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RECURRENCE FOR COSINE SERIES WITH BOUNDED GAPS

BY

KATUSI FUKUYAMA and DINESH NEUPANE (Kobe)

Abstract. Ullrich, Grubb and Moore proved that a lacunary trigonometric series
satisfying Hadamard’s gap condition is recurrent a.e. We prove the existence of a recurrent
trigonometric series with bounded gaps.

1. Introduction. If we regard the sequence {cos 2πnkx} as a sequence
of random variables on the unit interval equipped with the Lebesgue mea-
sure, it behaves like a sequence of independent random variables when nk

diverges rapidly. For example, by assuming Hadamard’s gap condition

nk+1/nk > q > 1 (k = 1, 2, . . . ),

the central limit theorem for
∑

cos 2πnkx was proved by Salem and Zyg-
mund [9], the law of the iterated logarithm by Erdős and Gál [4], and the
almost sure invariance principles by Philipp and Stout [8].

As to recurrence, Hawkes [7] proved that {
∑N

k=1 exp(2πinkx)}N∈N is
dense in the complex plane for a.e. x assuming the very strong gap condi-
tion

∑
nk/nk+1 < ∞. Anderson and Pitt [1] weakened the gap condition

to nk+1/nk → ∞ or nk = ak, where a ≥ 2 is an integer. These results im-
ply the recurrence of

∑N
k=1 cos 2πnkx. For this one-dimensional recurrence,

Ullrich, Grubb and Moore [11, 5] succeeded in weakening the condition to
Hadamard’s gap condition.

It is very natural to ask if the gap condition can be replaced by a weaker
one. For the central limit theorem, Erdős [3] relaxed the gap condition to
nk+1/nk > 1+ck/

√
k with ck →∞. This condition is best possible. Actually

Erdős [3] and Takahashi [10] constructed counterexamples to the central
limit theorem satisfying nk+1/nk > 1 + c/

√
k with c > 0. But there still

remains the possibility that some series having smaller gaps may obey the
central limit theorem. Indeed, for any φ(k) ↑ ∞, Berkes [2] proved the
existence of

∑
cos 2πnkx with small gaps nk+1−nk = O(φ(k)) which obeys

the central limit theorem. And it was a longstanding problem whether some
trigonometric series with bounded gaps nk+1 − nk = O(1) can obey the
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central limit theorem. Recently the existence of such series was proved in
[6] and the problem was solved.

In this paper, we consider the same problem for recurrence, and prove
the existence of recurrent series with bounded gaps.

Theorem 1. Suppose that {nk} satisfies Hadamard’s gap condition and
let {mj} be an increasing arrangement of N \ {nk}. Put

SN (x) =
N∑

j=1

cos 2πmjx.

Then {SN (x)} is recurrent for a.e. x.

The sequence {nk} satisfying Hadamard’s gap condition has null density,
limk→∞ nk/k = 0, and its complement sequence {mk} defined above has
full density, limk→∞mk/k = 1. Both of these define recurrent trigonometric
series. We can also construct a sequence with bounded gaps and intermediate
density defining recurrent trigonometric series.

Theorem 2. Let p/q (p, q ∈ N) be an arbitrary rational number in (0, 1).
Put Ip,q = {lq + j | l = 0, 1, . . . ; j = 1, . . . , p} and suppose that {nk} is a
sequence satisfying Hadamard’s gap condition and {nk}∩Ip,q = ∅. Let {mj}
be an increasing arrangement order of {nk} ∪ Ip,q. Then

∑
cos 2πmkx is

recurrent for a.e. x, and {mj} has density limk→∞mk/k = p/q.

The proofs are modifications of those in Grubb and Moore [5]. We use
the properties of the Dirichlet kernel.

2. Proof. We use a lemma which is a modification of that in Grubb
and Moore [5].

Lemma 3. Let I be a non-empty open interval, EN , FN ⊂ I (N ∈ N),
c > 0, and 0 < δN ↓ 0. Assume that for any x ∈ EN , there exists N0 such
that for N ≥ N0, there exists an interval JN with x ∈ JN , |JN | = δN and
|FN ∩ JN | ≥ c|JN |. If x ∈ EN infinitely often for a.e. x ∈ I, then x ∈ FN

infinitely often for a.e. x ∈ I.

Proof of Theorem 1. Take ρ > 0 arbitrarily and take an open interval
I ⊂ [ 0, 1 ] such that 2 sinπx > ρ on I. Since ρ is arbitrary, it is sufficient to
prove the recurrence for a.e. x ∈ I.

Put ∆ = 2π(q/(q − 1) + 4/ρ2) and take an arbitrary ε ∈ (0, ∆/2). We
have
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SN (x) = DmN (x)− 1
2
−

∑
j : nj≤mN

cos 2πnjx,

where Dn is the Dirichlet kernel given by

Dn(x) =
1
2

+
n∑

j=1

cos 2πjx =
sinπ(2n+ 1)x

2 sinπx
.

It is easily verified that |D′n(x)| ≤ 2π(2n + 2)/ρ2 ≤ 8πn/ρ2 on I and
|T ′j(x)| ≤ 2π(n1 + · · ·+nj) ≤ 2πnjq/(q−1) where Tj(x) = cos 2πn1x+ · · ·+
cos 2πnjx. Hence |S′N (x)| ≤ ∆mN on I. Take an arbitrary a ∈ R and put

EN = {x ∈ I : SN (x) ≥ a, SN+1(x) < a},
FN = {x ∈ I : |SN (x)− a| < ε or |SN+1(x)− a| < ε}.

By noting |Dn(x)| ≤ 1/ρ and the properties supj Tj(x) =∞ and infj Tj(x) =
−∞ a.e. of lacunary trigonometric series (p. 205 of Zygmund [12]), we have
supN SN (x) = ∞ and infN SN (x) = −∞ for a.e. x ∈ I. Hence x ∈ EN

infinitely often for a.e. x ∈ I.
Pick an arbitrary x ∈ EN . Put δN = 1/mN+1 and JN = (x − δN/2,

x+ δN/2). We have JN ⊂ I for large N . We divide the proof into two cases:

Case I: there exists an x0 ∈ JN such that SN (x0) = a. Then we have
|SN (x)− a| < ε on (x0 − |JN |ε/∆, x0 + |JN |ε/∆). Since |JN |ε/∆ ≤ |JN |/2,
either (x0− |JN |ε/∆) or (x0, x0 + |JN |ε/∆) is contained in JN and hence in
FN ∩ JN . Therefore |FN ∩ JN | ≥ |JN |ε/∆.

Case II: SN (x) > a on JN . As x ∈ EN , we have SN (x) ≥ a and
SN+1(x) < a. Since |JN | = 1/mN+1, there exists an x1 ∈ JN such that
cos 2πmN+1x1 = 0. Hence SN+1(x1) = SN (x1) ≥ a, and therefore we can
find x2 ∈ JN such that SN+1(x2) = a. In the same way as in the previous
case, we can see that |FN ∩ JN | ≥ |JN |ε/∆.

Applying the lemma, we see that x ∈ FN infinitely often for a.e. x ∈ I.

Theorem 2 can be proved in the same way by noting that
n∑

l=1

cos 2π(lq + j)x =
sinπ((2n+ 1)q + 2j)x− sinπ(q + 2j)x

2 sinπqx
.
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