩
f(X), D ∩ f(X), U ∩ f(X), V ∩ f(X)〉}. For ε > 0 and A ⊂ Iω let Bε(A) =
{x ∈ Iω : dist(x,A) < ε} be a ball around A of radius ε. Let ε > 0 be such
that a sequence

B = 〈Bε(C), Bε(D), Bε(Iω \ U), Bε(Iω \ V ), Bε(X0), Bε(X1), Bε(X2)〉

forms a swelling of a sequence

A = 〈C,D, Iω \ U, Iω \ V,X0, X1, X2〉

(see [2, Theorem 3.1.1]), i.e. if the intersection of some elements of A is
empty then the intersection of the corresponding elements of B (i.e., the
closures of the ε-balls around these elements) is empty.

To prove (i) it suffices to check that for every g ∈ C(X, Iω) such that
dsup(f, g) < ε/2, the triple 〈Bε(X0) ∩ g(X), Bε(X1) ∩ g(X), Bε(X2) ∩ g(X)〉
is a fold for the quadruple 〈C ∩ g(X), D ∩ g(X), U ∩ g(X), V ∩ g(X)〉 and
thus g ∈ GD.

Indeed, since f(X) = X0 ∪X1 ∪X2 and dsup(f, g) < ε/2, it follows that
g(X) ⊂ Bε(X0) ∪Bε(X1) ∪Bε(X2).

Recall that B is a swelling of A. Thus, since X0 ∩ X2 = ∅, we have
Bε(X0)∩Bε(X2) = ∅. Moreover, since C ∩X1 = ∅ = C ∩X2, it follows that
Bε(C) ∩Bε(X1) = ∅ and Bε(C) ∩Bε(X2) = ∅, hence

C ∩ g(X) ⊂ Bε(C) ∩ g(X) ⊂ Bε(X0) ∩ g(X).

Similarly, D ∩ g(X) ⊂ Bε(X2) ∩ g(X).
Finally, since X0 ∩X1 ∩ (Iω \ V ) = ∅, we have

Bε(X0) ∩Bε(X1) ∩Bε(Iω \ V ) = ∅,
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hence Bε(X0) ∩ Bε(X1) ⊂ V and Bε(X0) ∩ Bε(X1) ∩ g(X) ⊂ V ∩ g(X).
Similarly, Bε(X1) ∩Bε(X2) ∩ g(X) ⊂ U ∩ g(X). This ends the proof of (i).

Let us show now that

(ii) GD is dense in C(X, Iω).

Take an arbitrary f ∈ C(X, Iω) and η > 0. Pick ε > 0, ε < η, such that

(1) B6ε(C) ⊂ U and B6ε(D) ⊂ V .

Since X satisfies the condition (KM), there is a fold 〈X0, X1, X2〉 in X for
the quadruple 〈f−1(B2ε(C)), f−1(B2ε(D)), f−1(B4ε(C)), f−1(B4ε(D))〉, i.e.,

(2) X = X0 ∪X1 ∪X2, f−1(B2ε(C)) ⊂ X0, f−1(B2ε(D)) ⊂ X2, X0 ∩X2

= ∅, X0 ∩X1 ⊂ f−1(B4ε(D)) and X1 ∩X2 ⊂ f−1(B4ε(C)).

Let us note that

(3) if A and B are two closed sets in a normal space X then the set of
all mappings g : X → Iω such that g(A ∩B) = g(A) ∩ g(B) is a
dense Gδ-set in C(X, Iω).

For the proof of (3) see for example [9, Lemma 1.2] (where this fact is stated
for a metrizable separable space X, but the proof is valid for a normal
space X). Note also that the proof of (3) can be extracted from the proof of
Theorem in K. Morita’s paper [12], where (3) was proved for n-dimensional
metrizable separable space X and I2n+1 instead of Iω. For the special case
of (3) when A ∩B = ∅ see also [8, Ch. IV, §45, VII, Theorem 4′].

By (3), the sets

F1 = {g ∈ C(X, Iω) : g(X0) ∩ g(X2) = ∅},
F2 = {g ∈ C(X, Iω) : g(X0 ∩X1) = g(X0) ∩ g(X1)},
F3 = {g ∈ C(X, Iω) : g(X1 ∩X2) = g(X1) ∩ g(X2)}

are dense Gδ-sets in C(X, Iω).
Thus, by the Baire theorem, the set F1 ∩ F2 ∩ F3 is dense in C(X, Iω).

Therefore there exists g ∈ F1∩F2∩F3 such that dsup(f, g) < ε. We will show
that 〈g(X0), g(X1), g(X2)〉 is a fold in g(X) for 〈C ∩ g(X), D ∩ g(X), U ∩
g(X), V ∩ g(X)〉, which implies that g ∈ GD.

Obviously, g(X) = g(X0) ∪ g(X1) ∪ g(X1) and g(X0) ∩ g(X2) = ∅, since
g ∈ F1. It remains to show that

(4) g(X0) ∩ g(X1) ⊂ V ,

(5) g(X1) ∩ g(X2) ⊂ U ,

(6) C ∩ g(X) ⊂ g(X0),

(7) D ∩ g(X) ⊂ g(X2).
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To show (4) let us note that since X0 ∩ X1 ⊂ f−1(B4ε(D)), we have
f(X0 ∩X1) ⊂ B4ε(D), hence g(X0 ∩X1) ⊂ Bε(f(X0 ∩X1)) ⊂ B5ε(D), and
thus, by g ∈ F2 and (1),

g(X0) ∩ g(X1) = g(X0 ∩X1) ⊂ B5ε(D) ⊂ B6ε(D) ⊂ V.

Similarly, replacing X0 by X2, D by C and V by U , one proves (5).
Now, let us check (6). Observe that f−1(B2ε(C)) ∩X1 = ∅, so B2ε(C) ∩

f(X1) = ∅. Since g(X1) ⊂ Bε(f(X1)), we have g(X1) ⊂ Bε(Iω \ B2ε(C)).
Obviously, Bε(Iω \B2ε(C)) ∩ C = ∅, hence g(X1) ∩ C = ∅. Similarly, since
f−1(B2ε(C)) ∩ X2 = ∅, replacing X1 by X2 we get g(X2) ∩ C = ∅, so
C ∩ g(X) ⊂ g(X0), which is (6).

To prove (7) we proceed similarly, replacing X0 by X2 and C by D.

3. Comments. The following remarks show that the method of con-
structing universal hereditarily indecomposable n-dimensional continua pre-
sented in this paper and the approach from [4] are closely related and in some
sense equivalent.

Remark 1. Let us show how to obtain Theorem 1 using the results
of [4].

Suppose that X is a normal space satisfying the condition (KM) and let
H = {f ∈ C(X, Iω) : f(X) is hereditarily indecomposable}. Since the set of
all HI compacta in the hyperspace 2I

ω
of the Hilbert cube is a Gδ-set, H is

a Gδ-set in C(X, Iω) (cf. [8, §44, V, Theorem 4]). Thus to prove Theorem 1
it suffices to show that H is dense in C(X, Iω). This follows from Theorems
2.1 and 2.3 in [4]. Indeed, take any f ∈ C(X, Iω) and ε > 0. Suppose that
X ⊂ βX and fβ is an extension of f onto βX. By [4, Theorem 2.1], βX is HI
and by [4, Theorem 2.3] (for Y = Iω) there exists an HI metric compactum
Z and mappings g : βX → Z and h : Z → Iω such that fβ = h ◦ g. Let
h′ : Z → Iω be an embedding such that dsup(h′, h) < ε. Then f ′ = h′ ◦ fβ|X
is a mapping which is ε-close to f and f ′ ∈ H.

Remark 2. Note that the special case of Theorem 2.3 of [4] when Y is
a compact metric space can be strengthened in the following way:

Let f : X → Y be a continuous surjection of a hereditarily indecom-
posable compact space onto a compact metric space Y . Then the set H of
mappings g : X → Iω such that

(i) g(X) is hereditarily indecomposable,
(ii) dim g(X) ≤ dimX,

(iii) there exists a continuous map h : g(X)→ Y such that f = h ◦ g,

is residual in C(X, Iω).
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Indeed, the residuality of the set of mappings g : X → Iω satisfying (i)
follows from Theorem 1, and the residuality of the set of mappings satisfying
(ii) and (iii) follows from Corollary 4.3 in [14] (where we put τ = ℵ0 and
observe that in this case the space J(ℵ0)ω can be replaced by Iω).
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