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Abstract. We study the second Hochschild cohomology group of the preprojective
algebra of type D4 over an algebraically closed field K of characteristic 2. We also calculate
the second Hochschild cohomology group of a non-standard algebra which arises as a socle
deformation of this preprojective algebra and so show that the two algebras are not derived
equivalent. This answers a question raised by Holm and Skowronski.

Introduction. The main work in this paper goes into determining the
second Hochschild cohomology group HH?(A) for two finite-dimensional al-
gebras A over a field of characteristic 2 in order to show that they are not
derived equivalent. We let A; denote the preprojective algebra of type Dy;
this is a standard algebra. We introduce, in Section [l an algebra A, by
quiver and relations; it is a non-standard algebra which is socle equivalent
to A;. We note that A; and As are isomorphic in the case where the un-
derlying field has characteristic not 2. (We refer to [6] for more information
about standard and non-standard selfinjective algebras.) The work in this
paper is motivated by the question asked by Holm and Skowronski as to
whether or not these two algebras A; and As are derived equivalent.

The algebras A; and As are selfinjective algebras of polynomial growth.
The main result of this paper (Corollary shows that they are not derived
equivalent. This answer to the question of Holm and Skowroriski enables one
to complete their derived equivalence classification of all symmetric algebras
of polynomial growth in [6, 5.20]. We recall that the complete derived equiv-
alence classification of selfinjective algebras of finite representation type was
given in [2]. Computation of the second Hochschild cohomology group was
then used in [I] to give an alternative proof to distinguish between derived
equivalence classes of standard and non-standard selfinjective algebras of
finite representation type. Thus the second Hochschild cohomology group is
a powerful tool for distinguishing algebras up to derived equivalence.
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Throughout this paper, we let A denote a finite-dimensional algebra
over an algebraically closed field K. We start, in Section [I} by giving the
quiver and relations for .4; and As. We are interested only in the case when
char K = 2, since if char K # 2 then the algebras are isomorphic and the
second Hochschild cohomology group is known by [3]. In Section [2| we give
a short description of the projective resolution of [4] which we use to find
HH?(A). The remaining two sections determine HH?(A) for A = A;, As. As
a consequence, we show in Corollary [4.2] that dim HH?(A;) # dim HH?(A»)
and hence these two algebras are not derived equivalent.

1. The algebras A; and As. In this section we describe the algebras
A; and As by quivers and relations. We assume that K is an algebraically
closed field and char K = 2. The standard algebra A; is the preprojective
algebra of type Dy, and it was shown in [3] that, in the case when char K # 2,
we have HH?(A;) = 0. We will see that this is in contrast to the char K = 2
case.

The algebra A; is given by the quiver Q:

3

with relations
Ba+déy+e =0, ~0=0, &=0, af=0.

The algebra A, is the non-standard algebra given by the same quiver Q
with relations

Ba+dv+e€=0, v=0, =0, afa=0, P[af=0, of=adyp.

Note that we write our paths in a quiver from left to right.

We need to find a minimal set of relations for each algebra. We start
with Ajy. The set {af—adv3, e, 70, fa+dy+e, afa, faf} is not a minimal
set of generators for I where Ay = KQ/I. Let x = fa + dy + €€ and let
y = af—advy[. We will show that aF« is in the ideal generated by x, y, v, Ee.
Using that char K = 2, we have

afa =ya+ adyfa
= ya + axfa + a(fa + €)fa
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= ya + axfa + afafa + aex + ael(dy + €€)
= ya + axfa + aefx + afafa + ardy + a(fa + §v)dy + aele€
= ya + azxfa + aer + axdy + aeleé + afafa + afax + afa(fa + €)
+ adydry
= ya + axfa + aelr + axdy + aee€ + afar + afael + adydry.
However, affaef = yaeé + adyfBaef = yae + adyre + ady(dy+ef)ef. Thus
afa is in the ideal generated by x,y,vd, €. Using a similar argument for

Baf, we see that I is generated by the set {aff — adyf3,Ee, V6, Ba+ v+ €€}
This gives the following result.

ProprosiTION 1.1. For As let
ff:aﬁ_aélyﬁa f22:£€7
f3 =15, f1 = Bo+ 67 + €€.

Then f* = {f% f3, f2, f1} is a minimal set of generators of I where Ay =

KQ/I.
We now consider the algebra A;.
ProprosiTION 1.2. For Aj let
ff=aB, f3=¢e
fs =70, [i=PBo+0y+e

Then f2 = {f2, f3, f2, f?} is a minimal set of generators for I' where A; =
KQ/I'.

2. The projective resolution. To find the Hochschild cohomology
groups for any finite-dimensional algebra A, a projective resolution of A as
a A, A-bimodule is needed. In this section we look at the projective resolu-
tions of [4] and [5] in order to describe the second Hochschild cohomology
group. Let K be a field and let A = KQ/I be a finite-dimensional alge-
bra where Q is a quiver, and [ is an admissible ideal of K Q. Fix a min-
imal set f2 of generators for the ideal I. For any = € f?, we may write
T = Z;zl Cja1j - Ak Qs where the a;; are arrows in Q and ¢; € K,
that is, z is a linear combination of paths ay;---ag;---as;; for j=1,... 7.
We may assume that there are (unique) vertices v and w such that each
path ay;---ag;---as;; starts at v and ends at w for all j, so that z = varw.
We write o(z) = v and t(z) = w. Similarly o(a) is the origin of the arrow a
and t(a) is the terminus of a.

In [4, Theorem 2.9], the first four terms of a minimal projective resolution
of A as a A, A-bimodule are described:
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The projective A, A-bimodules Q°, Q', Q? are given by

Q' = @ Av @ v,

v, vertex

Q'= @ A0(a) @ ta)4,

a, arrow

Q* = @ Ao(z) @ t(x)A.

zef?

Throughout, all tensor products are over K, and we write ® for ®. The
maps g, A1, As and Az are all A, A-bimodule homomorphisms. The map
g : Q" — A is the multiplication map given by v ® v — v. The map A; :
Q' — Q° is given by o(a) ® t(a) — o(a) ® o(a)a — at(a) @ t(a) for each
arrow a. With the notation for z € f2 given above, the map As : Q% — Q!
is given by

r S5
o(z) ® t(x) — Z c; (Z aij- - Qr—1); @ Qk41); - asjj>,
k=1

j=1

where aq; - - - A(k—1)j @ Q(k+1)5 """ As;5 € Ao(akj) & t(akj)/l.

In order to describe the projective bimodule @3 and the map Az in the
A, A-bimodule resolution of A in [4], we need to introduce some notation
from [0]. Recall that an element y € K Q is uniform if there are vertices v, w
such that y = vy = yw. We write o(y) = v and t(y) = w. In [5], Green,
Solberg and Zacharia show that there are sets f™ in K Q, for n > 3, consisting
of uniform elements y such that y = 3 ¢ pn—1 @1y = 3¢ po—2 25, for unique
rz, S, € KQ such that s, € I. These sets have special properties relative
to a minimal projective A-resolution of A/, where t is the Jacobson radical
of A. Specifically, the nth projective in the minimal projective A-resolution

of A/vis P, ¢ t(y)A.

In particular, to determine the set f3, we follow explicitly the construc-
tion given in [B, §1]. Let f' denote the set of arrows of Q. Suppose the
intersection (€, fZK Q)N (B, fjll) is equal to some (€D, f*K Q). We then
discard all elements of the form f3* that are in €, f2I; the remaining ones
form precisely the set f3.

Thus, for y € f3 we have y € (@, fPKQ) N (EB] fle). So we may write
y = > fpi = Y qif?r; with p;,q;, 7 € KQ such that p;,q; are in the
ideal generated by the arrows of K Q, and the p; are unique. Then [4] gives
Q3 = D,crs Ao(y) ® t(y)A and, for y € f3 in the notation above, the
component of As(o(y) ® t(y)) in the summand Ao(f?) ® t(f?)A of Q?* is
o(y) ®pi — ¢; @i
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Given this part of the minimal projective A, A-bimodule resolution of A:
Q2 Q2 2 ot AL Q0 4 4
we apply Hom(—, A) to get the complex
0 — Hom(Q", 4) & Hom(Q", 4) B Hom(Q?, A) & Hom(Q?, A)

where d; is the map induced from A; for i = 1,2,3. Then HH?(A) =
Ker dg/ Im dg.

When considering an element of the projective bimodule

Q'= @ 4o(a) @ t(a)A

a arrow

it is important to keep track of the individual summands of Q!. So to avoid
confusion we usually denote an element in the summand Ao(a) ® t(a)A by
A ®, N using the subscript ‘a’ to remind us in which summand this element
lies. Similarly, an element A ® 2 X lies in the summand Ao(f?) ® t(f?)A of

QQ? and an element \ ® s X lies in the summand Ao(f3) @ t(f3)A of Q3. We
keep this notation for the rest of the paper.
Now we are ready to compute HH?(A) for the algebras A; and As.

3. HH?(A,). In this section we determine HH?(Ay) for the non-standard
algebra As.

THEOREM 3.1. For the non-standard algebra As with char K = 2, we
have dim HH?(Ay) = 4.

Proof. The set f? of minimal relations was given in Proposition
Following [5] as described above, we may choose the set f2 to be {f3, f3,

fg, ff}, where
fi = fladyB + ffap

= adyBft + aBfi € e1K Qey,
f3 = f586ve + f3¢Bae

= {fiBae + Eff0ve + E6vfie + EBaffe + E6vefs + EBacf; € eaK Qey,
3 = f27B0a6 + f2re€s

= Vf1€E6 + 7 f1Bad + YBafid + e f16 + yBad f3 + veb f3 € esK Qes,
f3 = fiBady + fie€oy

= ef3667 + 6 f3vBa + O f3ve€ + 07 fiBa + 0y fie€

+ Bafisy + Bad fiy + o€k f§ + 0vBafi € eakK Qe

We remark that in line with [5, Theorem 2.4], the semisimple module
Aj/t has a minimal projective resolution as a right .4s-module which begins:
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4
= P A B P ) A E P )y B Puids — Asfr — 0

yef3 zef2 acfl! i=1
where the maps are given by
93 H(f7) = t(f7)(adyB + af),
t(f3) = t(F3)(€Dve + EPae),
t(f3) = t(f3)(vBad + ye€d),
t(f7) = ) (Bady + e€dv),
&2: HIT) = Ha)(B— 510,
tf3) = e,
t(f5) = ()9,
HFD) = HB)a+ H(0)y + t(e)€,
01: Ha)— vy, ) vs,
t(3) =1, t(e) = va,
t(y) = vg,  HE)  va

with each term being in the obvious summand of the appropriate projective
module.

Thus (writing A for Ay) the projective bimodule Q3 = D,cps Ao(y) @
t(y)Ad = (Ae; @ e1 ) & (Aex ® eaA) & (Aez @ ez A) & (Aes ® egA). We know
that HH?(A) = Ker d3/Imds. First we will find Imdz. Let f € Hom(Q"!, A)
and so write

fle1 ®a eq) = cra+ coady,  flea ®pe1) = c3f + cadyf,
fles ®y eq) = c57 +cevBa,  f(ea ®s e3) = c70 + c3fad,
fles ®c e2) = cge + cro0ve,  flea ®¢ eq) = c11§ + 12667,
where c1,...,c12 € K. Now we find fAy = dyf. We have
fAs(eq ®f12 e1) = fle1 ®q eq)B+ af(es @pe1) — fler ®q €4)070
—af(es®se3)yB — adf(es @y e4)B — adyfes ®ge1)
= c1af + caa67fB + czaff + caady B — crady B — crady B
— csadyfB — czadyf
=(ci+coat+es+ca—c1—cr—e5—c3)af
= (ca + ¢4 + 7 + c5)apf.
Also
fA2(62 ®f22 62) = f(€2 ¢ 64)6 + ff(€4 Re 62) = (612 + 010)55’}/6,
fAsz(es @z e3) = f(e3 ®y €4)d + 7 f(e4 ®s €3) = (c6 + cs)70a0,
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and
fAsz(es @2 e4) = f(ea ®p e1)a + f(ea ®5 e3)y + fle2 ®e €4)€
+ Bf(e1 ®a €1) + 0 f(e3 @ es) + ef (€2 ®¢ e4)
= c3fa + cy0yBa + crdy 4 csBady + coe€ + c1p0ve€ + ¢1 P
+ coffady + 507 + cgdyBa + c11€€ + c12€£67
= (c3 4 c1)Ba + (c7 + ¢5)07 + (cg + c11)€€
+ (ca + c2 + e7 + 5 + 10 + c12)07 P
= (c3+c1 +cg + c11)Ba+ (c7 + ¢5 4 cg + c11)dy
+ (ca + ca + c7 + 5 + 1o + c12)07Sa.
Hence, fA, is given by
fAsz(er @2 1) = diaf,
fAx(e2 ®yz e2) = dabde,
fAsz(es @2 e3) = dzyfad,
fAsz(es @2 e4) = dyfa + d56y + (di + da)d7Ba,

for some dj,...,ds € K. Since there are no further linear dependencies
between dy, ..., ds, we have dim Im ds = 5.

Now we determine Kerds. Let h € Kerds, so h € Hom(Q? A) and
dzh = 0. Let h: Q*> — A be given by

her @2 e1) = cre1 + c2ad7f3,
h(ez ®j2 e2) = c3eg + ca€oe,
h(es @2 e3) = cses + ceyfad,
hles @2 e4) = creq + cgfa + cody + crofady,
for some cq,...,c19 € K. Then
hAs(e1 ®gs e1) = h(er ®yz2 e1)adyB + hler @2 e1)af
— adyfh(er ® 2 e1) — afh(er ® 2 e1)
= cadyB + craf — cradyf — craf = 0.
In a similar way and recalling that char KX = 2, we can show that
hAsz(ez ® g3 e2) = 0 and hAs(es ® 3 e3) = 0. Finally,
hAs(es @3 e4) = hes ®p2 €4)Bady + hes @2 e4)e€dy — eh(ez ® gz €2)€6y
— Oh(es @z e3)yBa — Gh(es @2 e3)ve€ — dyh(es ®p2 e4)fa
— 6vh(es @2 ea)e§ — Bah(es ® g2 €4)0y — Badh(es @ g2 €3)y
— 0veSh(es @2 e4) — 6yPah(es @2 e4)
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= crfBady + cre€dy — c3e€dy — c50yBa — c50ve€ — crdyBa — crdye€
— c7fady — cs0vBa — crdyeé — créyPa
= (c7 — c3 — c5)€&dy.
As h € Kerds we have ¢7 = c3 + ¢s.
Thus h is given by

h(e1 ®p2 e1) = cre1 + caady P,
h(ea ®j2 e2) = c3eg + c4€0ve,
h(es @2 e3) = cses + ceyfad,
h(es ® g2 €4) = (3 + c5)eq + csfa + cody + croBady.

Hence dim Kerds = 9.
Therefore, dim HH?*(As) = dimKerds — dimImdy =9 —5=4. =

4. HH?(A;). In this section we determine HH?(A;) for the standard
algebra A;.

THEOREM 4.1. For the standard algebra A; with char K = 2, we have
dim HH?(A;) = 3.

Proof. The set f? of minimal relations was given in Proposition
Following [5], we may choose the set f3 to be {f}, f5, f3, fi}, where

fi = flaegp
= affe€f+ ady fiB + adyBff + ad fif + aef3E0 € e1 K Qen,
3 = [3€6ve = £fi0ve + EBafie + EBfTae + EBaefs + E5 f5ve € e2lK Qes,
13 = fives
= Y [2e€0 +yBaf2s + B Ead +vBad f3 + vef2€ € e3K Qes,
fi = fiBady = Bffady + 6 fie€ + ef3607 + by fie€ + e oy
+ 0BT+ 0yef3E + 66 f5 + 6vBafi € esK Qey.
Thus (writing A for A;) the projective bimodule Q? equals @yefg Ao(y) ®
t(y)A = (Ae; ® e1A) @ (Aeg ® eaA) @ (Aeg @ e3A) @ (Aeq @ eqA).
Again, HH?*(A) = Kerds/Imdy. First we will find Imdy. Let f €
Hom(Q!, A) and so write
fle1 ®a es) = cra+caady, flea®per) = c3f + cadyf,
fles @y eq) = c57 +covBa,  f(ea ®5 e3) = c70 + cgBad,
fleqs ®c e2) = cge + cro0ve,  f(ea ®¢ eq) = c11§ + 12667,
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where cq,...,c12 € K. Now we find fAy = dof. We have
fAs(eq ®f12 e1) = fle1 ®aq eq)+ af(es @5 €1)
= coadyf + cady B = (c2 + c4)dy 3.
Also
fAsz(e2 ®p2 €2) = f(e2 ®¢ ea)e + Ef (€4 ®e €2) = (c12 + €10)§07¢,
fAz(e3 ©pz e3) = flez ©y ea)d +7f(ea ®5 e3) = (6 + cs)76ad,
Finally
JAz(es ®p2 eq) = fles @ger)o+ f(es @5 e3)7 + fle2 ®c e4)§
+ Bf(e1 ®a es) +f(e3 @y ea) + €f(e2 ®¢ €4)
= (e3+cg +c1 +cur)Ba+ (er + cog + 5 + c11)0y
+ <C4 +cg+cio+co+c+ 012)57504.
Hence, fAs is given by
fAs(er ®y2 e1) = dyadyp,
fAsz(e2 @z e3) = da&ve,
fAs(es ®y2 e3) = dzyfad,
fAz(eq ®p2 €4) = dafor + dsdy + (d + d2 + d3) 0B,
for some di,...,ds € K. Since there are no further linear dependencies
between dy,...,ds, we have dimImdy = 5.
Now we determine Kerds. Let h € Kerds, so h € Hom(Q? A) and
dzh = 0. Let h: Q*> — A be given by
h(e1 ®p2 e1) = cre1 + caadyp,
(62 ®f2 62) = c3e9 + c4€07e,
h(es @ g2 e3) = cses + cgyfad,
h(es @2 e4) = creq + cgfa + cody + crofady,
for some c1,...,c10 € K.

It can be easily shown that hAs(e; ® g3 e1) = (—c5 — c3)adyfB. As h €
Ker d3 and char K = 2 we have ¢5 = c3, and hA3(62®f23 e2) = (—c1—c5)E07e,
so that ¢; = ¢5. Similarly, hA3(e3 ®y3 es) = (—c1 — c3)yPad so that ¢ = cs.
Finally, we have hAs(es R e2) = 0.

Thus A is given by

h(e1 Q2 e1) = cie1 + caadyp,
h(ez Rz €2) = c1€2 + ca€de,
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h(€3 ®f32 63) = c1e3 + cgyBad,
h(es @y2 e4) = creq + csfa + cody + crofady.

Hence dim Ker d3 = 8.
Therefore dim HH?(A;) = dim Kerds — dimImdy =8 —5=3. u

Thus we have shown that dim HH?(A;) # dim HH?(As). Since Hoch-
schild cohomology is invariant under derived equivalence, it follows that
these two algebras are not derived equivalent, which the main result of this
paper:

COROLLARY 4.2. For the finite-dimensional algebras Ay and Ao over
an algebraically closed field K with char K = 2, we have dim HH?(A;) #
dim HH?(Ay). Hence these two algebras are not derived equivalent.
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