
COLLOQU IUM MATHEMAT ICUM
VOL. 121 2010 NO. 1
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CHAINABLE CONTINUA

BY

CHRISTOPHER MOURON (Memphis, TN)

Abstract. A chainable continuum, X, and homeomorphisms, p, q : X → X, are
constructed with the following properties:

(1) p ◦ q = q ◦ p,
(2) p, q have simple dynamics,
(3) p ◦ q is a positively continuum-wise fully expansive homeomorphism that has

positive entropy and is chaotic in the sense of Devaney and in the sense of Li and
Yorke.

1. Introduction. In this paper, a chainable continuum, X, and home-
omorphisms, p, q : X → X, are constructed with the following properties:

(1) p ◦ q = q ◦ p,
(2) p, q have simple dynamics,
(3) p ◦ q is a positively continuum-wise fully expansive homeomorphism

that has positive entropy and is chaotic in the sense of Devaney and
in the sense of Li and Yorke.

A continuum is a compact, connected metric space. A continuum is
chainable (also known as arc-like) if it can be expressed as the inverse limit
of arcs. Let f : X → X be an onto map. We say that f has simple dynamics
if there exist exactly two fixed points a, r ∈ X such that

(1) for every ε > 0 and z ∈ X−{r}, there exists a number N ε
z such that

d(fn(z), a) < ε for all n ≥ N ε
z ,

(2) for every ε > 0 there exists a δε > 0 such that if d(x, a) < δε then
d(fn(x), a) < ε for each n ≥ 0.

Here, a is called the attractor for f and r is the repellor for f . An example of
a function with simple dynamics is f(x) = x2 defined on the interval [0, 1]. In
this case 0 is the attractor and 1 is the repellor. It will be shown that maps
with simple dynamics are true to their name in that they are not transitive,
sensitive or chaotic in the sense of either Li and Yorke or Devaney (see [13]
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and [5]). However, it will be shown that it is possible to get a very chaotic
function from the composition of two commuting maps with simple dynam-
ics. It was shown by Cánovas and Linero that if f and g are commuting
maps of the interval that share a periodic point that is not a power of 2 for
f , then the composition must have positive entropy [3], and if f and g are
commuting piecewise monotonic maps, then the entropy of the composition
is less than or equal to the sum of the individual entropies [4]. Furthermore,
it was shown by Sun, Xi and Chen that under certain hypotheses, if f and g
are commuting maps of a tree that share a periodic point, then the entropy
of the composition is also positive [15].

2. Definitions and terminology. The term chaos to describe a dy-
namical system has been defined in several nonequivalent ways. Here several
definitions, measures and types of chaotic dynamical systems will be given.

Let f : X → X be a map on a compact metric space X. We say that f
has sensitive dependence on initial conditions (or f is s.d.i.c.) if there is a
constant c > 0 such that for every x ∈ X and open set U that contains x,
there exists a y ∈ U and an integer n ≥ 0 such that d(fn(x), fn(y)) > c. We
say that f is transitive on X if whenever U and V are open sets of X, there
exists an integer n ≥ 0 such that fn(U) ∩ V 6= ∅. Then a map f is chaotic
in the sense of Devaney if

(1) f has sensitive dependence on initial conditions,
(2) f is transitive,
(3) the periodic points of f are dense in X.

A subset S of X is called a scrambled set of f if S has at least two elements
and any distinct x, y ∈ S satisfy the following:

(1) lim supn→∞ d(fn(x), fn(y)) > 0,
(2) lim infn→∞ d(fn(x), fn(y)) = 0,
(3) lim supn→∞ d(fn(x), fn(p)) > 0 for any periodic point p of f .

If there exists an uncountable scrambled set of f , then f is said to be chaotic
in the sense of Li and Yorke.

One measure of the “chaos” of a dynamical system is entropy. The follow-
ing definition of entropy is due to Bowen (see [16]). Suppose that f : X → X
is a map of a compact space and n is a nonnegative integer. Define

d+
n (x, y) = max

0≤i<n
d(f i(x), f i(y)).

A finite subset En of X is said to be (n, ε)-separated with respect to f if
d+
n (x, y) > ε whenever x and y are distinct elements of En. Let sn(ε,X, f)

denote the largest cardinality of any (n, ε)-separated subset of X with re-
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spect to f . Then put

s(ε,X, f) = lim sup
n→∞

log sn(ε,X, f)
n

.

The entropy of f on X is then defined as

Ent(f,X) = lim
ε→0

s(ε,X, f).

The next type of function has very chaotic properties: A map f : X → X
is positively continuum-wise expansive if there exists a constant c > 0 such
that for every nondegenerate subcontinuum A, there is a nonnegative integer
n such that diam(fn(A)) ≥ c. Next if A and B are sets, define d(A,B) =
inf{d(x, y) | x ∈ A and y ∈ B}. Then define

dS(A,B) = sup{d(A, y) | y ∈ B}.
Finally define the Hausdorff distance to be

dH(A,B) = max{dS(A,B),dS(B,A)}.
A stronger version of positively continuum-wise expansive is the following:
f is a continuum-wise fully expansive (CF-expansive) homeomorphism if for
any ε, δ > 0 there exists a positive integer N such that if A is a subcontinuum
of X such that diam(A) > δ then either

(1) dH(fn(A), X) < ε for all n ≥ N , or
(2) dH(f−n(A), X) < ε for all n ≥ N .

A homeomorphism or a map f is positively continuum-wise fully expansive
(PCF-expansive) if condition (1) is satisfied for every nondegenerate sub-
continuum A. The shift homeomorphism of the inverse limit of a tent map
on I is a PCF-expansive homeomorphism (see [18]). However, in [11], Kato
constructed a CF-expansive homeomorphism that is not PCF-expansive and
whose inverse is not PCF-expansive.

One method for constructing complicated compact spaces and maps on
those spaces is through inverse limits. Let X be a topological space and
f : X → X be a map. The inverse limit of (X, f) is a new topological space:

X̂ = lim←−{X, f}
∞
i=1 = {〈xi〉∞i=1 | xi ∈ X and f(xi+1) = xi}.

X̂ has the subspace topology induced on it by
∏∞
i=1X. If 〈xi〉∞i=1, 〈yi〉∞i=1 ∈ X̂

then define the metric on X̂ by

d̂(〈xi〉∞i=1, 〈yi〉∞i=1) =
∞∑
i=1

d(xi, yi)
2i

where d is the metric on X. Also, let πi : X̂ → X be the ith coordinate
map. For more on inverse limits see [6], [7], or [17].
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Define the shift homeomorphism f̂ : X̂ → X̂ by

f̂(〈xi〉∞i=1) = 〈f(xi)〉∞i=1.

Also, notice that

f̂−1(〈x1, x2, x3, . . .〉) = 〈x2, x3, x4, . . .〉.
The shift homeomorphism, f̂ , often has the same dynamical properties as
the bonding map f ; see [10] and [19].

3. Results and relationships on chaotic maps. There are several
results examining the relationship between expansiveness, entropy and chaos
in the sense of Devaney and in the sense of Li and Yorke. The following is
Theorem 4.1 in [8]:

Theorem 3.1. If f : X → X is a continuum-wise expansive homeomor-
phism, then Ent(f) > 0.

The following is Lemma 4.3 in [9]:

Theorem 3.2. If f : I → I is a continuum-wise expansive map of the
interval, then f has sensitive dependence on initial conditions.

The next theorem follows from Theorem 3.1 in [19]:

Theorem 3.3. Suppose X̂ = lim←−{X, f}, h : X → X, h ◦ f = f ◦ h and
ĥ : X̂ → X̂ is defined by ĥ(〈xi〉∞i=1) = 〈h(xi)〉∞i=1. Then Ent(ĥ) = Ent(h).

The following is Theorem C of [12]:

Theorem 3.4. Let f : X → X be a map on a compact metric space.
Then f is chaotic in the sense of Devaney if and only if the shift homeo-
morphism f̂ of lim←−{X, f} is chaotic in the sense of Devaney.

The following is Corollary 2.4 of [2]:

Theorem 3.5. If f : X → X is a map on a compact metric space with
positive entropy, then f is chaotic in the sense of Li and Yorke.

The following theorem is a corollary to Lemma 2 in [1]:

Theorem 3.6. Let f : I → I be a transitive map of the interval. Then
the set of periodic points is dense in I.

Proposition 3.7. Let f : X → X be PCF-expansive. Then f is transi-
tive.

Proof. Let U and V be open sets. Pick x ∈ V . Then there exists ε > 0
such that Bε(x) = {y ∈ X | d(x, y) < ε} ⊂ V . Also, there exists a nonde-
generate subcontinuum A ⊂ U . Since f is positively continuum-wise fully
expansive, there exists n ≥ 0 such that dH(fn(A), X) < ε. Thus,

∅ 6= fn(A) ∩ V ⊂ fn(U) ∩ V.
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Corollary 3.8. Let f : I → I be a PCF-expansive map on the interval.
Then f is chaotic in the sense of Devaney and in the sense of Li and Yorke.

Theorem 3.9. Let X̂ = lim←−{X, f} and h : X → X be such that h and f
are both onto and commute. If h is PCF-expansive, then ĥ : X̂ → X̂, defined
by ĥ(〈xi〉∞i=1) = 〈h(xi)〉∞i=1, is PCF-expansive.

Proof. Let ε > 0 and Â be a subcontinuum of X̂. Then there exist
subcontinua {Ai}∞i=1 of X such that Â = lim←−{Ak, f |Ak

}∞k=1. Also, there
exists an m such that

∞∑
i=m+1

diam(X)
2i

<
ε

2
.

Since h is positively continuum-wise fully expansive there exists an Ni such
that dH(hn(Ai), X) < ε/2 for each n ≥ Ni. Let N = max{N1, . . . , Nm}.
Then for every n ≥ N we have

d̂H(hn(Â), X̂) =
∞∑
i=1

dH(hn(Ai), X)
2i

=
m∑
i=1

dH(hn(Ai), X)
2i

+
∞∑

i=m+1

dH(hn(Ai), X)
2i

<
ε

2

m∑
i=1

1
2i

+
ε

2
≤ ε.

4. Functions with simple dynamics. In this section, we see that
functions with simple dynamics do not have any chaotic properties.

Proposition 4.1. Suppose that f : X → X is a map with simple dy-
namics with repellor r and attractor a. Then f does not contain any scram-
bled sets.

Proof. Let x and y be distinct elements of X.

Case 1: x = r. Since y ∈ X − {r}, limn→∞ f
n(y) = a. Therefore,

lim inf
n→∞

d(fn(x), fn(y)) = d(r, a) 6= 0.

Hence, x and y cannot be in the same scrambled set.

Case 2: y = r. The proof is similar to Case 1.

Case 3: x, y ∈ X − {r}. Then limn→∞ f
n(x) = limn→∞ f

n(y) = a. So

lim sup
n→∞

d(fn(x), fn(y)) = d(a, a) = 0.

Hence, x and y cannot be in the same scrambled set.



68 C. MOURON

Corollary 4.2. If f has simple dynamics, then f does not have chaos
in the sense of Li and Yorke.

Proposition 4.3. Suppose that f : X → X is a map with simple dy-
namics with repellor r and attractor a. Then f does not have sensitive de-
pendence on initial conditions.

Proof. Pick any ε > 0 and let δ > 0 be such that if d(x, y) < δ then
d(fn(x), fn(y)) < ε/2 for all n ≥ 0. Let Ba = {x ∈ X | d(x, a) < δ}.
Pick any distinct x, y ∈ Ba. Then for every n ≥ 0, d(fn(x), a) < ε/2 and
d(fn(y), a) < ε/2. Thus by the triangle inequality, d(fn(y), fn(x)) < ε for
all n ≥ 0. Consequently, f is not sensitive.

Proposition 4.4. Suppose that f : X → X is a map with simple dy-
namics with repellor r and attractor a. Then f has only two periodic points,
a and r.

Proof. It will be shown that the only periodic points are the fixed points
a, r. Suppose on the contrary that x ∈ X − {a, r} is periodic. Then there
exists an m such that fm(x) = x. Furthermore, f({x, f(x), . . . , fm−1(x)}) =
{x, f(x), . . . , fm−1(x)} and a 6∈ {x, f(x), . . . , fm−1(x)}. Let ε=d(a, {x, f(x),
. . . , fm−1(x)}), which is positive. Then d(fn(x), a) ≥ ε for all n, which is
impossible.

Corollary 4.5. Suppose that f : X → X is a map with simple dynam-
ics with repellor r and attractor a where X does not have the trivial topology
and |X| > 2. Then f does not have a dense set of periodic points.

Proposition 4.6. Suppose that f : X → X is a map with simple dy-
namics with repellor r and attractor a. Then f is not transitive.

Proof. Let ε = d(a, r)/3, V = {x ∈ X | d(x, r) < ε} and Ba = {x ∈ X |
d(x, a) < ε}. Then V ∩Ba = ∅. Let δε > 0 be such that if d(x, a) < δε then
d(fn(x), a) < ε for all n ≥ 0. Define U = {x ∈ X | d(x, a) < δε}. Then
fn(U) ⊂ Ba for all n. Hence, fn(U) ∩ V = ∅ for all n ≥ 0. So f is not
transitive.

Lemma 4.7. Suppose that f, g : X → X are commuting onto maps such
that f has simple dynamics with attractor a and repellor r. Then g(a) = a
and g(r) = r.

Proof. First notice that f(g(a)) = g(f(a)) = g(a) and f(g(r)) = g(f(r))
= g(r). Thus, g(a) and g(r) are fixed points of f . Therefore, g(a), g(r) ∈
{a, r}.

For the purpose of a contradiction, suppose that g(a) = r. Let 0 <
ε < (1/4)d(a, r). Since X is compact, g is uniformly continuous. Hence,
there exists a δε > 0 such that if d(x, y) < δε then d(g(x), g(y)) < ε. Pick
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y ∈ X − {r} such that g(y) 6∈ {a, r}. Since a is an attractor, there ex-
ists an N1 such that d(fn(y), a) < δε for all n ≥ N1. So d(g(fn(y)), r) =
d(g(fn(y)), g(a)) < ε for all n ≥ N1. Also since g(y) 6= r, there exists an N2

such that d(fn(g(y)), a) < ε for all n ≥ N2. Let N = max{N1, N2}. Then
d(fN (g(y)), a) < (1/4)d(a, r) and d(fN (g(y)), r) < (1/4)d(a, r). So by the
triangle inequality, d(a, r) < (1/2)d(a, r), which is impossible since a and r
are distinct.

To show that g(r) = r suppose on the contrary that there exists z ∈
X − {r} such that g(z) = r. Choose ε and δε in a similar way. Then there
exists an M such that d(a, fn(z)) < δε for all n ≥M . Hence,

d(a, r) = d(g(a), fM (r)) = d(g(a), fM (g(z)))

= d(g(a), g(fM (z))) < ε < (1/4)d(a, r).

Again, this is impossible since a and r are distinct. Since g is onto, g(r) = r.

Theorem 4.8. Let X̂ = lim←−{X, f} and h : X → X be such that h and f
are both onto and commute. If h has simple dynamics with attractor a and
repellor r, then ĥ : X̂ → X̂, defined by ĥ(〈xi〉∞i=1) = 〈h(xi)〉∞i=1, has simple
dynamics with attractor â = 〈a〉∞i=1 and repellor r̂ = 〈r〉∞i=1.

Proof. Since h(a) = a and h(r) = r, it follows that f(a) = a and f(r) = r

by Lemma 4.7. Thus â = 〈a〉∞i=1 and r̂ = 〈r〉∞i=1 are elements of X̂ and fixed
points of ĥ. Pick ε > 0 and let x̂ = 〈xi〉∞i=1 ∈ X̂ − {r̂}. Then each xi is in
X − {r}. Let ε > 0. Then there exists an m such that

∞∑
i=m+1

diam(X)
2i

<
ε

2
.

For each i ∈ {1, . . . ,m} there exists Ni such that d(hn(xi), a) < ε/2 for all
n ≥ Ni. Let N = max{N1, . . . , Nm}. Then for every n ≥ N ,

d̂(ĥn(x̂), â) =
∞∑
i=1

d(hn(xi), a)
2i

=
m∑
i=1

d(hn(xi), a)
2i

+
∞∑

i=m+1

d(hn(xi), a)
2i

<
ε

2

m∑
i=1

1
2i

+
ε

2
≤ ε.

Also, since h has simple dynamics, there exists δε/2 > 0 such that if d(x, a) <
δε/2, then d(hn(x), a) < ε/2 for all n ≥ 0. Let δ̂ε = δε/2/2m. Then if d̂(x̂, â)
< δ̂ε,

m∑
i=1

d(xi, a)
2i

<
δε/2

2m
.
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Thus d(xi, a) < δε/2 for all i ∈ {0, 1, . . . ,m}. So d(hn(xi), a) < ε/2 for all n
and i ≤ m. Thus by a similar argument, d̂(hn(x̂), â) < ε for all n and ĥ has
simple dynamics.

The following propositions show that f(x) = x2 and g(x) =
√
x have

simple dynamics on [0, 1].

Proposition 4.9. Let f : I → I be a map such that f(0) = 0, f(1) = 1
and for x ∈ (0, 1), f(x) < x. Then f has simple dynamics with attractor 0
and repellor 1.

Proposition 4.10. Let f : I → I be a map such that f(0) = 0, f(1) = 1
and for x ∈ (0, 1), f(x) > x. Then f has simple dynamics with attractor 1
and repellor 0.

5. Main result. Before we construct the chainable continuum and
homeomorphisms with the desired properties, we need some results to help
prove that the constructions have the stated properties:

Suppose that {xn}∞n=0 is an increasing sequence in (0, 1) that converges
to 1 and {xn}−∞n=0 is a decreasing sequence in (0, 1) that converges to 0. Let
An = [xn, xn+1]. Then we say that {An}∞n=−∞ is a bi-infinite partition of
(0, 1).

Proposition 5.1. Suppose that f : [a, b] → R is a map such that there
exists a finite set Y ⊂ [a, b] and c > 0 such that f ′(x) > c for every x ∈
[a, b]− Y . If [x, y] ⊂ [a, b] then

diam(f([x, y])) ≥ cdiam([x, y]).

Proposition 5.2. Suppose that f : [a, b] → R is a map such that there
exists a finite set Y ⊂ [a, b] and c > 0 such that −f ′(x) > c for every
x ∈ [a, b]− Y . If [x, y] ⊂ [a, b] then

diam(f([x, y])) ≥ cdiam([x, y]).

Theorem 5.3. Let {An}∞n=−∞, where An = [xn, xn+1], be a bi-infinite
partition of (0, 1) and f : [0, 1] → [0, 1] be a map that is differentiable on
D =

⋃∞
n=−∞(int(An) − Cn) where Cn is a finite subset of int(An) with the

following properties:

(1) there exists c > 1 such that for every n ∈ Z one of the following is
true:

(a) f ′(x) ≥ c for every x ∈ int(An)− Cn,
(b) −f ′(x) ≥ c for every x ∈ int(An)− Cn,

(2) An−1 ∪An ∪An+1 ⊂ f(An) for each n,
(3) f({xn}∞n=−∞) = {xn}∞n=−∞.

Then f is PCF-expansive.
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Proof. We first prove

Claim 1. Let A be a subarc of I such that xk is an endpoint of A. Then
one of the following must be true:

(1) there exists an m such that xm is an endpoint of f(A),
(2) xk−1 ∈ A,
(3) xk+1 ∈ A.

Suppose that (2) and (3) are false. Then A ⊂ Ak−1 or A ⊂ Ak. Since
f |Ak−1

and f |Ak
are one-to-one and f({xn}∞n=−∞) = {xn}∞n=−∞, it follows

that xm = f(xk) is an endpoint of f(A) for some m.

Claim 2. Let A be a subarc of I such that xk is an endpoint of A. Then
there exists a natural number n such that |fn(A) ∩ {xk}∞k=−∞| ≥ 2.

Suppose on the contrary that |fn(A) ∩ {xk}∞k=−∞| < 2 for all n. Then
by induction and Claim 1, there exists a sequence of integers {kn}∞n=1 such
that k1 = k and xkn is an endpoint of fn−1(A). Thus, fn(A) ⊂ Akn+1−1

or fn(A) ⊂ Akn+1 for each n. Therefore by induction and Propositions 5.1
and 5.2,

diam(fn(A)) ≥ cn diam(A).

Since diam(A) > 0, there exists an n such that diam(fn(A)) > 1. However,
this contradicts fn(A) ⊂ I.

Claim 3. If A is a subarc of I, then there exists a p such that fp(A) ∩
{xk}∞k=−∞ 6= ∅.

Suppose on the contrary that fp(A) ∩ {xk}∞k=−∞ = ∅ for all p. Then
fp(A) ⊂ Anp for some np. Therefore by induction, and Propositions 5.1
and 5.2,

diam(fp(A)) ≥ cp diam(A).

Since diam(A) > 0, there exists an n such that diam(fn(A)) > 1. However,
this contradicts fn(A) ⊂ I.

Claim 4. If A is a subarc of I, then there exists a q such that |f q(A) ∩
{xk}∞k=−∞| ≥ 2.

By Claim 3, there exist p and k such that xk ∈ fp(A). Thus there exists
a subarc A′ of fp(A) such that xk is an endpoint of A′. Hence by Claim 2,
there exists an n such that |fn(A′) ∩ {xk}∞k=−∞| ≥ 2. Let q = n + p. Then
|f q(A) ∩ {xk}∞k=−∞| ≥ 2.

Claim 5. Given ε > 0 and k, there exists Nk
ε such that dH(fn(Ak), I)

< ε for every n ≥ Nk
ε .

There exist integers k1, k2 such that xk1 < ε and 1− xk2 < ε. Let Nk
ε =

max{|k − k1|, |k− k2|}. Then it follows from condition (2) of the hypothesis
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of the theorem and induction that [xk1 , xk2 ] ⊂ fn(Ak) for all n ≥ Nk
ε . Thus

dH(fn(Ak), I) ≤ dH([xk1 , xk2 ], I) < ε.

To prove the theorem, let ε > 0 and A be any subarc of I. Then by
Claim 4, there exist q and k such that Ak ⊂ f q(A). Then by Claim 5, there
exists Nk

ε such that dH(fn(Ak), I) < ε for every n > Nk
ε . Thus for every

n ≥ Nk
ε + q, dH(fn(A), I) < ε.

Now for the construction of the chainable continuum and homeomor-
phisms with simple dynamics: Let H : [5/16, 3/8]→ [0, 1] be defined by

H(x) = −7x+ 45/16,

L : [3/8, 5/8]→ [0, 1] be defined by

L(x) = (5/2)x− 3/4,

and g : [0, 1]→ [0, 1] be defined by

g(x) =
{

2x if x ≤ 1/3,
(1/2)x+ 1/2 if x > 1/3.

gHxL

f HxL

g-1HxL

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. f(x), g(x), and g−1(x)
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Notice that g is a homeomorphism and that

g−1(x) =
{

(1/2)x if x ≤ 2/3,
2x− 1 if x > 2/3.

Next let f : [0, 1]→ [0, 1] be defined by

f(x) =


0 if x = 0,
gn ◦H ◦ g−n(x) if x ∈ (gn−1(5/8), gn(3/8)],
gn ◦ L ◦ g−n(x) if x ∈ (gn(3/8), gn(5/8)],
1 if x = 1,

where n ∈ Z (see Figure 1). Then

f(x)=



0 if x = 0,
−7(x− gn(3/8)) + gn−1(3/8) if x ∈ (gn−1(5/8), gn(3/8)]

and n < 0,
(5/2)(x− gn(3/8)) + gn−1(3/8) if x ∈ (gn(3/8), gn+1(17/60)]

and n < 0,
10(x− gn(5/8)) + gn+1(5/8) if x ∈ (gn+1(17/60), gn(5/8)]

and n < 0,
−7x+ 45/16 if x ∈ (5/16, 3/8],
(5/2)x− 3/4 if x ∈ (3/8, 5/8],
(−7/4)(x− gn−1(5/8)) + gn(5/8) if x ∈ (gn−1(5/8), gn−1(2/3)]

and n > 0,
−7(x− gn−1(2/3)) + gn−1(71/96) if x∈(gn−1(2/3), gn−1(65/96)]

and n > 0,
−28(x− gn(3/8)) + gn−1(3/8) if x ∈ (gn−1(65/96), gn(3/8)]

and n > 0,
10(x− gn(3/8)) + gn−1(3/8) if x ∈ (gn(3/8), gn−1(43/60)]

and n > 0,
(5/2)(x− gn(5/8)) + gn+1(5/8) if x ∈ (gn−1(43/60), gn(5/8)]

and n > 0,
1 if x = 1.

Notice that if x ∈ (gn−1(5/8), gn(3/8)] for some n, then

g ◦ f(x) = g ◦ f |(gn−1(5/8),gn(3/8)](x) = g ◦ gn ◦H ◦ g−n(x)

= gn+1 ◦H ◦ g−n−1(g(x))
= f |(gn(5/8),gn+1(3/8)] ◦ g(x) = f ◦ g(x).
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Similarly, it can be shown that if x ∈ (gn(3/8), gn(5/8)] then

g ◦ f(x) = g ◦ f(gn(3/8),gn(5/8)](x) = f(gn+1(3/8),gn+1(5/8)] ◦ g(x) = f ◦ g(x).

Thus f ◦ g = g ◦ f .

Corollary 5.4. f : I → I is a PCF-expansive map.

Proof. Let x2n = gn(3/8) and x2n+1 = gn(5/8). Then

f(x2n) = f(gn(3/8)) = gn−1(3/8) = x2n−2,

f(x2n+1) = f(gn(5/8)) = gn+1(5/8) = x2n+3.

Also, f({x2n}∞n=−∞) = {x2n}∞n=−∞ and f({x2n+1}∞n=−∞) = {x2n+1}∞n=−∞.
So f({xn}∞n=−∞) = {xn}∞n=−∞.

Next, let A2n = [x2n, x2n+1] and A2n+1 = [x2n+1, x2n+2]. Then

f(A2n) = f([x2n, x2n+1]) = [x2n−2, x2n+3],
f(A2n+1) = f([x2n+1, x2n+2]) = [x2n, x2n+3].

Hence An−1 ∪ An ∪ An+1 ⊂ f(An) for each n. Finally, f ′(x) ≥ 7/4 for all
x ∈ A2n and −f ′(x) ≥ 7/4 for all x ∈ A2n+1. Thus f satisfies the hypothesis
of Theorem 5.3.

Define X̂ = lim←−{X, f}
∞
i=1 and let f̂ be the shift homeomorphism on X̂.

Let p = g2◦f and q = g−2 (see Figure 2). (Notice that g is a homeomorphism,
so g−2 is also.) Then p ◦ q = q ◦ p = f .

Proposition 5.5. The maps p, q : I → I have simple dynamics.

Proof. Notice that p(0) = q(0) = 0, p(1) = q(1) = 1, p(x) > x for all
x ∈ (0, 1) and q(x) < x for all x ∈ (0, 1). Thus, p and q have simple dynamics
by Propositions 4.9 and 4.10.

Define p̂, q̂ : X̂ → X̂ by p̂(〈xi〉∞i=1) = 〈p(xi)〉∞i=1 and q̂(〈xi〉∞i=1) =
〈q(xi)〉∞i=1. The following is the main result of this paper:

Theorem 5.6. p̂, q̂ : X̂ → X̂ are homeomorphisms of a chainable con-
tinuum such that

(1) p̂ and q̂ commute,
(2) p̂ and q̂ have simple dynamics,
(3) f̂ = q̂ ◦ p̂ is a positively continuum-wise expansive homeomorphism

that is chaotic in the sense of Devaney and in the sense of Li and
Yorke and has positive entropy.

Proof. Since p ◦ q = q ◦ p = f , it follows that p̂ ◦ q̂ = q̂ ◦ p̂ = f̂ and
thus p̂ and q̂ are homeomorphisms. By Proposition 5.5, p and q have simple
dynamics, therefore by Theorem 4.8, p̂ and q̂ have simple dynamics. Since
f is positively continuum-wise fully expansive, f is chaotic in the sense of
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Fig. 2. p(x) and q(x)

Devaney and in the sense of Li and Yorke by Corollary 3.8. Now, it follows
from Theorem 3.9 that f̂ is positively continuum-wise fully expansive and
hence has positive entropy and chaos in the sense of Devaney and in the
sense of Li and Yorke by Theorems 3.3–3.5.

A continuum X is decomposable if there exist proper subcontinua A
and B such that A ∪ B = X. A continuum is indecomposable if it is not
decomposable. The following theorem by Kato in [11] shows that X̂ is inde-
composable:

Theorem 5.7. If h : X → X is a PCF-expansive homeomorphism, then
X must be indecomposable.

A continuum is hereditarily indecomposable if every subcontinuum is in-
decomposable. X̂ is not hereditarily indecomposable because it contains
an arc. This can be shown by first noticing that f |[3/8,5/8] maps [3/8, 5/8]
one-to-one onto [3/16, 13/16]. Let A1 = [3/16, 13/16] and for i > 1 let
Ai = f−i+1(A1). Then Ai ⊂ Ai−1 and f |Ai is one-to-one for each i > 1.
Hence, A = lim←−{Ai, f |Ai+1}∞i=1 is a subarc of X̂.
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Corollary 5.8. p, q : I → I are maps of the interval I such that

(1) p and q commute,
(2) p and q have simple dynamics,
(3) f = q◦p is a positively continuum-wise expansive map that is chaotic

in the sense of Devaney and in the sense of Li and Yorke and has
positive entropy.

However, it is known that self-homeomorphisms of the interval do not
admit any of the stated types of chaos. See, for example, [14] and [16].
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