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ABELIAN GROUPS OF ZERO ADJOINT ENTROPY

BY

L. SALCE and P. ZANARDO (Padova)

Abstract. The notion of adjoint entropy for endomorphisms of an Abelian group is
somehow dual to that of algebraic entropy. The Abelian groups of zero adjoint entropy,
i.e. ones whose endomorphisms all have zero adjoint entropy, are investigated. Torsion
groups and cotorsion groups satisfying this condition are characterized. It is shown that
many classes of torsionfree groups contain groups of either zero or infinite adjoint en-
tropy. In particular, no characterization of torsionfree groups of zero adjoint entropy is
possible. It is also proved that the mixed groups of a wide class all have infinite adjoint
entropy.

Introduction. The notion of algebraic entropy, introduced in 1965 by
Adler, Konheim and McAndrew [AKM] and recently investigated in a se-
ries of papers [DGSZ], [SZ1], [SZ2], [AADGH] and [G], has a sort of dual
version if, instead of using finite subgroups in its definition, one uses sub-
groups of finite index and the natural modifications in the defining dual
process.

This dual notion has recently been developed in [DGS] and is called
“adjoint entropy”. The reason for this name is two-fold. First, the adjoint
entropy is not a real dual notion with respect to the algebraic entropy. Sec-
ond, and more important, the adjoint entropy ent∗(φ) of an endomorphism
φ of the group G coincides with the algebraic entropy ent(φ∗) of the adjoint
endomorphism φ∗ of the Pontryagin dual G∗ of G (see [DGS]).

In the investigation of the algebraic entropy in [DGSZ], a relevant fea-
ture was the study of the Abelian groups G such that the algebraic entropy
of every φ ∈ End(G), the ring of endomorphisms of G, is zero. This condi-
tion is expressed by saying that G has zero algebraic entropy. Section 5 in
[DGSZ] was devoted to those groups. The analogous problem for the adjoint
algebraic entropy seems of interest, too. So our goal in this paper is to in-
vestigate the Abelian groups of zero adjoint entropy, i.e., those G such that
ent∗(G) = 0 (which means ent∗(φ) = 0 for all φ ∈ End(G)).

In Section 1 we fix the notation and recall some preliminary results,
mostly taken from [DGS]. Section 2 is devoted to the study of the tor-
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sion case. The main result states that a reduced torsion group G satisfies
ent∗(G) = 0 exactly if all its primary components are finite.

Section 3 deals with the torsionfree case. We prove that some conditions
on a torsionfree group G are enough to ensure that ent∗(G) = 0, for instance
if G is the direct sum of a rigid system of groups. But we will see that,
in general, no characterization of the torsionfree groups G of zero adjoint
entropy is possible. In particular, the assumption that G is indecomposable
with End(G) countable, or that End(G) is commutative and not algebraic
over Q, or that G itself is countable and superdecomposable, or that G
has a preassigned cardinality, are all compatible with either ent∗(G) = 0 or
ent∗(G) =∞. We also exhibit a torsionfree group G with 2ℵ0 subgroups of
finite index satisfying ent∗(G) = 0. This example is motivated by the fact,
proved in [DGS], that a group G with countably many cofinite subgroups
has zero adjoint entropy.

In Section 4 we examine the relationship between the property ent∗(G)
= 0 and the similar property for the localizations Gp of G, for p a prime
number. We prove that a reduced cotorsion group C satisfies ent∗(C)
= 0 if and only if it is algebraically compact with finitely generated p-adic
components, that is, if it is compact in the natural topology. Furthermore,
we show that all groups G in a vast class of nonsplitting mixed Abelian
groups investigated in [FG] satisfy ent∗(G) = ∞. This result leads us to
conjecture that if a mixed group G has zero adjoint entropy, then all its
primary components are finite, analogously to the torsion case.

1. Preliminaries. All groups considered in this paper are Abelian. For
standard notions and results in Abelian group theory, we refer to Fuchs’s
classical volumes [F1], [F2].

We denote by Zp the localization of the ring of integers Z at the prime p,
by Jp the ring of p-adic integers, and by Fp the field with p elements. Of
course, any Abelian p-group is canonically a Zp-module and a Jp-module.
For G an Abelian group, t(G) denotes its torsion subgroup, and tp(G) the
p-primary component of t(G). Moreover, d(G) denotes the maximal divisible
subgroup of G, and End(G) its endomorphism ring. The cotorsion hull of G
is denoted by G•.

A description of the notion of algebraic entropy for Abelian groups and of
its basic properties may be found in [DGSZ]. Generalizations of this concept
to modules over commutative domains were investigated in [SZ2].

For G an Abelian group, we denote by C(G) the set of subgroups of G
of finite index. We recall the definition of adjoint entropy, first introduced
in [DGS].
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Let G be an Abelian group, φ ∈ End(G), and N ∈ C(G). We define the
nth cotrajectory of N with respect to φ as

Cn(φ,N) =
G

N ∩ φ−1N ∩ · · · ∩ φ−n+1N

(note that N ∩ φ−1N ∩ · · · ∩ φ−n+1N ∈ C(G)).
Then the adjoint entropy of φ is defined as

ent∗(φ) = sup{ lim
n→∞

|Cn(φ,N)|/n : N ∈ C(G)}.

If all the endomorphisms φ : G→ G satisfy the condition ent∗(φ) = 0, we
say thatG has zero adjoint entropy , and we write ent∗(G) = 0. Trivially, a di-
visible group D has zero adjoint entropy, since C(D) = {D}. More generally,
we define ent∗(G) to be the supremum of ent∗(φ) over φ ∈ End(G). Recall
that in [DGS] it is proved that for any Abelian group G either ent∗(G) = 0
or ent∗(G) =∞ (see Theorem 1.1 below).

The various properties and results on adjoint entropy we will need are
taken from the paper [DGS]. However, we emphasize the following two prop-
erties, that are used throughout the present paper.

(a) Let G = H ⊕K be an Abelian group, and φ ∈ End(G) an endomor-
phism such that H, K are φ-invariant. Then ent∗(φ) = ent∗(φ|H) +
ent∗(φ|K).

(b) Let G be an abelian group that has a direct summand H such that
ent∗(H) =∞. Then ent∗(G) =∞.

The proof of property (a) may be found in [DGS]; property (b) is a
straightforward consequence of (a).

For the convenience of the reader, and for further reference, we reformu-
late here the fundamental Theorems 7.5 and 7.6 of [DGS] (see also Corol-
lary 7.7 of that paper).

Theorem 1.1 ([DGS]). If G is an Abelian group and φ ∈ End(G), then
either ent∗(φ) = 0 or ent∗(φ) = ∞. Moreover ent∗(φ) = 0 if and only if,
for every prime number p, the induced endomorphism φ̄ ∈ End(G/pG) is
algebraic over Fp.

From the above theorem it obviously follows that ent∗(G) = ∞ if and
only if ent∗(φ) =∞ for some φ ∈ End(G).

The next consequence of Theorem 1.1 shows that, for torsionfree groups,
the property of having adjoint entropy zero can be detected by just looking
at the endomorphism ring. As shown in the forthcoming paper [GS], the
analogous result is not true for the so-called rank-entropy, that was investi-
gated in [SZ1].
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Corollary 1.2. Let G be a torsionfree group and A = End(G) its en-
domorphism ring. Then ent∗(G) = 0 if and only if A is residually algebraic,
that is, A/pA is algebraic over Fp for each prime p.

Proof. Using the notation of Theorem 1.1, the map A → End(G/pG),
φ 7→ φ̄, has kernel Hom(G, pG). Since G is torsionfree, we have Hom(G, pG)
= pA, hence φ̄ = φ+ pA (note that, without the assumption that G is tor-
sionfree, only the inclusion pA ⊆ Hom(G, pG) is valid). Thus, for any given
φ ∈ A and for each prime p, the induced endomorphism φ̄ ∈ End(G/pG)
is algebraic over Fp exactly if φ̄ = φ+ pA is an algebraic element of A/pA.
Thus the claim follows.

It is worthwhile giving an example of a torsion group G such that
pEnd(G) ( Hom(G, pG). Let G =

⊕
i>0〈zi〉, where 〈zi〉 ∼= Z/piZ for all

i > 0, and let φ ∈ A = End(G) be defined by extending the assignments
xi 7→ pxi+1. Then φ ∈ Hom(G, pG) and is injective, hence φ /∈ pA, since the
elements of pA annihilate the socle of G.

We recall that in [DGS] a group G was called narrow if C(G) is countable.
In the following result, which is part of Theorem 3.3 in [DGS], we recall the
characterization of narrow groups that we will use later.

Proposition 1.3 ([DGS]). Let G be a reduced Abelian group. The fol-
lowing are equivalent:

(1) G is narrow;
(2) G/pG is finite for every prime number p.

Narrow groups have zero adjoint entropy, as proved in [DGS, Proposi-
tion 3.7].

Proposition 1.4 ([DGS]). Every narrow group G satisfies ent∗(G) = 0.

The next result follows from the discussion in Section 6 of [DGS] (in
particular, see Proposition 6.2).

Proposition 1.5 ([DGS]). If a p-group G is an infinite direct sum of
cyclic groups, then ent∗(G) =∞. Moreover, if a group G is an infinite direct
sum of copies of the same group, then also ent∗(G) =∞.

We remark that the preceding proposition also follows from Theorem 1.1.
In fact, in both the cases considered in Proposition 1.5, one readily finds a
φ ∈ End(G) such that φ̄ ∈ End(G/pG) is not algebraic over Fp.

We recall the notion of basic submodule for Zp-modules, the case we are
interested in (see [F1, Ch. VI]). Let G be a Zp-module; then there exists a
submodule B of G such that:

(i) B is a direct sum of cyclic Zp-modules;
(ii) B is pure in G;
(iii) G/B is divisible.
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Such a B is said to be a basic submodule of G; all basic submodules of G
are isomorphic.

2. Adjoint entropy for torsion groups. We start this section with
some general results on adjoint entropy, valid for any Abelian group.

Proposition 2.1. Let G be an Abelian group, and B a pure subgroup
of G such that G/B is divisible. Then there is a one-to-one correspondence
Ψ : C(G) → C(B) given by the assignment Ψ : N 7→ N ∩ B for N ∈ C(G).
For M ∈ C(B), we have Ψ−1 : M 7→M + rMG, where rM = |B/M |.

Proof. If N ∈ C(G), then N ∩ B ∈ C(B), without special assumptions
on the subgroup B. Now, we can say more. In fact, since G/B is divisible,
for every N ∈ C(G) we have B + N ⊇ B + mG = G, where m = |G/N |.
It follows that B/(N ∩ B) ∼= G/N ; in particular, m = rN∩B. Then we get
N∩B+rN∩BG = N∩(B+rN∩BG) = N , since N ⊇ rN∩BG. For M ∈ C(B),
we have (M + rMG) ∩ B = M + rMG ∩ B = M + rMB = M , since B is
pure in G and rMB ⊆M . As G = B + rMG, we get

G

M + rMG
=
B + rMG

M + rMG
∼=

B

B ∩ (M + rMG)
= B/M,

so M + rMG ∈ C(G). We have also seen that Ψ is a bijection, hence the
desired conclusion follows.

It is worth noting that the preceding proposition is not true if we just
assume that B is pure, but G/B is not divisible. Easy counterexamples of
M ∈ C(B) with M + rMG /∈ C(G) (even in case of p-groups) are provided
when G = B ⊕G′, and G′/rMG

′ is infinite.

Proposition 2.2. Let G be an Abelian group, φ ∈ End(G), and B a
φ-invariant pure subgroup of G. Then ent∗(φ) ≥ ent∗(φ|B).

Proof. In view of Theorem 1.1, it clearly suffices to show that ent∗(φ) = 0
implies ent∗(φ|B) = 0. Now, the induced endomorphism φ̄ ∈ End(G/pG) is
algebraic over Fp, again by Theorem 1.1. Equivalently, there exists a monic
polynomial f(X) ∈ Z[X] such that f(φ)(G) ⊆ pG. Hence, for every b ∈ B
we have f(φ)(b) ∈ pG ∩ B = pB (since B is pure in G and φ-invariant). It
follows that φ|B induces an endomorphism of B/pB algebraic over Fp, and
hence ent∗(φ|B) = 0.

Example 2.3. It is easy to show that the inequality in Proposition 2.2
is no longer true without the assumption that B is a pure subgroup. For
instance, let C be a cyclic group, and D its divisible envelope. Let B =⊕

i>0Ci and G =
⊕

i>0Di, where Ci ∼= C and Di
∼= D for all i. Let us take

any ψ ∈ End(B) such that ent∗(ψ) =∞ (ψ exists by Proposition 1.5), and



50 L. SALCE AND P. ZANARDO

consider its extension φ ∈ End(G). Then ent∗(φ) = 0, since G is divisible,
hence we have ent∗(φ) < ent∗(φ|B) = ent∗(ψ).

In the case when B is pure in G and G/B is divisible, we have a result
stronger than Proposition 2.2.

Proposition 2.4. Let G be an Abelian group, φ ∈ End(G), and B a
φ-invariant pure subgroup of G such that G/B is divisible. Then ent∗(φ) =
ent∗(φ|B).

Proof. To simplify the notation, we will write ψ = φ|B. Proposition 2.1
shows that there is a one-to-one correspondence Ψ : C(G)→ C(B) given by
M = N ∩B and N = M + rMG, for N ∈ C(G) and M ∈ C(B). Since G/B
is divisible, we have G = B + mG for every nonzero integer m. Hence we
also get G = B + L for all L ∈ C(G).

Pick any M ∈ C(B). We consider the nth cotrajectory of N = M + rMG
with respect to φ,

Cn(φ,N) =
G

N ∩ φ−1N ∩ · · · ∩ φ−n+1N

and the nth cotrajectory of M = N ∩B with respect to ψ,

Dn(ψ,M) =
B

M ∩ ψ−1M ∩ · · · ∩ ψ−n+1M
.

Our purpose is to show that |Dn(ψ,M)| ≥ |Cn(φ,N)|.
It is readily checked that φ−kN ∩ φ−kB = φ−kM for every k ≥ 0, hence⋂

0≤i<n
φ−iM =

⋂
0≤i<n

φ−iN ∩
⋂

0≤i<n
φ−iB =

( ⋂
0≤i<n

φ−iN
)
∩B,

where the last equality holds since φ−iB ⊇ B for all i. As φ−kM ⊇ ψ−kM
for all k ≥ 0, it follows that |Dn(ψ,M)| ≥ |B/H|, where H = (N ∩ φ−1N ∩
· · · ∩ φ−n+1N) ∩ B. But B + (N ∩ φ−1N ∩ · · · ∩ φ−n+1N) = G implies
B/H ∼= Cn(φ,N), and the desired inequality follows.

Since M was arbitrary, and Ψ : C(G) → C(B) is one-to-one, we eas-
ily conclude that ent∗(ψ) ≥ ent∗(φ). The converse inequality follows from
Proposition 2.2, hence ent∗(ψ) = ent∗(φ).

Example 2.5. The assumption that G/B is divisible in the preced-
ing proposition cannot be avoided. For instance, take groups B, G1, and
endomorphisms ψ ∈ End(B) with ent∗(ψ) = 0 and φ1 ∈ End(G1) with
ent∗(φ1) = ∞. We consider the group G = B ⊕ G1 and its endomor-
phism φ = ψ ⊕ φ1. Note that B is pure in G, but G/B is not divisible,
since ent∗(G1) =∞. Using property (a) of the adjoint entropy, we see that
∞ = ent∗(φ) > ent∗(φ|B) = 0.

Now we can prove the main result of this section.
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Theorem 2.6. Let G be a reduced p-group such that ent∗(G) = 0. Then
G is finite.

Proof. We will show that ent∗(G) =∞ wheneverG is an infinite p-group.
Let B be a basic subgroup of G. If B is bounded, then G = B and therefore
G is an infinite direct sum of cyclic p-groups. In this case we know, by
Proposition 1.5, that ent∗(G) =∞. So we assume that B is unbounded. We
will construct φ ∈ End(G) such that ent∗(φ) =∞. The argument is based on
a result by Szele [S] that yields a nonzero φ ∈ End(G) such that φ(G) ⊆ B.
For g ∈ G, we denote by e(g) the exponent of g, that is, Zg ∼= Z/pe(g)Z.
We may decompose B as a direct sum B = B′⊕B′′, where B′ =

⊕
n>0 Zbn

and e(bn+1) ≥ 2e(bn) for all n > 0. We define ψ ∈ End(B) by extending the
assignments

b1 7→ 0; bn+1 7→ bn; a 7→ 0, ∀a ∈ B′′.
Note that ent∗(ψ) =∞. In fact, it is easily seen that the induced endomor-
phism ψ̄ ∈ End(B/pB) is not algebraic over Fp, hence Theorem 1.1 applies
(for a more general argument see Proposition 6.2 in [DGS]).

We need the following fact, which can be proved using standard argu-
ments of Abelian p-group theory. For every k > 0, let Bk =

⊕
1≤n≤k Zbn;

then there exists a direct decomposition G = Bk ⊕ Gk, where Gk ⊇⊕
j≥k+1 Zbj ⊕B′′.
Now we define a map φ : G → G in the following way. For 0 6= g ∈ G,

let m > 0 be such that e(bm) ≥ e(g). Since G = Bm ⊕ Gm, we may write
g = b+ c, where b ∈ Bm and c ∈ Gm. Then we set φ(g) = ψ(b).

For the sake of completeness, we verify that φ(g) is well-defined, not
depending on the choice of m (cf. Szele [S]). Write g = b′ + c′ with b′ ∈ Bk
and c′ ∈ Gk, where we may assume that k > m. Then we have b′ = b + b′′

for a suitable b′′ ∈
⊕

m<n≤k Zbn. In order to verify that φ is well-defined,
it suffices to show that ψ(b′′) = 0. We may assume that b′′ 6= 0. Note that
all the exponents e(b), e(b′), e(b′′) are ≤ e(g). We have b′′ =

∑k
i=m+1 αibi

for suitable αi ∈ Z. Since, for m < i ≤ k, we have e(bi) > 2e(bm) ≥ 2e(g)
and e(b′′) ≤ e(g), necessarily αi is divisible by pei for a suitable ei satisfying
2ei ≥ e(bi). It follows that ψ(αibi) = αibi−1 = 0, since e(bi) ≥ 2e(bi−1).
Hence ψ(b′′) = 0, as desired.

It is now clear that φ is an endomorphism of G. Since ent∗(ψ) = ∞,
B is pure in G and G/B is divisible, either from Proposition 2.2 or from
Proposition 2.4 we derive ent∗(φ) =∞, and the desired conclusion follows.

The following corollary of the preceding theorem is easily verified, using
property (a) of the adjoint entropy.

Corollary 2.7. Let G be a reduced torsion group. Then ent∗(G) = 0
if and only if each p-primary component of G is finite.
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The following fact on endomorphism rings appears to have gone unno-
ticed until now.

Corollary 2.8. Let G be a reduced p-group such that End(G) is integral
over Jp. Then G is finite.

Proof. If End(G) is integral over Jp, then for every φ ∈ End(G), the
induced linear transformation φ̄ : G/pG → G/pG is algebraic over Fp. By
Theorem 1.1, this suffices to ensure that ent∗(G) = 0. Then G is finite, by
Theorem 2.6.

Remark 2.9. In [DGSZ] one finds many examples of (infinite) p-groups
G such that ent(G) = 0. Typically, they are constructed as follows. One
starts with a complete Jp-algebra A, which is integral over Jp and fulfills
some technical requirements (automatically satisfied when A is torsionfree
of finite rank). Then deep realization theorems due to Corner [C2] ensure
the existence of a p-group G such that End(G) = A⊕Es(G), where Es(G) is
the ideal of small endomorphisms of G (see [DGSZ] for definitions and other
details). Actually, we have no control on Es(G), but, in view of [DGSZ, The-
orem 5.2], or [SZ1, Proposition 3.4], we know that the small endomorphisms
are pointwise integral (see [DGSZ] for this notion). Then, since A is integral
over Jp, one gets ent(G) = 0 ([DGSZ, Corollary 5.11]). However, the pre-
ceding corollary provides some new information on small endomorphisms.
Namely, as soon as G is an infinite p-group and End(G) = A⊕Es(G), where
A is integral over Jp, then there exist some small endomorphisms of G which
are pointwise integral, but not integral.

3. Adjoint entropy for torsionfree groups. Let A be a commutative
torsionfree Z-algebra; we say that s ∈ A is algebraic over Q if there exists a
nonzero polynomial f ∈ Q[X] such that f(s) = 0 (of course, f(s) just lies
in A⊗Q, in general).

The next two propositions follow from Theorem 1.1.

Proposition 3.1. If G is a torsionfree Abelian group of finite rank, then
ent∗(G) = 0.

Proof. Every φ ∈ End(G) may be extended to a linear transformation
of Qm, where m is the rank of G. It follows that φ is algebraic over Q, hence
φ annihilates a nonzero polynomial f =

∑n
i=0 aiX

i ∈ Z[X], where, since G
is torsionfree, we may assume that a0, a1, . . . , an are coprime integers. Note
that, for each prime p, this polynomial, once reduced modulo p, remains
nontrivial, since the ai are coprime. We readily conclude that the induced
endomorphism φ̄ ∈ End(G/pG) is algebraic over Fp, for all prime numbers p.
Then Theorem 1.1 applies, yielding ent∗(φ) = 0. Since φ was arbitrary, we
conclude that ent∗(G) = 0.
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We recall that the preceding fact is also shown in Example 3.8(b) of
[DGS].

Proposition 3.2. If G is a torsionfree Abelian group with commuta-
tive endomorphism ring End(G) = Z[si : i ∈ λ], where the si are al-
gebraic over Q, then ent∗(G) = 0. If, on the other hand, G is such that
End(G) = Z[t], with t transcendental over Q, then ent∗(G) =∞.

Proof. In the first case of our statement, every φ ∈ End(G) is algebraic
over Q, hence, arguing as in the proof of Proposition 3.1, we see that the
induced endomorphism φ̄ ∈ End(G/pG) is algebraic over Fp for all prime
numbers p. Then ent∗(φ) = 0, by Theorem 1.1.

In the second case, from End(G) = Z[t] with t transcendental, one finds
that t̄ ∈ End(G/pG) is transcendental over Fp (for any p). In fact, assume for
a contradiction that t̄ is algebraic. Equivalently, there exists a monic poly-
nomial f ∈ Z[t] such that f(t)(G) ⊆ pG. Since G is torsionfree, this means
that f(t)/p ∈ End(G) = Z[t], impossible. We conclude that ent∗(t) =∞,
again by Theorem 1.1.

Corollary 3.3. There exist indecomposable torsionfree Abelian groups
G such that End(G) is countable and ent∗(G) = ∞. There exist indecom-
posable torsionfree Abelian groups G1 of infinite rank such that End(G1) is
countable and ent∗(G1) = 0.

Proof. Let t be transcendental over Q, and let A = Z[t]. Then Corner’s
Theorem A (see [C1]) ensures the existence of a countable torsionfree group
G such that End(G) = A. Thus ent∗(G) = ∞ by the preceding proposi-
tion. Let now {si}i>0 be a countable family of elements algebraic over Q
and having unbounded degrees. Let A1 = Z[si]i>0. Again by Corner’s The-
orem A, there exists G1 such that End(G1) = A1. Then ent∗(G1) = 0,
by Proposition 3.2. Note that G1 has infinite rank, since otherwise all its
endomorphisms would have degrees bounded by the rank of G1.

In some special cases, we can be more precise, as shown by the next
result, whose proof is contained in Examples 3.6 and 3.9 of [DGS].

Proposition 3.4. Let G be a torsionfree group such that End(G) =
A ⊆ Q. Then every subgroup of G of finite index is fully invariant. As a
consequence, ent∗(G) = 0.

The condition that End(G) is algebraic over Q, as in Proposition 3.2, is
not necessary to have zero adjoint entropy.

Proposition 3.5. There exist (countable) torsionfree Abelian groups G
such that End(G) is not algebraic over Q, and ent∗(G) = 0.

Proof. The easiest example is possibly G= Jp. The fact that ent∗(Jp) = 0
is shown in [DGS] (or see the remainder of our proof). Now take any t ∈ Jp
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that is transcendental over Q. To conclude, it suffices to regard t as an
element of End(Jp).

If we require that G is countable, we may argue as follows. For every
prime p, let rp be a complex number of degree p over Q. We consider G =⊕

p Zp[rp], where p ranges among all prime numbers. Since Zp[rp] is a finitely
generated Zp-algebra and qZp[rp] = Zp[rp] for every prime q 6= p, we readily
see that G/pG is an Fp-vector space of dimension p, for every prime p. Hence,
for every φ ∈ End(G), the induced endomorphism φ̄ of G/pG is algebraic
over Fp.

It follows that ent∗(G) = 0, by Theorem 1.1. It remains to show that
End(G) is not algebraic over Q. Regard the element r = (rp)p ∈

∏
p Zp[rp] as

an endomorphism of G. Since each component rp of r has degree p over Q,
it is easily seen that r is transcendental over Q.

Remark 3.6. We note that, for G =
⊕

p Zp[rp] as in the above proof, we
have End(G)⊇Z[r], where r is transcendental, and, nonetheless, ent∗(G)= 0.
Therefore, in the statement of Proposition 3.2, the condition End(G) = Z[t]
cannot be weakened to End(G) ⊇ Z[t].

We recall that an Abelian group G is said to be superdecomposable if
every nonzero direct summand of G admits a nontrivial decomposition as a
direct sum.

Proposition 3.7.

(i) There exist countable superdecomposable torsionfree Abelian groups
G such that ent∗(G) = 0.

(ii) There exist countable superdecomposable torsionfree Abelian groups
G1 such that ent∗(G1) =∞.

Proof. (i) The construction of G is inspired by that of a superdecom-
posable torsionfree group, made in Corner’s paper [C1, Theorem 5.2 and
Lemma 5.3]. We make use of an algebra more easily defined than that in-
troduced by Corner. Let Ei, i > 0, be indeterminates over Q, and consider
the Z-algebra Z[Ei : i > 0] and its ideal I = 〈E2

i − Ei : i > 0〉. Then the
ring A = Z[Ei : i > 0]/I is generated by the idempotents ei = Ei + I. Let
us show that A has the following property:

(a) Every nonzero element f of A can be written as a polynomial in the
ei, i ∈ F , for some finite set F of positive integers, where, in each
monomial of f , ei appears with degree ≤ 1. Moreover, if j /∈ F , then
0 6= ejf 6= f .

The first assertion is obvious, since A = Z[ei : i > 0], and the ei
are idempotent. Let us see that, under the above assumptions, ejf 6= f .
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Without loss of generality, we assume that F = {1, . . . , k}, and we choose
g ∈ Z[E1, . . . , Ek] such that g + I = f in the simplest way, namely lifting
each monomial of f . Assume now, for a contradiction, that Ejg − g ∈ I. In
particular g ∈ 〈Ei : i > 0〉, hence it cannot have a nonzero constant term.
Then, possibly reordering the indices, we may suppose that aE1 · · ·Em is a
monomial of g, where 0 6= a ∈ Z and m ≤ k. Now all the other monomials
of g (if there are any) must contain as a factor some Ei with m < i ≤ k.
Therefore, if we specialize at zero all the Ei with i > m and i 6= j, from
(Ej − 1)g ∈ I we get the relation

(Ej − 1)E1 · · ·Em ∈ 〈E2
1 − E1, . . . , E

2
m − Em, E2

j − Ej〉.
Now, specializing at Ej = 0 and E2 = · · · = Em = 1, we get E1 ∈
(E2

1 − E1)Z[E1], impossible. In a similar way we verify that ejf 6= 0.
Let us show that A does not contain primitive idempotents. Let 0 6= e =

e2 ∈ A. In view of (a), there exists a finite subset F of N such that e is a
polynomial in the ei, i ∈ F . We pick ej such that j /∈ F , and consider the
decomposition e = eje + (1 − ej)e. Note that both summands are idempo-
tents, since A is commutative, and 0 6= eje 6= e, again by (a). We conclude
that e is not primitive, as desired.

Using now Corner’s Theorem A of [C1], we may find a countable torsion-
free group G such that End(G) = A. Then G is superdecomposable, since
A has no primitive idempotents.

It remains to show that ent∗(G) = 0. This fact follows from Proposi-
tion 3.2, since A = Z[ei : i > 0], and each ei is obviously algebraic over Q.

(ii) Let us consider the ring A as in (i), and let t be an indeterminate
over A. Again by Corner’s Theorem A, there exists a countable torsionfree
group G1 such that End(G1) = A1 = A[t]. It is easy to verify that for
any 0 6= a ∈ A we have a2 6= 0; from this it follows that if e ∈ A[t] is
idempotent, then e ∈ A. Then an argument analogous to that in (i) shows
that G1 is superdecomposable. Moreover, since End(G1) = A[t], and t is
transcendental over Q, arguing as in the proof of Proposition 3.2, we see
that ent∗(t) =∞.

In the torsion setting, we have seen in the proof of Theorem 2.6 that the
existence of basic subgroups forces a torsion group of zero adjoint entropy
to be finite. It is natural to ask whether a similar result holds for torsionfree
Zp-modules, where we have a corresponding notion of basic submodules.
The answer is negative, as shown by our next result.

Proposition 3.8. There exists a torsionfree Zp-module G with basic
submodules of infinite rank such that ent∗(G) = 0.

Proof. Just replacing Z with Zp, the same proof of Proposition 3.7(i)
yields a superdecomposable Zp-module G with ent∗(G) = 0 (Corner’s theo-
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rems are valid for countable torsionfree Zp-algebras). It is readily seen that
a superdecomposable Zp-module has infinite basic rank.

We recall that a set {Gi : i ∈ Λ} of torsionfree groups is said to be a
rigid system if End(Gi) is a subring of Q, for all i ∈ Λ, and Hom(Gi, Gj) = 0
for i 6= j.

Proposition 3.9. Let {Gi : i ∈ Λ} be a rigid system of torsionfree
groups, and G =

⊕
i∈ΛGi. Then ent∗(G) = 0.

Proof. It is well-known that End(G)=
∏
i∈ΛAi, whereAi = End(Gi)⊆Q.

Hence every φ ∈ End(G) may be viewed as a string φ = (ai)i∈Λ, where
ai ∈ Ai. Then the induced endomorphism φ̄ ∈ End(G/pG) has the form
φ̄ = (αi)i∈Λ, where αi = ai + pAi ∈ Z/pZ. Since αpi = α for every i ∈ Λ,
it follows that φ̄p − φ̄ = 0, which shows that φ̄ is algebraic over Fp. From
Theorem 1.1 we get ent∗(G) = 0.

Example 3.10. There exists a countable torsionfree Abelian group G
such that ent∗(G) = 0 and C(G) is uncountable. In fact, take G =

⊕
p Z[1/p],

where p ranges over the prime numbers. It is straightforward to verify that
{Z[1/p]}p is a rigid system, hence ent∗(G) = 0 by Proposition 3.9. Moreover,
since 1/q /∈ pZ[1/q] for every prime number q 6= p, it is easy to verify that
G/pG is infinite for every p. Then Proposition 1.3 shows that G is not
narrow, hence C(G) is uncountable.

One could ask whether, under the hypotheses of Proposition 3.9, we
can even conclude that every N ∈ C(G) is fully invariant, thus extending
Proposition 3.4. This does not hold, as the following example shows.

Example 3.11. Using standard arguments in Abelian group theory, one
can easily find two torsionfree groups of rank one, say G1 and G2, such that
End(Gi) = Z (i = 1, 2) and Hom(Gi, Gj) = 0 (1 ≤ i, j ≤ 2, i 6= j). Let
G = G1⊕G2. We look for N ∈ C(G) that is not fully invariant. It is easy to
verify that N is fully invariant if and only if N = (N ∩G1)⊕ (N ∩G2) (note
that N ∩Gi is fully invariant in Gi, by Proposition 3.4). As a consequence
of [A, Theorem 0.3, p. 3], since the Gi have rank one, we have |Gi/pGi| = p
for every prime p. For i = 1, 2, we denote by φi the isomorphism Gi/pGi
→ Z/pZ. We consider the map ψ : G → Z/pZ, defined by ψ(g1 + g2) =
φ1(g1 + pG1) + φ2(g2 + pG2) (gi ∈ Gi). Let N = ker(ψ). One readily checks
that N ∩Gi = pGi. Moreover N 6= (N ∩G1)⊕ (N ∩G2) = pG1⊕ pG2, since
|G/N | = p and |G/(G1 ⊕G2)| = p2. We conclude that N ∈ C(G) cannot be
fully invariant.

The next proposition shows that there is no hope to classify all torsionfree
groups of zero adjoint entropy.
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Proposition 3.12. There exist torsionfree Abelian groups G of arbi-
trarily large cardinality such that ent∗(G) = 0.

Proof. There are two main ways to find such a G. First, by [EM, Theo-
rem 3.5, p. 458], there exist Abelian groups G of arbitrarily large cardinality
such that End(G) = Z. Second, by [GT, Corollary 14.5.3, p. 577], there ex-
ist rigid systems {Gi : i ∈ Λ} with Λ arbitrarily large; then we can choose
G =

⊕
i∈ΛGi. In both cases ent∗(G) = 0, either by Proposition 3.4, or by

Proposition 3.9.

4. Adjoint entropy for mixed groups. It is natural to ask whether
to have zero adjoint entropy is a local property. Namely, for an Abelian
group G, is it true that ent∗(G) = 0 if and only if ent∗(Gp) = 0 for every
prime number p, where Gp = G⊗ Zp?

In the next result we see that sufficiency holds.

Theorem 4.1. Let G be an abelian group such that ent∗(G ⊗ Zp) = 0
for every prime number p. Then ent∗(G) = 0.

Proof. Pick any φ ∈ End(G); let us see that the induced endomorphism
φ̄ ∈ End(G/pG) is algebraic over Fp for all prime numbers p. Then our
statement will follow from Theorem 1.1. Let Gp = G ⊗ Zp and consider
ψ = φ⊗ 1 ∈ End(Gp). Then ent∗(Gp) = 0 implies that ψ̄ ∈ End(Gp/pGp) is
algebraic over Fp. Since G/pG and Gp/pGp are canonically isomorphic, it is
straightforward to show that also φ̄ is algebraic, as desired.

In the next example we see that the above theorem is not reversible. We
also see that the hypothesis that ent∗(Gp) = 0 for every prime p cannot be
relaxed.

Example 4.2. (i) There exists a torsionfree group G of zero adjoint
entropy such that ent∗(Gp) =∞, for every prime number p.

Let G =
⊕

p Z[1/p]. Since, for p ranging over prime numbers, {Z[1/p]}p
is a rigid system, Proposition 3.9 shows that ent∗(G) = 0. However, since
Z[1/q] ⊗ Zp = Zp for q 6= p, and Z[1/p] ⊗ Zp = Q, for every prime number
p we have Gp =

⊕
i∈N Zi ⊕ Q, where Zi ∼= Zp for every i. Hence Gp has a

direct summand which is an infinite direct sum of copies of Zp, and therefore
ent∗(Gp) =∞, by Proposition 1.5.

(ii) Let S be any proper subset of the set of prime numbers. Then there
exists a torsionfree group G such that ent∗(G) = ∞ and ent∗(Gp) = 0 for
all p ∈ S.

Let ZS = Z[1/p : p ∈ S]. We consider G =
⊕

i∈NHi, where Hi
∼= ZS for

all i. Then ent∗(G) = ∞, again by Proposition 1.5. Since ZS ⊗ Zp = Q for
every p ∈ S, the group Gp is divisible, hence, trivially, ent∗(Gp) = 0.
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Our aim is to prove a counterpart of Theorem 2.6 for the important class
of cotorsion groups, characterized as those groupsG such that Ext(Q, G) = 0
(see [F1, Ch. IX]).

Recall that a reduced cotorsion group is isomorphic to
∏
pGp, where each

Gp is a cotorsion Jp-module. Moreover, for every prime p, Gp = Ap ⊕ Cp,
where Ap ∼= (

⊕
Jp)∧ is the completion of a direct sum of copies of Jp, and

Cp is “adjusted cotorsion”, i.e., Cp ∼= Ext(Z(p∞), T ), where T is a reduced
p-group and
• t(Cp) = T ;
• Cp/T is divisible (and torsionfree);
• every φ∈End(T ) extends uniquely to an endomorphism φ• ∈End(Cp).

In the above notation we have

Lemma 4.3. If the p-group T is not bounded, then ent∗(Cp) =∞.

Proof. In view of Theorem 2.6, there exists φ ∈ End(T ) with ent∗(φ)
=∞; φ extends uniquely to φ• ∈ End(Cp), where ent∗(φ•) =∞, by Propo-
sition 2.4.

Theorem 4.4. Let G be a reduced cotorsion group. Then the following
are equivalent:

(i) ent∗(G) = 0;
(ii) G =

∏
pGp where Gp is a finitely generated Jp-module for each

prime p;
(iii) G is compact in the natural topology;
(iv) G is narrow.

Proof. (ii)⇔(iii) follows from Theorem 1 of Orsatti’s paper [O].
(i)⇒(ii). For any prime p, let Gp = Ap⊕Cp be the direct decomposition

of the discussion before Lemma 4.3. The notation used there remains valid
in the present proof. Since G =

∏
pGp for any reduced cotorsion group,

from ent∗(G) = 0 we get ent∗(Gp) = 0. In fact, Gp is a direct summand of
G for every p, and we make use of property (b). In particular, ent∗(Ap) =
ent∗(Cp) = 0.

We first note that, necessarily, Ap is the completion of a direct sum
of finitely many copies of Jp, hence a finitely generated Jp-module. Other-
wise, Ap has a basic submodule B which is a direct sum of infinitely many
copies of Jp. Then any endomorphism of B with infinite adjoint entropy
extends uniquely to an endomorphism of Ap with infinite adjoint entropy
(see Proposition 2.4), which, in particular, yields ent∗(Gp) =∞.

Now we examine Cp. If T is unbounded, then Lemma 4.3 shows that
ent∗(Cp) =∞, impossible. Then T is necessarily bounded, hence Cp ∼= T is
a direct sum of cyclic groups, so ent∗(Cp) = 0 if and only if it is finite. The
desired conclusion follows, since p was arbitrary.
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(ii)⇒(iv). If each Gp is a finitely generated Jp-module, it is clear that
G/pG is finite for all p, hence G is narrow by Proposition 1.3.

(iv)⇒(i) follows from Proposition 1.4.

We remark that the mixed cotorsion groupG=
∏
p Z/pZ satisfies ent∗(G)

= 0 and is nonsplitting.

Corollary 4.5. Let G be an Abelian group such that its cotorsion hull
G• satisfies ent∗(G•) = 0. Then G is narrow; consequently, ent∗(G) = 0.

Proof. The preceding theorem shows that G• is narrow. Since G•/G is
torsionfree divisible, Proposition 2.1 shows that C(G) and C(G•) have the
same cardinality, that is, they are both countable. Hence G is narrow as
well.

Our next result shows that the groups G in a vast class of nonsplitting
mixed Abelian groups, satisfy ent∗(G) =∞

Theorem 4.6. Let G be a mixed reduced Zp-module satisfying the fol-
lowing conditions:

(1) the torsion part T of G is separable (i.e., pωT = 0);
(2) G/pωG is torsion.

Then there exists an endomorphism φ of G such that ent∗(φ) =∞.

Proof. First note that G is necessarily nonsplitting. In fact, in case G =
T ⊕H we get pωG = pωH = 0, since G is reduced and pωT = 0, and then
G/pωG cannot be torsion. In particular, T is unbounded.

The proof is divided into two parts. We first assume that G satisfies the
further condition

(3) G/T is nonzero divisible.

Let B be a basic subgroup of T . Let ψ be the endomorphism of B,
constructed in the proof of Theorem 2.6 such that ent∗(ψ) = ∞. Since
0 = pωT = T ∩ pωG, we have

B ≤ T ∼= (T ⊕ pωG)/pωG ≤ G/pωG.

Let us denote by ε : B → G/pωG the above embedding, and note that
ε = π · i, where π : G→ G/pωG is the canonical surjection and i : B → G is
the inclusion map. Recall that B is pure in T and T/B is divisible; further-
more we readily see that (T⊕pωG)/pωG is pure in G/pωG, and G/(T⊕pωG),
being a factor of G/T , is divisible. Therefore ε(B) is a basic subgroup of
G/pωG, which is a p-group, by hypothesis (2). As in the proof of Theo-
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rem 2.6, we extend ψ to a map φ′ : G/pωG → B ≤ G. Let φ : G → G be
the map φ′ · π. An easy computation shows that the restriction of φ to B
coincides with ψ, hence from Proposition 2.4 we get ent∗(φ) = ent∗(ψ) =∞.
This concludes the first part of the proof.

We now assume that G satisfies (1) and (2), but not necessarily (3).
Let D be the divisible hull of G/T , and denote by D′ the cokernel of the
inclusion of G/T into D. From the exact sequence

Ext1(D,T )→ Ext1(G/T, T )→ Ext2(D′, T ) = 0

we derive that the exact sequence 0→ T → G→ G/T → 0 is the image of
an exact sequence

0→ T → X → D → 0.

We conclude that we may regard G as a subgroup of X such that X/G ∼= D′.
Since D is torsionfree, T is the torsion part of X, so (1) and (3) are

satisfied by X. Note that X is reduced, since any divisible subgroup E
of X intersects T trivially, so embeds into D, and hence it is torsionfree.
Moreover, as we will see in a moment, G is pure in X, which easily implies
that E trivially intersects G, so it embeds into D′. It follows that E is also
torsion, so, in conclusion, E = 0. Note that X/pωX is torsion. In fact, let
x ∈ X \ T ; then pnx ∈ G for some positive integer n and, since G/pωG is
torsion, pn+kx ∈ pωG ≤ pωX for some positive integer k. Thus X satisfies
condition (2), as well.

Applying the first part of the proof to X, we find a map φ′ : X → B
such that ent∗(φ′) =∞. To reach our final conclusion, we want to show that
the restriction φ of φ′ to G also satisfies ent∗(φ) = ∞. Note that X/G is
divisible; hence, in order to apply again Proposition 2.4, it suffices to prove
that G is pure in X.

Let x ∈ X \ T be such that pnx ∈ G for some positive integer n.
Then, as above, pn+kx ∈ pωG, so pn+kx = pn+kg for some g ∈ G, hence
pnx = png + (pnx − png), where pnx − png ∈ T ∩ pnX = pnT . But T is
pure in X, hence pnx − png = pnt for some t ∈ T ≤ G, so pnx ∈ pnG, as
desired.

Note that the mixed abelian groups H(X) considered in [KMT, pp.
242–247] (following Franzen–Goldsmith [FG]) satisfy the hypothesis of The-
orem 4.6, as soon as one starts with a reduced torsionfree Zp-module X
and a p-group T . In that construction, X ∼= pωH(X), and it is proved
that End(H(X)) is a split extension of the subring End(X) by the ideal
Hom(H(X), T ). So the endomorphism φ of H(X) with ent∗(φ) = ∞, as
constructed in the above proof, belongs to this ideal.

Motivated by Theorem 4.6, we formulate the following
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Conjecture. For any reduced mixed group G, the property ent∗(G)
= 0 implies that every p-primary component tp(G) of G is finite.

Note that if the conjecture is true, then ent∗(G) = 0 also implies that
the first Ulm subgroup G1 of G vanishes. In fact, for every prime number p,
since tp(G) is finite, we get G = tp(G) ⊕ Xp, where pωG = pωXp. Since
the p-torsion of Xp is zero, we deduce that pωG is the maximal p-divisible
subgroup of G. It follows that G1 coincides with the divisible subgroup of G,
which is zero.
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