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DISTINGUISHING DERIVED EQUIVALENCE CLASSES USING
THE SECOND HOCHSCHILD COHOMOLOGY GROUP

BY

DEENA AL-KADI (Taif)

Abstract. We study the second Hochschild cohomology group of the preprojective
algebra of type D4 over an algebraically closed field K of characteristic 2. We also calculate
the second Hochschild cohomology group of a non-standard algebra which arises as a socle
deformation of this preprojective algebra and so show that the two algebras are not derived
equivalent. This answers a question raised by Holm and Skowroński.

Introduction. The main work in this paper goes into determining the
second Hochschild cohomology group HH2(Λ) for two finite-dimensional al-
gebras Λ over a field of characteristic 2 in order to show that they are not
derived equivalent. We let A1 denote the preprojective algebra of type D4;
this is a standard algebra. We introduce, in Section 1, an algebra A2 by
quiver and relations; it is a non-standard algebra which is socle equivalent
to A1. We note that A1 and A2 are isomorphic in the case where the un-
derlying field has characteristic not 2. (We refer to [6] for more information
about standard and non-standard selfinjective algebras.) The work in this
paper is motivated by the question asked by Holm and Skowroński as to
whether or not these two algebras A1 and A2 are derived equivalent.

The algebras A1 and A2 are selfinjective algebras of polynomial growth.
The main result of this paper (Corollary 4.2) shows that they are not derived
equivalent. This answer to the question of Holm and Skowroński enables one
to complete their derived equivalence classification of all symmetric algebras
of polynomial growth in [6, 5.20]. We recall that the complete derived equiv-
alence classification of selfinjective algebras of finite representation type was
given in [2]. Computation of the second Hochschild cohomology group was
then used in [1] to give an alternative proof to distinguish between derived
equivalence classes of standard and non-standard selfinjective algebras of
finite representation type. Thus the second Hochschild cohomology group is
a powerful tool for distinguishing algebras up to derived equivalence.
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Throughout this paper, we let Λ denote a finite-dimensional algebra
over an algebraically closed field K. We start, in Section 1, by giving the
quiver and relations for A1 and A2. We are interested only in the case when
charK = 2, since if charK 6= 2 then the algebras are isomorphic and the
second Hochschild cohomology group is known by [3]. In Section 2, we give
a short description of the projective resolution of [4] which we use to find
HH2(Λ). The remaining two sections determine HH2(Λ) for Λ = A1,A2. As
a consequence, we show in Corollary 4.2 that dim HH2(A1) 6= dim HH2(A2)
and hence these two algebras are not derived equivalent.

1. The algebras A1 and A2. In this section we describe the algebras
A1 and A2 by quivers and relations. We assume that K is an algebraically
closed field and charK = 2. The standard algebra A1 is the preprojective
algebra of type D4, and it was shown in [3] that, in the case when charK 6= 2,
we have HH2(A1) = 0. We will see that this is in contrast to the charK = 2
case.

The algebra A1 is given by the quiver Q:
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with relations

βα+ δγ + εξ = 0, γδ = 0, ξε = 0, αβ = 0.

The algebra A2 is the non-standard algebra given by the same quiver Q
with relations

βα+ δγ + εξ = 0, γδ = 0, ξε = 0, αβα = 0, βαβ = 0, αβ = αδγβ.

Note that we write our paths in a quiver from left to right.
We need to find a minimal set of relations for each algebra. We start

with A2. The set {αβ−αδγβ, ξε, γδ, βα+δγ+εξ, αβα, βαβ} is not a minimal
set of generators for I where A2 = KQ/I. Let x = βα + δγ + εξ and let
y = αβ−αδγβ. We will show that αβα is in the ideal generated by x, y, γδ, ξε.
Using that charK = 2, we have

αβα = yα+ αδγβα

= yα+ αxβα+ α(βα+ εξ)βα
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= yα+ αxβα+ αβαβα+ αεξx+ αεξ(δγ + εξ)
= yα+ αxβα+ αεξx+ αβαβα+ αxδγ + α(βα+ δγ)δγ + αεξεξ

= yα+ αxβα+ αεξx+ αxδγ + αεξεξ + αβαβα+ αβαx+ αβα(βα+ εξ)
+ αδγδγ

= yα+ αxβα+ αεξx+ αxδγ + αεξεξ + αβαx+ αβαεξ + αδγδγ.

However, αβαεξ = yαεξ+αδγβαεξ = yαεξ+αδγxεξ+αδγ(δγ+εξ)εξ. Thus
αβα is in the ideal generated by x, y, γδ, ξε. Using a similar argument for
βαβ, we see that I is generated by the set {αβ−αδγβ, ξε, γδ, βα+ δγ+ εξ}.
This gives the following result.

Proposition 1.1. For A2 let

f2
1 = αβ − αδγβ, f2

2 = ξε,

f2
3 = γδ, f2

4 = βα+ δγ + εξ.

Then f2 = {f2
1 , f

2
2 , f

2
3 , f

2
4 } is a minimal set of generators of I where A2 =

KQ/I.

We now consider the algebra A1.

Proposition 1.2. For A1 let

f2
1 = αβ, f2

2 = ξε,

f2
3 = γδ, f2

4 = βα+ δγ + εξ.

Then f2 = {f2
1 , f

2
2 , f

2
3 , f

2
4 } is a minimal set of generators for I ′ where A1 =

KQ/I ′.

2. The projective resolution. To find the Hochschild cohomology
groups for any finite-dimensional algebra Λ, a projective resolution of Λ as
a Λ,Λ-bimodule is needed. In this section we look at the projective resolu-
tions of [4] and [5] in order to describe the second Hochschild cohomology
group. Let K be a field and let Λ = KQ/I be a finite-dimensional alge-
bra where Q is a quiver, and I is an admissible ideal of KQ. Fix a min-
imal set f2 of generators for the ideal I. For any x ∈ f2, we may write
x =

∑r
j=1 cja1j · · · akj · · · asjj , where the aij are arrows in Q and cj ∈ K,

that is, x is a linear combination of paths a1j · · · akj · · · asjj for j = 1, . . . , r.
We may assume that there are (unique) vertices v and w such that each
path a1j · · · akj · · · asjj starts at v and ends at w for all j, so that x = vxw.
We write o(x) = v and t(x) = w. Similarly o(a) is the origin of the arrow a
and t(a) is the terminus of a.

In [4, Theorem 2.9], the first four terms of a minimal projective resolution
of Λ as a Λ,Λ-bimodule are described:

· · · → Q3 A3−−→ Q2 A2−−→ Q1 A1−−→ Q0 g−→ Λ→ 0.
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The projective Λ,Λ-bimodules Q0, Q1, Q2 are given by

Q0 =
⊕

v, vertex

Λv ⊗ vΛ,

Q1 =
⊕

a, arrow

Λo(a)⊗ t(a)Λ,

Q2 =
⊕
x∈f2

Λo(x)⊗ t(x)Λ.

Throughout, all tensor products are over K, and we write ⊗ for ⊗K . The
maps g,A1, A2 and A3 are all Λ,Λ-bimodule homomorphisms. The map
g : Q0 → Λ is the multiplication map given by v ⊗ v 7→ v. The map A1 :
Q1 → Q0 is given by o(a) ⊗ t(a) 7→ o(a) ⊗ o(a)a − at(a) ⊗ t(a) for each
arrow a. With the notation for x ∈ f2 given above, the map A2 : Q2 → Q1

is given by

o(x)⊗ t(x) 7→
r∑
j=1

cj

( sj∑
k=1

a1j · · · a(k−1)j ⊗ a(k+1)j · · · asjj

)
,

where a1j · · · a(k−1)j ⊗ a(k+1)j · · · asjj ∈ Λo(akj)⊗ t(akj)Λ.
In order to describe the projective bimodule Q3 and the map A3 in the

Λ,Λ-bimodule resolution of Λ in [4], we need to introduce some notation
from [5]. Recall that an element y ∈ KQ is uniform if there are vertices v, w
such that y = vy = yw. We write o(y) = v and t(y) = w. In [5], Green,
Solberg and Zacharia show that there are sets fn inKQ, for n ≥ 3, consisting
of uniform elements y such that y =

∑
x∈fn−1 xrx =

∑
z∈fn−2 zsz for unique

rx, sz ∈ KQ such that sz ∈ I. These sets have special properties relative
to a minimal projective Λ-resolution of Λ/r, where r is the Jacobson radical
of Λ. Specifically, the nth projective in the minimal projective Λ-resolution
of Λ/r is

⊕
y∈fn t(y)Λ.

In particular, to determine the set f3, we follow explicitly the construc-
tion given in [5, §1]. Let f1 denote the set of arrows of Q. Suppose the
intersection (

⊕
i f

2
i KQ)∩ (

⊕
j f

1
j I) is equal to some (

⊕
l f

3∗
l KQ). We then

discard all elements of the form f3∗ that are in
⊕

i f
2
i I; the remaining ones

form precisely the set f3.
Thus, for y ∈ f3 we have y ∈ (

⊕
i f

2
i KQ) ∩ (

⊕
j f

1
j I). So we may write

y =
∑
f2
i pi =

∑
qif

2
i ri with pi, qi, ri ∈ KQ such that pi, qi are in the

ideal generated by the arrows of KQ, and the pi are unique. Then [4] gives
Q3 =

⊕
y∈f3 Λo(y) ⊗ t(y)Λ and, for y ∈ f3 in the notation above, the

component of A3(o(y) ⊗ t(y)) in the summand Λo(f2
i ) ⊗ t(f2

i )Λ of Q2 is
o(y)⊗ pi − qi ⊗ ri.
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Given this part of the minimal projective Λ,Λ-bimodule resolution of Λ:

Q3 A3−−→ Q2 A2−−→ Q1 A1−−→ Q0 g−→ Λ→ 0

we apply Hom(−, Λ) to get the complex

0→ Hom(Q0, Λ) d1→ Hom(Q1, Λ) d2→ Hom(Q2, Λ) d3→ Hom(Q3, Λ)

where di is the map induced from Ai for i = 1, 2, 3. Then HH2(Λ) =
Ker d3/ Im d2.

When considering an element of the projective bimodule

Q1 =
⊕
a arrow

Λo(a)⊗ t(a)Λ

it is important to keep track of the individual summands of Q1. So to avoid
confusion we usually denote an element in the summand Λo(a) ⊗ t(a)Λ by
λ⊗a λ′ using the subscript ‘a’ to remind us in which summand this element
lies. Similarly, an element λ⊗f2

i
λ′ lies in the summand Λo(f2

i )⊗ t(f2
i )Λ of

Q2 and an element λ⊗f3
i
λ′ lies in the summand Λo(f3

i )⊗ t(f3
i )Λ of Q3. We

keep this notation for the rest of the paper.
Now we are ready to compute HH2(Λ) for the algebras A1 and A2.

3. HH2(A2). In this section we determine HH2(A2) for the non-standard
algebra A2.

Theorem 3.1. For the non-standard algebra A2 with charK = 2, we
have dim HH2(A2) = 4.

Proof. The set f2 of minimal relations was given in Proposition 1.1.
Following [5] as described above, we may choose the set f3 to be {f3

1 , f
3
2 ,

f3
3 , f

3
4 }, where

f3
1 = f2

1αδγβ + f2
1αβ

= αδγβf2
1 + αβf2

1 ∈ e1KQe1,
f3
2 = f2

2 ξδγε+ f2
2 ξβαε

= ξf2
4βαε+ ξf2

4 δγε+ ξδγf2
4 ε+ ξβαf2

4 ε+ ξδγεf2
2 + ξβαεf2

2 ∈ e2KQe2,
f3
3 = f2

3γβαδ + f2
3γεξδ

= γf2
4 εξδ + γf2

4βαδ + γβαf2
4 δ + γεξf2

4 δ + γβαδf2
3 + γεξδf2

3 ∈ e3KQe3,
f3
4 = f2

4βαδγ + f2
4 εξδγ

= εf2
2 ξδγ + δf2

3γβα+ δf2
3γεξ + δγf2

4βα+ δγf2
4 εξ

+ βαf2
4 δγ + βαδf2

3γ + δγεξf2
4 + δγβαf2

4 ∈ e4KQe4.
We remark that in line with [5, Theorem 2.4], the semisimple module

A2/r has a minimal projective resolution as a right A2-module which begins:



290 D. AL-KADI

· · · →
⊕
y∈f3

t(y)A2
∂3−→
⊕
x∈f2

t(x)A2
∂2−→
⊕
a∈f1

t(a)A2
∂1−→

4⊕
i=1

viA2 → A2/r→ 0

where the maps are given by

∂3 : t(f3
1 ) 7→ t(f2

1 )(αδγβ + αβ),

t(f3
2 ) 7→ t(f2

2 )(ξδγε+ ξβαε),

t(f3
3 ) 7→ t(f2

3 )(γβαδ + γεξδ),

t(f3
4 ) 7→ t(f2

4 )(βαδγ + εξδγ),

∂2 : t(f2
1 ) 7→ t(α)(β − δγβ),

t(f2
2 ) 7→ t(ξ)ε,

t(f2
3 ) 7→ t(γ)δ,

t(f2
4 ) 7→ t(β)α+ t(δ)γ + t(ε)ξ,

∂1 : t(α) 7→ v4, t(δ) 7→ v3,

t(β) 7→ v1, t(ε) 7→ v2,

t(γ) 7→ v4, t(ξ) 7→ v4,

with each term being in the obvious summand of the appropriate projective
module.

Thus (writing Λ for A2) the projective bimodule Q3 =
⊕

y∈f3 Λo(y) ⊗
t(y)Λ = (Λe1 ⊗ e1Λ)⊕ (Λe2 ⊗ e2Λ)⊕ (Λe3 ⊗ e3Λ)⊕ (Λe4 ⊗ e4Λ). We know
that HH2(Λ) = Ker d3/Im d2. First we will find Im d2. Let f ∈ Hom(Q1, Λ)
and so write

f(e1 ⊗α e4) = c1α+ c2αδγ, f(e4 ⊗β e1) = c3β + c4δγβ,

f(e3 ⊗γ e4) = c5γ + c6γβα, f(e4 ⊗δ e3) = c7δ + c8βαδ,

f(e4 ⊗ε e2) = c9ε+ c10δγε, f(e2 ⊗ξ e4) = c11ξ + c12ξδγ,

where c1, . . . , c12 ∈ K. Now we find fA2 = d2f . We have

fA2(e1 ⊗f2
1
e1) = f(e1 ⊗α e4)β + αf(e4 ⊗β e1)− f(e1 ⊗α e4)δγβ

− αf(e4 ⊗δ e3)γβ − αδf(e3 ⊗γ e4)β − αδγf(e4 ⊗β e1)
= c1αβ + c2αδγβ + c3αβ + c4αδγβ − c1αδγβ − c7αδγβ
− c5αδγβ − c3αδγβ

= (c1 + c2 + c3 + c4 − c1 − c7 − c5 − c3)αβ
= (c2 + c4 + c7 + c5)αβ.

Also

fA2(e2 ⊗f2
2
e2) = f(e2 ⊗ξ e4)ε+ ξf(e4 ⊗ε e2) = (c12 + c10)ξδγε,

fA2(e3 ⊗f2
3
e3) = f(e3 ⊗γ e4)δ + γf(e4 ⊗δ e3) = (c6 + c8)γβαδ,
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and

fA2(e4 ⊗f2
4
e4) = f(e4 ⊗β e1)α+ f(e4 ⊗δ e3)γ + f(e2 ⊗ε e4)ξ

+ βf(e1 ⊗α e4) + δf(e3 ⊗γ e4) + εf(e2 ⊗ξ e4)
= c3βα+ c4δγβα+ c7δγ + c8βαδγ + c9εξ + c10δγεξ + c1βα

+ c2βαδγ + c5δγ + c6δγβα+ c11εξ + c12εξδγ

= (c3 + c1)βα+ (c7 + c5)δγ + (c9 + c11)εξ
+ (c4 + c2 + c7 + c5 + c10 + c12)δγβα

= (c3 + c1 + c9 + c11)βα+ (c7 + c5 + c9 + c11)δγ
+ (c4 + c2 + c7 + c5 + c10 + c12)δγβα.

Hence, fA2 is given by

fA2(e1 ⊗f2
1
e1) = d1αβ,

fA2(e2 ⊗f2
2
e2) = d2ξδγε,

fA2(e3 ⊗f2
3
e3) = d3γβαδ,

fA2(e4 ⊗f2
4
e4) = d4βα+ d5δγ + (d1 + d2)δγβα,

for some d1, . . . , d5 ∈ K. Since there are no further linear dependencies
between d1, . . . , d5, we have dim Im d2 = 5.

Now we determine Ker d3. Let h ∈ Ker d3, so h ∈ Hom(Q2, Λ) and
d3h = 0. Let h : Q2 → Λ be given by

h(e1 ⊗f2
1
e1) = c1e1 + c2αδγβ,

h(e2 ⊗f2
2
e2) = c3e2 + c4ξδγε,

h(e3 ⊗f2
3
e3) = c5e3 + c6γβαδ,

h(e4 ⊗f2
4
e4) = c7e4 + c8βα+ c9δγ + c10βαδγ,

for some c1, . . . , c10 ∈ K. Then

hA3(e1 ⊗f3
1
e1) = h(e1 ⊗f2

1
e1)αδγβ + h(e1 ⊗f2

1
e1)αβ

− αδγβh(e1 ⊗f2
1
e1)− αβh(e1 ⊗f2

1
e1)

= c1αδγβ + c1αβ − c1αδγβ − c1αβ = 0.

In a similar way and recalling that charK = 2, we can show that
hA3(e2 ⊗f3

2
e2) = 0 and hA3(e3 ⊗f3

3
e3) = 0. Finally,

hA3(e4 ⊗f3
4
e4) = h(e4 ⊗f2

4
e4)βαδγ + h(e4 ⊗f2

4
e4)εξδγ − εh(e2 ⊗f2

2
e2)ξδγ

− δh(e3 ⊗f2
3
e3)γβα− δh(e3 ⊗f2

3
e3)γεξ − δγh(e4 ⊗f2

4
e4)βα

− δγh(e4 ⊗f2
4
e4)εξ − βαh(e4 ⊗f2

4
e4)δγ − βαδh(e3 ⊗f2

3
e3)γ

− δγεξh(e4 ⊗f2
4
e4)− δγβαh(e4 ⊗f2

4
e4)
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= c7βαδγ + c7εξδγ − c3εξδγ − c5δγβα− c5δγεξ − c7δγβα− c7δγεξ
− c7βαδγ − c5δγβα− c7δγεξ − c7δγβα

= (c7 − c3 − c5)εξδγ.

As h ∈ Ker d3 we have c7 = c3 + c5.

Thus h is given by

h(e1 ⊗f2
1
e1) = c1e1 + c2αδγβ,

h(e2 ⊗f2
2
e2) = c3e2 + c4ξδγε,

h(e3 ⊗f2
3
e3) = c5e3 + c6γβαδ,

h(e4 ⊗f2
4
e4) = (c3 + c5)e4 + c8βα+ c9δγ + c10βαδγ.

Hence dim Ker d3 = 9.
Therefore, dim HH2(A2) = dim Ker d3 − dim Im d2 = 9− 5 = 4.

4. HH2(A1). In this section we determine HH2(A1) for the standard
algebra A1.

Theorem 4.1. For the standard algebra A1 with charK = 2, we have
dim HH2(A1) = 3.

Proof. The set f2 of minimal relations was given in Proposition 1.2.
Following [5], we may choose the set f3 to be {f3

1 , f
3
2 , f

3
3 , f

3
4 }, where

f3
1 = f2

1αεξβ

= αf2
4 εξβ + αδγf2

4β + αδγβf2
1 + αδf2

3γβ + αεf2
2 ξβ ∈ e1KQe1,

f3
2 = f2

2 ξδγε = ξf2
4 δγε+ ξβαf2

4 ε+ ξβf2
1αε+ ξβαεf2

2 + ξδf2
3γε ∈ e2KQe2,

f3
3 = f2

3γεξδ

= γf2
4 εξδ + γβαf2

4 δ + γβf2
1αδ + γβαδf2

3 + γεf2
2 ξδ ∈ e3KQe3,

f3
4 = f2

4βαδγ = βf2
1αδγ + δf2

3γεξ + εf2
2 ξδγ + δγf2

4 εξ + εξf2
4 δγ

+ δγβf2
1α+ δγεf2

2 ξ + εξδf2
3γ + δγβαf2

4 ∈ e4KQe4.

Thus (writing Λ for A1) the projective bimodule Q3 equals
⊕

y∈f3 Λo(y)⊗
t(y)Λ = (Λe1 ⊗ e1Λ)⊕ (Λe2 ⊗ e2Λ)⊕ (Λe3 ⊗ e3Λ)⊕ (Λe4 ⊗ e4Λ).

Again, HH2(Λ) = Ker d3/Im d2. First we will find Im d2. Let f ∈
Hom(Q1, Λ) and so write

f(e1 ⊗α e4) = c1α+ c2αδγ, f(e4 ⊗β e1) = c3β + c4δγβ,

f(e3 ⊗γ e4) = c5γ + c6γβα, f(e4 ⊗δ e3) = c7δ + c8βαδ,

f(e4 ⊗ε e2) = c9ε+ c10δγε, f(e2 ⊗ξ e4) = c11ξ + c12ξδγ,
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where c1, . . . , c12 ∈ K. Now we find fA2 = d2f . We have

fA2(e1 ⊗f2
1
e1) = f(e1 ⊗α e4)β + αf(e4 ⊗β e1)

= c2αδγβ + c4αδγβ = (c2 + c4)αδγβ.

Also

fA2(e2 ⊗f2
2
e2) = f(e2 ⊗ξ e4)ε+ ξf(e4 ⊗ε e2) = (c12 + c10)ξδγε,

fA2(e3 ⊗f2
3
e3) = f(e3 ⊗γ e4)δ + γf(e4 ⊗δ e3) = (c6 + c8)γβαδ.

Finally

fA2(e4 ⊗f2
4
e4) = f(e4 ⊗β e1)α+ f(e4 ⊗δ e3)γ + f(e2 ⊗ε e4)ξ

+ βf(e1 ⊗α e4) + δf(e3 ⊗γ e4) + εf(e2 ⊗ξ e4)
= (c3 + c9 + c1 + c11)βα+ (c7 + c9 + c5 + c11)δγ

+ (c4 + c8 + c10 + c2 + c6 + c12)δγβα.

Hence, fA2 is given by

fA2(e1 ⊗f2
1
e1) = d1αδγβ,

fA2(e2 ⊗f2
2
e2) = d2ξδγε,

fA2(e3 ⊗f2
3
e3) = d3γβαδ,

fA2(e4 ⊗f2
4
e4) = d4βα+ d5δγ + (d1 + d2 + d3)δγβα,

for some d1, . . . , d5 ∈ K. Since there are no further linear dependencies
between d1, . . . , d5, we have dim Im d2 = 5.

Now we determine Ker d3. Let h ∈ Ker d3, so h ∈ Hom(Q2, Λ) and
d3h = 0. Let h : Q2 → Λ be given by

h(e1 ⊗f2
1
e1) = c1e1 + c2αδγβ,

h(e2 ⊗f2
2
e2) = c3e2 + c4ξδγε,

h(e3 ⊗f2
3
e3) = c5e3 + c6γβαδ,

h(e4 ⊗f2
4
e4) = c7e4 + c8βα+ c9δγ + c10βαδγ,

for some c1, . . . , c10 ∈ K.
It can be easily shown that hA3(e1 ⊗f3

1
e1) = (−c5 − c3)αδγβ. As h ∈

Ker d3 and charK = 2 we have c5 = c3, and hA3(e2⊗f3
2
e2) = (−c1−c5)ξδγε,

so that c1 = c5. Similarly, hA3(e3⊗f3
3
e3) = (−c1− c3)γβαδ so that c1 = c3.

Finally, we have hA3(e2 ⊗f3
4
e2) = 0.

Thus h is given by

h(e1 ⊗f2
1
e1) = c1e1 + c2αδγβ,

h(e2 ⊗f2
2
e2) = c1e2 + c4ξδγε,
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h(e3 ⊗f2
3
e3) = c1e3 + c6γβαδ,

h(e4 ⊗f2
4
e4) = c7e4 + c8βα+ c9δγ + c10βαδγ.

Hence dim Ker d3 = 8.
Therefore dim HH2(A1) = dim Ker d3 − dim Im d2 = 8− 5 = 3.

Thus we have shown that dim HH2(A1) 6= dim HH2(A2). Since Hoch-
schild cohomology is invariant under derived equivalence, it follows that
these two algebras are not derived equivalent, which the main result of this
paper:

Corollary 4.2. For the finite-dimensional algebras A1 and A2 over
an algebraically closed field K with charK = 2, we have dim HH2(A1) 6=
dim HH2(A2). Hence these two algebras are not derived equivalent.
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