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RECURRENCE FOR COSINE SERIES WITH BOUNDED GAPS

KATUSI FUKUYAMA and DINESH NEUPANE (Kobe)

Abstract. Ullrich, Grubb and Moore proved that a lacunary trigonometric series
satisfying Hadamard’s gap condition is recurrent a.e. We prove the existence of a recurrent
trigonometric series with bounded gaps.

1. Introduction. If we regard the sequence {cos2mn;z} as a sequence
of random variables on the unit interval equipped with the Lebesgue mea-
sure, it behaves like a sequence of independent random variables when ny
diverges rapidly. For example, by assuming Hadamard’s gap condition

nk+1/nk>q>1 (k:1,2,...),

the central limit theorem for ) cos2mngx was proved by Salem and Zyg-
mund [9], the law of the iterated logarithm by Erdds and G4l [4], and the
almost sure invariance principles by Philipp and Stout [§].

As to recurrence, Hawkes [7] proved that {ZLVZI exp(2mingz)}NeN is
dense in the complex plane for a.e. x assuming the very strong gap condi-
tion Y mg/ngs1 < oo. Anderson and Pitt [I] weakened the gap condition
t0 Ngy1/np — 00 or ng = a®, where a > 2 is an integer. These results im-
ply the recurrence of Zgzl cos 2mngx. For this one-dimensional recurrence,
Ullrich, Grubb and Moore [111, 5] succeeded in weakening the condition to
Hadamard’s gap condition.

It is very natural to ask if the gap condition can be replaced by a weaker
one. For the central limit theorem, Erdés [3] relaxed the gap condition to
ngi1/nk > 1+cp/Vk with ¢, — oo. This condition is best possible. Actually
Erdds [3] and Takahashi [10] constructed counterexamples to the central
limit theorem satisfying nj,1/nx > 1+ ¢/Vk with ¢ > 0. But there still
remains the possibility that some series having smaller gaps may obey the
central limit theorem. Indeed, for any ¢(k) T oo, Berkes [2] proved the
existence of ) cos 2mniz with small gaps ng+1 —ng = O(¢(k)) which obeys
the central limit theorem. And it was a longstanding problem whether some
trigonometric series with bounded gaps ni11 — nx = O(1) can obey the
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central limit theorem. Recently the existence of such series was proved in
[6] and the problem was solved.

In this paper, we consider the same problem for recurrence, and prove
the existence of recurrent series with bounded gaps.

THEOREM 1. Suppose that {ny} satisfies Hadamard’s gap condition and
let {m;} be an increasing arrangement of N\ {ny}. Put

N
Sn(x) = Z oS 2mm,; .
j=1

Then {Sn(z)} is recurrent for a.e. x.

The sequence {ny} satisfying Hadamard’s gap condition has null density,
limg .o ng/k = 0, and its complement sequence {my} defined above has
full density, limg_,, my/k = 1. Both of these define recurrent trigonometric
series. We can also construct a sequence with bounded gaps and intermediate
density defining recurrent trigonometric series.

THEOREM 2. Letp/q (p,q € N) be an arbitrary rational number in (0,1).
Put I, ={lg+j|1=0,1,...; 5 =1,...,p} and suppose that {ny} is a
sequence satisfying Hadamard’s gap condition and {ng} N1y, = 0. Let {m;}
be an increasing arrangement order of {ng} U Ip,. Then > cos2mmyx is
recurrent for a.e. x, and {m;} has density limy_,.c my/k = p/q.

The proofs are modifications of those in Grubb and Moore [5]. We use
the properties of the Dirichlet kernel.

2. Proof. We use a lemma which is a modification of that in Grubb
and Moore [5].

LEMMA 3. Let I be a non-empty open interval, Ex,Fn C I (N € N),
c>0, and 0 < éy | 0. Assume that for any x € Ey, there exists Ny such
that for N > Ny, there exists an interval Jy with x € Jy, |Jn| = 0y and
|Fny N JN| > c|Jn|. If x € En infinitely often for a.e. x € I, then x € Fy
infinitely often for a.e. x € 1.

Proof of Theorem 1. Take p > 0 arbitrarily and take an open interval
I C[0,1] such that 2sin7wx > p on I. Since p is arbitrary, it is sufficient to
prove the recurrence for a.e. x € I.

Put A = 27m(q/(q — 1) + 4/p?) and take an arbitrary ¢ € (0, 4/2). We
have
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SN(x) = Dy () — % - Z cos 2mn;x,

jinj<my
where D,, is the Dirichlet kernel given by
sinm(2n + 1)z

1 n
D, (z) = 5t Zcos 2rjr = Syt

j=1
It is easily verified that | D/ (x)| < 2m(2n + 2)/p* < 87n/p? on I and
T(x)] < 2m(n1+---+ny) < 2mn;q/(q—1) where Tj(z) = cos 2mmiz +- -+
cos 2mnjx. Hence |Syy ()] < Amy on I. Take an arbitrary a € R and put

Ey={zxel:Sy(z)>a, Syti(x) < a},
Fy={xel:|Sn(z)—a|] <eor|Syyi(z)—al <e}.

By noting | Dy,(z)| < 1/p and the properties sup; Tj(z) = oo and inf; Tj(x) =
—o0 a.e. of lacunary trigonometric series (p. 205 of Zygmund [12]), we have
supy Sy (z) = oo and infy Sy(x) = —oo for a.e. x € I. Hence z € Ey
infinitely often for a.e. x € I.

Pick an arbitrary z € En. Put 6y = 1/my41 and Jy = (x — 0n/2,
x+9n/2). We have Jy C I for large N. We divide the proof into two cases:

CASE I: there ezists an xog € Jy such that Sy(zo) = a. Then we have
|Sn(z) —a| <eon (zg— |Inle/A, xo + |In|e/A). Since |JInle/A < |JIn]|/2,
either (zg — |Jnle/A) or (xg,zo+ |Jn|e/A) is contained in Jy and hence in
Fn N Jy. Therefore |[Fxy N Jy| > |JInle/A.

Case II: Sy(z) > a on Jy. As x € En, we have Sy(x) > a and
Snt1(z) < a. Since |Jy| = 1/mp41, there exists an ;1 € Jy such that
cos2rmpy4121 = 0. Hence Sy41(z1) = Snv(z1) > a, and therefore we can
find zo € Jy such that Syi1(z2) = a. In the same way as in the previous
case, we can see that |[Fy N Jy| > |Jnle/A.

Applying the lemma, we see that x € Fyy infinitely often for a.e. z € I. u

Theorem 2 can be proved in the same way by noting that

2 1 2 — 2
Zcos%r(lq—l—j)a:: sin7((2n + )q;—.])x sin(q + ])ZE'
— sin Tqx
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