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ABSTRACT PARABOLIC PROBLEMS
WITH NON-LIPSCHITZ CRITICAL NONLINEARITIES

BY

KONRAD J. WAS (Katowice)

Abstract. The Cauchy problem for a semilinear abstract parabolic equation is con-
sidered in a fractional power scale associated with a sectorial operator appearing in the
linear main part of the equation. Existence of local solutions is proved for non-Lipschitz
nonlinearities satisfying a certain critical growth condition.

1. Introduction. In this article we consider a semilinear abstract para-
bolic problem with a non-Lipschitz nonlinearity and prove the existence of
local solutions in some large phase space of initial data when the nonlinear
term satisfies a certain critical growth condition.

Suppose that X is a Banach space and —A : dom(A) C X — X is
a linear operator which generates a C° analytic semigroup {e~4*} C L(X).
Denote by FPS the fractional power scale {X? : ¢ > 0} generated by (X, A)

(see [1]) and suppose that
(1.1) Fis 'a continuous map frqm X% into X7 for
certain X%, X% € FPS with 1 > a — 3> 0.
With the above set-up consider the Cauchy problem
(1.2) u(t) + Au(t) = F(u(t)), t>0,
(1.3) u(0) = up
and recall the following result that goes back to [12, Theorem 1] (see also

[13, Theorem 6.2.1]).

PrRoOPOSITION 1.1. If A is a sectorial operator in a Banach space X with
compact resolvent, (1.1)) holds and ug € X<, then there exists a local X
mild solution u(t) of (1.2)—(1.3); that is, there exists T > 0 and a function
u € C([0,7], X¥) satisfying for t € [0, 7] the Cauchy integral formula

t
(1.4) u(t) = e Mug + S e A=) P (u(s)) ds.
0
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If furthermore F : X* — XP takes bounded sets to bounded sets, then u(t)
has a continuation (denoted the same and called a mazimally defined X -
solution) onto a maximal interval of existence [0,7y,) such that

either T,, =00 or limsup ||u(t)|xe = oco.

t—>‘r7fo

A nontrivial task arises when is to be solved with initial data in a
certain larger space X¢ with ¢ < a and F is not continuous on bounded sets
from X¢ into X9 for any 6 > 0 such that 1 > ¢ — & > 0; in fact, the map F
may not be well defined on X¢ with values in X° for any § > 0 such that
1 > (¢ — 6 > 0. This is the situation that will be investigated in the main
body of this paper.

Our concern will be to prove local solvability of f in a possibly
large fractional power space from the scale 7PS assuming that the nonlinear
term F' satisfies and the growth condition

(15) ot Jeso IF)lxs < 1+ [oll§a), v e X,
To do so we will prove the following result.

THEOREM 1.2. Suppose that A is a sectorial operator in a Banach space
X with compact resolvent and the assumptions , hold. Let ¢ > 0
be such that
—1-06+ap
1 ’
Then there exists a positive constant 0y, depending only on A, F, a, 3,(, such
that given any iy € X¢ and any 6 € (0,6y), there are ro, 8 > 0 for which
the following conditions hold.

(1.6) a>(> c>a—/1).

(i) For each uy € X N Bxc(iig,m0), where Bxc(tig,m0) = {up € X :
lluo — tol|xc < ro}, any mazimally defined X*-solution u(t) of (1.2)—(1.3)
from Proposition exists for all t € [0,dp] and satisfies the estimate

(1.7) sup %S |u(t)||xe < 6.
te(0,d0]

(ii) For each uy € Bxc¢(tg,70), for any sequence {ug,} C X that con-
verges to ug in X, and for any sequence {u,} where u,, n € N, is a
maximally defined X*-solution of through u,(0) = ug, resulting from
Pmpositz’on there is a subsequence {uy, } and a function

(1.8) ¢ € C([0,60), X¢) N C((0,60], X*F),  ec€[0,148—a),
such that
(1.9)  wup, (t) = &(t) in X1 as k — oo for each e € [0,1+ 3 — )
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uniformly for t in compact subintervals of (0, do] and

(1.10) sup 1% p(t) | xo < 6,
t€(0,00]

(1.11) lim % S||¢(t)||x = 0.
t—0t+

(iii) The function ¢ defined in (ii) satisfies the variation of constants
formula (1.4)) in [0, do].

Consequently, Theorem [I.2] and Proposition [L.1] yield the following local
existence result.

THEOREM 1.3. If A is a sectorial operator in a Banach space X with

compact resolvent, F satisfies (1.1)), (L5), and ¢ > 0 is such that (L.6)

holds, then for each gy € X¢ there are ro,00 > 0 such that for each ug in
a ball Bx¢(tg,m0) there exists a mild solution u of the problem (1.2)) in the
class

(1.12) € := {x € C([0, 0], X¢) N C((0, 0], X*) : Jim, tCx(®)]|x = 0}.

Furthermore, u has a continuation (denoted the same) onto an interval
[0, Twy) such that

either Ty, =00 or limsup ||u(t)|xe = co.

tHTJO

Under a stronger assumption on the nonlinear term,

(113)  Fpo13os0llF(v) = F(w)] xs < Cllo—wllxa (L+||ol|5a + [lw]5a),
v,w e X,
the problem (I.2) will be locally uniquely solvable in X¢ with ¢ as in (1.6).

The following conclusion, which goes back to the results of 2], is a conse-
quence of Theorem and (|1.13)).

COROLLARY 1.4. If A is a sectorial operator in a Banach space X with

compact resolvent, F satisfies (1.1), (1.13)), and ¢ > 0 is such that (|L.6]
holds, then Theorem applies and the solution of the problem ({1.2)—(L.3])

in the class € is unique.

REMARK 1.5. Under the assumptions of Corollary[1.4], for suitably cho-
sen ro and &y, there are L, L > 0 such that for each ug € Bxc¢(tg,m0) the
corresponding solutions u, @ of (1.2]) with u(0) = ug and w(0) = g satisfy

(L14)  Jlu(t) — @(®)]lxe < LEug — diollye, ¢ € (0,5,
(115)  fu(®) — a(t)xc < Llluo — dollxe,  te 0,5

To compare our results with those in the references we remark that in [2]
the problem ((1.2)) has been considered under the assumption that F' belongs
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to the class F[X1, X0 ¢, p,7(¢)] of e-regular maps such that

(1.16)  [|F(¢1) = F($2) [ x=) < Clign = ball xrve (1 + [|nll5ie + 02l 5-)
for ¢1,¢2 € X4, with constants p > 1, ¢ € (0,1/p), v(¢) € [pe, 1) and
C > 0.

Note that (1.16]) implies (1.13)) and hence also (1.5) with o = 1 + ¢

and B = ~(e). In the latter case when y(¢) = ep we can also allow ¢ = 1
in , which corresponds to the critical case described in [2]. Thus, for
semilinear problems with sectorial operators possessing compact resolvents,
Theorems and generalize earlier considerations of [2] to the case of
non-Lipschitz nonlinearities.

The proofs of Theorems and Corollary will be given in Sec-
tion In the closing Section [3| some applications involving 2mth order
parabolic problems and strongly damped wave equations will be discussed.

2. Abstract results. We now proceed with the proofs of the results
reported in Section [I} We start from the following two propositions, which
go back to the results in [2, [I1].

PROPOSITION 2.1. Let A be a sectorial operator in a Banach space X.
Then

(i) for o9 > 0 and 79 > 0 there is a positive constant M such that for
any 0 <y <o <0y and allv e X7 and t € (0,79],

(2.1) e~ xe < M7 0] x7,
(i) given o > >0 and a subset J of X7 precompact in X7, we have

(2.2) lim sup ||[t7 Ve A xo =0,
t—0F yeJ

(iii) given o >~y >0 and v € X" we also have
(2.3) Ves0 Fr0 3550 Voeyr (o) Vie@g 117 e M|l xs <.

Proof. Part (i) follows from [II, Theorem 1.4.3|.
Now, if J is precompact in X7, for any € > 0 there exist £ € N and
v1,...,0; € X7 such that

k
9
J C C].X’YJ C jL;JlBX'Y <'Uj, 4]\4)

Therefore, by density of X? in X7,

k
24  Jc|JBx (73]-, 2?\4) with certain #y,...,% € X C X7,
j=1
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Also, for j = 1,...,k there exists ¢; € (0,1) such that
(2.5) 7 e M0, xo < tTTIYM||5)|x0 < /2 for t < 5.
Combining (2.1) and (2.4)(2.5), we find that if v € J then for t < § =
min{dy,..., 0k},
17 le™ Mol xe <t (e Tjllxe + e (v — T5) |l xe)
<e/2+4+ Mlv —j||xv <¢,

which proves (ii).

Finally, if (iii) were false then one could choose ¥ € X7, ¢ > 0 and
sequences v, ~ ¥ and ¢, — 07 such that ltn Ve Ay, ||xe > e, which
contradicts (ii).

PRrROPOSITION 2.2. If A is a sectorial operator in a Banach space X,

(1.1), (1.5) hold and w € C([0,7],X%) for some T > 0, then for { > 0
satisfying (1.6) and each 0 <t < 7 the following estimate holds:

t
ta*CS e~ A=) F(u(s))| xo ds

=]

Mt 8¢
<7 4+8—C=ple=O NP (HB(1 ol — _
< g et N(OB(1L+8 - a1 = pla - )

where

(2.6) A1) := sup s2¢|u(s)| xa

and B is the beta function, B(a,b) = S(l) (1 —2)* 'zt~ dx for a,b > 0.

Proof. We start from the remark that 143 —a > 0 by assumption ,
and consequently 1+3—¢ > 0 as a > ( in ({1.6). Condition also implies
that 1+ 0 —(—pla—¢)>0and 1 — p(a—¢) > 0.

Using the estimate

e pxo xay S M(t—35)"7%  7>t>5>0,

observe that, by (1.5]),

t
ta—CS e A=) F(u(s)) | xa ds < t¥CM
0

(t =)= F (u(s))l| xs ds

O ey

<t M\ (t = 8)7 (1 + [Ju(s)|[5e) ds

0
t

B¢ 4 ta’chS (t — s)ﬁfaHU(s)Hgfa ds.
0

_ cM
1+ 8-«
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Now we estimate the second term on the right hand side:

t
to‘*CcMS (t — )7 u(s)5a ds

0
t

=M | (t — 5)7 77| 57 u(s)||%o ds

0
t
<t CeMAP(t) S (t — s)Fsrle=0 gg
0
1
= cMt"HF=Crle=0 \p (¢ S —p(a=0) g

= M= PEON OB+ 8 —a,1 - pla—C)). =
We now recall from [9] 7.5.7] the following compactness criterion.

PROPOSITION 2.3. Suppose that X is a Banach space and ) is a compact
metric space. A necessary and sufficient condition for G C C(Y,X) to be
relatively compact in C(Y, X) is that G is equicontinuous and, for eachy € Y,
the set {g(y) : y € Y} is relatively compact in X.

Proof of Theorem|1.2. The proof will be given in a sequence of lemmas.
We define

(2.7) D:=cMB(1+8—a,1—pla—{)),

(2.8) 0o := (2D)~/(P=1),

where «, 3, (, p, c are as in the assumptions of Theorem and M is chosen
by application of Proposition (1) with 79 = 1 and oy = 8 + 1, that is,
uniformly for the unit time interval and for the portion of the fractional

power scale considered below.
Also, fix g € X¢ and choose § > 0 such that

(2.9) 6o = (2D)" /(=1 > ¢,

Then, with the aid of , choose r9 > 0 and Jp € (0, 1] for which

(2.10) sup t e Mug| xa < 10 for t € (0,6]
wo€ B¢ (ii0,m0)

and

(2.11) 1;;24_04 g < 1o,

With the above set-up we now prove the following lemmas.

LEMMA 2.4. Ifug € XN Byxc(tg,ro) and u € C([0,7y,), X) is a maz-
imally defined X“-solution of (1.2)—(L.3|) through ug defined on its mazimal
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interval of existence [0,Ty,) as in Proposition then

(2.12) Tug > 0o
and
(2.13) Vrcg) T Cllu(r)|xe <.

Proof. Writing the variation of constants formula associated with ((1.2))
we know via Proposition that, as long as the solution u exists,

(2.14) 7 lu(t) ] xe
t
< 1l Mg e + ¢ (e A P (u(s) ds|
0
cM t1+ﬂ_C
1+060—«
+ M= ONP(B(1 4 6 — o, 1 — pla —C)),
where A(t) is given in (2.6]). From (2.14) and (2.10)—(2.11) we next have
t7 flu(t) | xo < 36+ D( sup {s°"u(s)|lxa})”

s€|0,T

< 127l e"Mug || xa +

for 0 <t <7 < min{dp, Tu, }»
and consequently,

(2.15)  A(1)= sup s ¢u(s)| xa < 20+ DX*(7)
s€l0,T

for 0 < 7 < min{do, 7, }-

Note that A(0) = 0 and A(s) is continuous with respect to s € [0,7,,) as
u € C([0,7y,), X¥), which ensures that the set
Iy, = {T € [O,min{&),TuO}) :VSE[O,T] SQ_CHU(S)HX"‘ < 9}
is nonvoid.
Suppose now that (2.12)) is not true, so min{dp, 7y, } = 7w, is finite and,
by Proposition , limsup, - ||u(s)|/xe = oo. Defining
©o

Tup := Sup Iy,
we have Tyy < Tuy, SUDsc(o7,] 54 C|lu(s)|| xo = 6 and, from (2.9), (2.15),
(2.16) sup sV u(s)||xe =0 < 20+ Do

SE€[0,7ug
Since for 6 satisfying (2.9) it is evident that (2.16)) yields 6 < %9 + DOP < 6,
we reach a contradiction and thus (2.12)) is true.
From the earlier reasoning, any X“-solution u € C([0,7y,), X®) of

(1.2)—(1.3) through wy € X N Bxc(tp,r9) from Proposition actually



210 K. J. WAS

cannot cease to exist before time dg; in particular min{dg, 7, } = do for each
ug € XN BXg(ﬂo,To).

Now, if the condition fails, then there are 7 € [0,d9) and uy €
XN Byc(iig, o) such that 70 ¢||u(7)||xe = 6 and t*¢||lu(t)|x= < 6 for
t € [0,7). Consequently, as before we get from

sup s C|u(s)|xe =0 < 20+ Do < 0,
s€l0,T
which is absurd.

Lemma [2.4] is thus proved. =

This completes the proof of part (i). For the rest of the proof of The-
orem let us fix ug € Bxc(Ug,r0) and choose any {ug,} C X that
converges to ug in X¢. Since FPS is compactly embedded, without loss of
generality we may assume that ug, € Bx¢ (g, o) for each n € N.

In what follows we write u,, for a maximally defined X *-solution of
with u,(0) = gy, resulting from Proposition . Since, via Lemma , the
domain of definition of each u,, actually contains [0, dg], we will establish in
this interval suitable properties of the family of maps

{un} =: H.

LEMMA 2.5. The family H has the property

(2.17) Ves0 ne(000) YneN Vreony T llun(m)|xe < e
Proof. For each £ > 0 there exists h € (0, dp] for which
cM(1+6—a) thitP> < /4
and, via , also

sup t2~¢|le Mugy || xo < /4 for t € [0, h).
N

ne
Recalling (2.7)), (2.14) we have

t"‘*gHun(t)Hxa <¢€/2+ D( sup {sachun(s)HXa})p for0<t<T<h,
s€[0,7]

and with the aid of (2.13)) we obtain
(2.18) sup 5% |un(s)] xa
s€[0,7]
<e/2+ DO sup {s°¢|un(s)|xa} for 0<7 <h.

s€[0,7]
From ([2.9)), (2.18]), we now get

sup Sa_CHUn(S)”Xa <eg for0<7<h.
s€[0,7]

Hence 7% ¢||un(7)||xe < € for all n € N and 7 € [0,h), and the proof is
complete. m
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LEMMA 2.6 (Equicontinuity of H). For eache € (0,1+8—«) and k € N
satisfying 1/k < o the following condition holds:

(219) VV>0 E|7]>0 vtl,tge[l/k,&)] anN
‘tg — t1’ <n= Hun(tg) — un(tl)HXa+s < L.

Proof. Fix k> 651, e € (0,14 8 — ), and let 1/k < t; <ty < §. From
the variation of constants formula we have

(2.20)  [lun(tz) = un(ty) | xare < [[(e74% — ™4 ugn| xate

+ H tSl(eA(tzs) — e*A(t“S))F(un(s)) dsH
0

XaJre

+ H tf e—A(tz—s)F(un(s)) dsHXCY+€ =N+ +Ts

1

and we next estimate each term J;, j = 1,2, 3.

For the last term, using (1.5 and (2.13) we obtain

to
(2.21) s < | e 27 P(uy(s))|| xarte ds
t1 N
< M {(t2 = )77 F (un(s))l| xs ds
t1t2
< eM | (ty = 5)7 77 (1 + [[un(s)[5a) ds
i
=cM S(tg —s)PmaE ds
t1
to
+ M | (ty — )72 577 (5w, (5) ]| xe )P ds
t1

1
<eM——————(ty —tg) P
S Y )

to
+ 0P M S (tg — 5)P70725P(C=2) g
t1

1
<eM——— (g — tp) e
=¢ 1+ﬂ—a—5(2 )
LPr(a—=C)
OPM —— (o — ¢ 1+/3—04—5_
te 1+ﬂ—a—€(2 )
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Now we fix § > 0 such that 1+ 3 —a —§ — e > 0 and we will use the
estimate (|1.5)) together with

(2.22) (e — Dwl||x < ()t ||lw|xs, te][0,1], we X2,

(see [11 Theorem 1.4.3]) to get
t1
Fo < Y e — e A0 F (un (5)) | ot ds

0
t1

< e(6)(ty — t1)° (g) e A=) F(uy, ()] xatote ds

< e(§)M(tz —tr)° tg(tl — )77 F (un(s)) | xo ds

< cc(8)M (t2 — tl)‘stg(tl = )77 (L [lun(8) ) ds
< ce(§)M(ty —t1)° tgl(tl e e P

0
t1
+ee(0)M(ty — 11)° | (t1 — 8)772 707577 (627 |y (s)) | e ) dis.
0
Consequently, using (2.13) we have
(2.23)
5 t1+ﬁfa7675 t1 5 5 ( )
< ce(8)M(ty —t L 07 \ (t; — s)Pa0=gplC=a) g
Jo < cc(0)M(tg — t1) <1+ﬂ—a—5—g+ §)(1 s) s s)
51+,H—a—6—s

360(5)M(t2_t1)61+0ﬁ—a—5—6

+ ce(6)0P M (ty — )0 TP =B L 30— 5 — 2,14 p(¢C — @),

where

t}Jrﬁfaf&feer(C*a) < 5é+,87a7576kp(a—<)‘

Estimating [J; we use to get
(2.24)
T = (e =7 — Dem Mugy[| are < e(8)(ta—t1)° [le™ ugn]| xarore

< c(8)M (ty = 11) 7" luon]| xc < e(8) M (t2 — t1) kT ugy |y
Thus, for every k € N, t1,to € [1/k,d] and for each v we infer from
220 (2D thot

llun(t2) — un(ti)|| xate < T1+ T2+ Tz <v
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whenever n € N and |t; — to| < n(v), where 7(v) is a multiple of /% and
k = min{J, 1+ 5 —a—e}. Consequently, the family H = {u,, : n € N} can be
viewed as an equicontinuous subfamily of C([1/k, dp], X**¢) for each k € N,
which completes the proof of Lemma [2.06] =
For each ¢ € (0, ] we now define the set

H(t) = {un(t) : n € N}
and prove that H(t) is precompact in X**¢ whenever ¢ € (0,1 + 3 — «).
Since by assumption the embedding

X°Cc X% o>6>0,
is compact, this will be a consequence of the boundedness of the solutions

derived in the lemma below.

LEMMA 2.7 (Boundedness of H(t)). For eache € (0,14 8—«) and every
t € (0,80], H(t) is a bounded subset of the space X*T¢.

Proof. Choose any t € (0,9p] and € > 0 such that 1 + 8 —a —¢ > 0.
Note that

t
(D)l s < lle™ rtgn| o + || § e A P (un(s)) ds
0

t
< Mt Jugal| e + M [ (¢ = )77 Fun(s)) | x5 ds

0
t

< Mt fugn|| e + M | (£ = )77 (1+ [[un(s)[|50) ds
0

Xa+s

and hence, via (2.13)),
t

lun ()l xase < Mt fugn|xc +eM | (t = 5)° 7" ds

: 0

+ CMS (t — 5)P072 5P~ (59w, ()| x )P ds
0
< Mt fugn | xc
¢ t
+ CMS (t—s)P~ "= ds + CQPMS (t — 5)P—a—espC=a) gg
0 0
t1+ﬂfa7€
T98-a-:
AU OB(1 4§ - a 2,1 - pla = Q)
Since {ug,} is convergent in X¢, it is also bounded, which completes the
proof of Lemma[2.7] =

< Mt_a_€+c||u0n|\xg +cM
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We are now ready to construct a mild solution of ((1.2)) through the initial
condition uy € Byc¢(tg,70)-

LEMMA 2.8. There exists a subsequence {un, } of {un} such that, for each
e€[0,14 8 —a), {un,} converges in X**¢ almost uniformly on (0,80] to a
function ¢ € C((0, 0], X*T¢) satisfying (1.10]).

Proof. Let

er=1+8—a—1/k, where k>max{(1+8—a)td'}=Fk"
From Proposition and Lemmas we conclude that for each such
k € N the set H is precompact in C([1/k, o], X**°*). Hence

XaJrak
(2.25)  Visk+ El{ngk)}16N3¢k60([1/k750]7Xa+5k)vte[l/kﬂ‘sd Unl(k) (t) —— oi(t).
We remark that {ngk)} in (2.25) can be chosen in such a manner that if
k1 < ko, then for all i € N we have ngb) € {ng-kl)
Pha |1 /1,50 (B) = iy () for ¢ € [1/K1, 6o].

We also remark that, by a standard diagonal argument, there exists a
subsequence {uy,, } of {u,}, and a function ¢ defined on (0, dp] with values
in X®*€ such that, whenever § € (0,dp) and € € [0,1+ 8 — «),

(2.26) Up,, (t) — ¢(t)  in X*T uniformly for ¢ € [4, &g].
Since from ([2.13]) we have

(2.27) Vi) Ymen 1% un,, ()] xa <6,
passing to the limit as m — oo we obtain

(2.28) Ve 1 le(®)lxe <6,

which completes the proof of Lemma 2.8 =

: 7 € N}. Consequently,

In what follows we show that, extending ¢ to the interval [0, do] by
¢(0) = uo
and writing again ¢ for this extension, we have
¢ € C([0, 5], X°).

In fact, since ¢ is continuous on (0, dp] as a map with values in X, it suffices
to prove the right hand continuity of ¢ at t = 0 in the X¢ norm.

LEMMA 2.9. The function ¢ in Lemma satisfies (1.11) and
lp(t) —uollxc — 0 ast— 0T

Proof. Firstly, from (2.17)) and ([2.26]), passing to the limit as k — oo we
infer that

(2.29) Ves0 Sne(o00) Yocon 5 CN0(8)Ixa <
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Secondly, we use ([1.5)) to estimate the difference Uy, (t) := ||un, —uol| x¢-
If { > 3 then
t
Uni () < lle™ uon, — wollxe + e Fupn, (5)) ] xc ds

0
t

< lle™Muuon, — uollxe + M | (¢ = )7 || F (un, (5)) ] x5 ds
0

< e uon, —uollxc + MY (t =)7L+ un, (5)|ka) ds

< |le™Mugn, — uollxe + M\ (t —5)7ds

O e &+ O ey

t

+ M (t—5) SN (sup 5% g, (s)]x=)? ds, ¢ € [0, 0],
0 Se(o,t)

so that for D := ¢MB(1+ 8 — ¢, 1 — p(a — ¢)) we have

A t1+8—¢
(230) Unk(t) S ||€ 'U,()nk — UOHXC + CMTH
+D( sup s lun, (s)]|xa)?, ¢ € [0,0].
s€(0,t)

We remark that if 8 > ¢ then there exists D > 0 such that the estimate of
the form (2.30) holds as well.
Recalling that 1+ 3 — ¢ > 1+ 8 —a > 0, ugy,, converges to up in X¢,
{e=4*} is a C%-semigroup and (2.29) holds, we infer from (2.30) that
Ves0 J5e(0,00) Iko>0 Yezko Vic0,s)  Uni(t) < e

Then passing to the limit as £k — oo we get

Ves0 J5e(0,60) Vecon)  I16() —uollxe <e,
which completes the proof of Lemma 2.9 =
Part (ii) is thus proved and we now show that ¢ satisfies in [0, 70] the
variation of constants formula associated with (1.2))—(L.3).

LEMMA 2.10. The function ¢ from Lemma [2.8 satisfies

t
(2.31) $(t) = e Mg+ e ATV P (g(s)) ds, ¢ €[0,00].
0
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Proof. Note that if ¢ > 3, then for s € (0,t) C (0,dp] and n € N we have

(2.32)  |lem I F (un(s)) — F(0(5))] | xc

< I (ua(s) — F(6())

(t—s)
Note also that wup, (s) SN ¢(s) in (0,6p] for a suitable subsequence {uy, }
and hence, as F' € C(X®, X?), the right hand side of (2.32) tends to zero
for each s € (0,¢).

From (1.5), (2.27) and (2.28)) we next have

le= AU F (un, (5)) — F(d(5))] | x¢

< a1 () s + IP(@(3) )
< e+ e 9l + 10

2cM cM o a—
S G e arao (s um )k + 157 0(s) )

< 2cM n 2c6P M
- (t — S)C_ﬁ (t — 3)4‘53%’(0‘_0
which ensures that for each ¢ € (0,dp] the left hand side of (2.32) is, as

a function of s € (0,t), bounded uniformly for n € N by a function h(s)
integrable over (0,t).

=: h(s),

Using Lebesgue’s dominated convergence theorem we now conclude that
for all ¢t € (0, o] we have

t t
¢
(2.33) Se_A(t_S)F(u(s,u()nk)) ds X Se_A(t_S)F(qS(s)) ds as k — oc.
0 0
Similar considerations lead to (2.33) also when ¢ < 3, so (2.31) holds

and Lemma [2.10]is proved. =

With Lemmas 2.10] the proof of Theorem and thus also of The-
orem [I.3] is now straightforward.

Proof of Corollary . First note that implies with ¢ =
2C + ||F(0)|| x5 so that Theorem applies.

Suppose now that for i = 1, 2 there are given functions u; € C((0,7;), X%)
such that u;(0) = ug € X¢, and u; satisfies on a certain interval (0,70] C
(0,7;) the variation of constants formula associated with f and
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lim;_g+ t*¢||u;(t)||xo = 0. The latter implies
(231) V(o) Jonc00) Yoe0 5™ (ur(s) Lo+ fua(s) )/,
and with the aid of ((1.13]) we then get

t
(2.35)  flua(t) = uz(t)]xe < § e F(ua(s) — F(uz(s))]]| xe ds
0

(t — )7 |ur(s) — uz(s) | xo (1 + [ur(s)[5a” + llua(s)|l5a’) ds

(t = )77 |lus(s) — ua(s)llx= ds

~

+eCM | (t — 5)P2s7 DO [y (5) — up(s) ]| xe ds, ¢ € (0,0).
0
Define next

2(t) i= sup s |lur(s) —ua(s)|xa, t€(0,02),
s€(0,t)

D:=CMmax{B(14+8—-a,1+(—a),BAl+3—a,1—pla—))}
From (1.6) we have 1+ (¢ —a >0and 14+ 5 —(— p(a —¢) > 0, and from
(2.35) we obtain

2 un (t) — wn(8) e
t ¢
< (S (t —s)P ¢ ds + ES (t — )= grle=0) ds) C Mt z(t)
0 0

= ("B + -0, 14+(—q)
4 et OB(1 4+ 8 —a,1 — pla — ()))CMz(t)

= (1P 4 o) D2(t) < (8P + &)Dz(r) for 0 <t <7 <9..
Consequently, for each 7 € (0, d;), we have
0 < 2(1) < (0P + ) Dz(1),
and choosing in ([2.34) ¢ € (0,79) such that (e11#~* +£)D < 1, we conclude
that
2(t) =0, 7€(0,d).
The solution is thus locally unique and Corollary follows. m

Proof of Remark[1.5 Recall that now (L.5]) holds with ¢ := C'+ || F(0)|| x5,
fix 4y € X¢ and let § = (8D)~Y(=1 in (2.9). Then choose o > 0 and
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do € (0,1] as in (2.10)—(2.11) and restrict dp by the additional condition
(2.36) CMSTP " B(1+8—a,1+(—a) <1/4.

Note that the unique solution u through any point of uy € Bx¢ (g, r)
considered in Corollary will satisfy ((1.10)), that is,
sup ¢ [Ju(t)[| xo <6,
t€(0,d0]

as this solution can be constructed via Theorem .2
With the above set-up for each ¢ € [0, dp] we get

[u(t) — a(t)| xa

< e (uo — o) | xe + | e [F(u(s)) — F(i(s))]]| xe ds
0
< Mt |ug — ol x¢

+OM | (t = 5)7[lus) = @(s) | xa (1 + [u(s)ll5a" + llals) k) ds
0

< M ug — || xc + CM | (t = )" u(s) — a(s)|| xo ds
0

~+

~

+2007 M | (t = )75V u(s) — a(s) | x ds,
0

and consequently, by (1.6) -,
£ () — at)| xo

< Mluo — o] x¢

+ COM P B+ 8 —a,1+¢—a) sup s C|u(s) — a(s)| xo
s€(0,t)
+200°~ 1 \p1t+B—C—pla—()
B(l+ 6 —a,1—p(a—()) sup s*|lu(s) —a(s)| xa
s€(0,t)
< M||ug — o] xc + (CMtPB(1 + 8 —a,1+ ¢ — a) + 2D )

X sup sa_CHu(s) —a(s)]| xe.
s€(0,t)

Since # = (8D)~ /(=1 and (2.36)) holds we actually have

t7¢Ju(t) — a(t)l|lxe < Mlluo —Gollxc +5 sup s*[lu(s) — a(s)|| xe
s€(0,00)

for t € (0,0¢], which ensures that (1.14]) holds with L = 2M.
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Now we write again the variation of constants formula and use (1.14) to

obtain
t

Ju(t) = a®)lle < lle™ (o — o) e +§ le™ =[P (u(s)) = F(ai(s))]] e ds
0
< Mlluo — tiol| x<
+OM § (0= ") = i)l (14 (o) + (o)) s

0
t

< Mjug — dig|| e + CLM | (t — 5)° s~ Jug — dio|| x< ds

0
t

+ 2C€p*1LMS (t — )PS5 |ug — dig| ¢ ds
0
=M(1+CLB(1+8-(1+(—a)
+2C0°7 LB(1+ 3 — (1 — pla — () luo — ol x¢
=: i”uO—ﬂoHXg, S (0,50).
The proof is complete. =
REMARK 2.11. Note that, due to [II] (see [§] and [6, Appendix]), the
solution u in Corollary [[-4] has further regularity properties:
(2.37)  w(t) € C([0,7], X¢) N C((0,7], X1y n CL((0, 7], X ),
e€[0,14+ 05— a),
and u(t) satisfies both relations in (1.2).

3. Examples. In this section we discuss a few applications of the ab-
stract results to sample problems involving non-Lipschitz nonlinearities and
critical exponents.

ExaMPLE 3.1. Consider first

u — Au= f(u), t>0,z€,
(3.1) u(t,z) =0, t>0,z¢€ 012,

u(0,z) = up(z), =€ 2,
where {2 is a bounded domain in R with smooth boundary and f: R — R
is a continuous function satisfying

(3.2) Fp>1 Veer  [f(9)] < c(1+[s]”).

In this example, A is defined by the negative Laplacian in X = LP(£2),p > 1,
with the domain W22 (£2) N WP (£2).
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Whenever N(p—1)/(2pp) < 1 we find that (1.1) satisfied with o =
N(p—1)/(2pp), B =0 as a consequence of the Sobolev embedding

X = W™ () C LPP(R2).

Being now interested in solvability of with initial conditions in
Wol’p(_Q) we refer to and obtain 1/2=(=—1/(p — 1) + N/(2p), from
which the exponent p can be derived. Hence we conclude that Theorem [1.3
applies with X¢ = X'/2 and p = (N 4 p)/(N — p) when N > p.

Note that this p is a critical exponent for local solvability of in
Wol P(02) (see [2]) and that the results in [2] are generalized here to non-
Lipschitz nonlinearities f satisfying merely continuity and growth assump-
tions.

We remark that for p = 2 and N = 3 we have p = 5 and that for initial
data in H}(§2) the approach of [I1] does not apply with such growth even
for Lipschitz continuous right hand sides, as for a sample power function s°

one has [¢]> € H~Y(R2) for ¢ € HE(92).

ExaMPLE 3.2. More generally, consider a higher order initial-boundary
value problem

Ut + 3| j<om G0 (@) D7u = f(u),
t>0,z€ RCRY, N>2m>2,

(33) Y Bz =B, ju=0, t>0 z€0
u(0,2) =up € HZL{BJ_}(Q),

(see [6]), where {2 is a bounded smooth domain in RV, a, € C(£2) for
lo| =2m, a, € L*>(2) for |o| < 2m, and

Bj= Y bgj(x)D?, j=0,...,m-1,

lo|<m;

are boundary operators with coefficients b,; € C?™~(9f2) such that
falls into the class of abstract parabolic problems of the form (see [10
Theorem 19.4, p. 78] and the assumptions therein).

In this example A is considered in X = LP({2) with the domain Hg??Bj}(Q)
and corresponds to a regular elliptic boundary value problem (L, {B;}, §2),
where Lu = Zlcf|§2m a,(x)Du is the operator appearing in the linear main
part of and the spaces Hgf{”Bj}(Q) are defined as in [14, Chapter 4].

Suppose that f € C(R,R) satisfies and that N(p —1)/(2mpp) < 1.
Then (1.1)) is satisfied with o = N(p — 1)/(2mpp) and 5 = 0 by the embed-
ding

x N(p=1)/(2mpp) ~ Hé\f(p—l)/(pp)(g) C LPP(9),
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Being now interested in local solvability of (1.6) with initial conditions

in H" Bj}(“Q) we observe that ([1.6)) now implies for the critical exponent p

the relation 1/2 = ¢ = —1/(p — 1) + N/(2pm). We thus conclude that Theo-
remmapplies in this example with X¢ = X2 and p = (N +mp) /(N —mp)
when N > mp. This generalizes the considerations of [6] that have been car-
ried out in the Hilbert setting and for Lipschitz continuous nonlinearities.

ExaMPLE 3.3. Consider the initial boundary value problem for the wave
equation with a structural damping

g +n(=A)Pup + (—Au = f(u), t>0,z€0
(3.4) uw(0,z) = up(z), w(0,2) =wvo(x), =€ 2,
u(t,z) =0, t>0,z¢€ 01,

(see [3HT]), where £2 is a bounded smooth domain in RY, n > 0 and f €
C(R,R) satisfies (3.2)).

Denoting by A the negative Laplacian in E = L?(§2) with the domain
D(A) = H?(02) N H}(2) recall that the problem can be viewed in the
form (|1.2)) as

T ) S s e

where
A [0 -1 ]
A 2pAY/?
is a sectorial positive operator in X% = L?(£2) x H~!(§2) with the domain
X' = H}(£2) x L*(£2) (see [3]) and F([4]) = [ 40 ]-

Next, denoting by {E? : ¢ € R} the fractional power scale associated
with A in E recall also from [3] that

(3.6) X =Ex ECD2 5e]0,2.

We now choose
(3.7) a=1+1/(2p), pB=1/2, (=1,
which satisfy , and with the aid of , we obtain

IF([2))] =1l < sl o
v x1/2

< exe(([1ll i n ) + 16l ansov i )

Since EV/2+1/(4p) ¢ g+1/(20)(2), (1.5)) will hold with the parameters as
in ([3.7) provided that H'*'/(22)(§2) is embedded in L2N?/(N+1D (), which,
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assuming N > 2, translates into the condition

2Np 2Np

N+1-p(N-2) -1
Thus for the problem Theorem applies with p = (N +2)/(N — 2)
and a, 8, ¢ asin (3.7).

Similar considerations apply in the LP-setting and can also be carried out
for more general strongly damped wave equations of the form

(3.8) up + 2nAJus + Apu = f(u) + g(ug), t>0,z€ L,
' u(0) =up € X2, uy(0) = vp € X,
where 6 € [1/2,1) and (1,0, A1) is an admissible triple (see [7), Definition 1.1])

corresponding to a regular elliptic boundary value problem (L, {B;}, {2) as

in Example

Applying Theorem |[1.3| we infer that has a local solution through
each point [19] € gf{Bj}(Q) x LP({2) provided that f,¢g € C(R,R), N >
mp, p > 2 and

f($)] < e(L+ |s| NP/ (N=me)y s e R,
l9(s)] < e(L+ | VRO, s ER,
which extends the results of [7, Theorem 1.2| to non-Lipschitz nonlinearities.
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