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ABSTRACT PARABOLIC PROBLEMS
WITH NON-LIPSCHITZ CRITICAL NONLINEARITIES

BY

KONRAD J. WĄS (Katowice)

Abstract. The Cauchy problem for a semilinear abstract parabolic equation is con-
sidered in a fractional power scale associated with a sectorial operator appearing in the
linear main part of the equation. Existence of local solutions is proved for non-Lipschitz
nonlinearities satisfying a certain critical growth condition.

1. Introduction. In this article we consider a semilinear abstract para-
bolic problem with a non-Lipschitz nonlinearity and prove the existence of
local solutions in some large phase space of initial data when the nonlinear
term satisfies a certain critical growth condition.

Suppose that X is a Banach space and −A : dom(A) ⊂ X → X is
a linear operator which generates a C0 analytic semigroup {e−At} ⊂ L(X).
Denote by FPS the fractional power scale {Xσ : σ ≥ 0} generated by (X,A)
(see [1]) and suppose that

F is a continuous map from Xα into Xβ for
certain Xα, Xβ ∈ FPS with 1 > α− β ≥ 0.

(1.1)

With the above set-up consider the Cauchy problem

u̇(t) +Au(t) = F (u(t)), t > 0,(1.2)
u(0) = u0(1.3)

and recall the following result that goes back to [12, Theorem 1] (see also
[13, Theorem 6.2.1]).

Proposition 1.1. If A is a sectorial operator in a Banach space X with
compact resolvent, (1.1) holds and u0 ∈ Xα, then there exists a local Xα

mild solution u(t) of (1.2)–(1.3); that is, there exists τ > 0 and a function
u ∈ C([0, τ ], Xα) satisfying for t ∈ [0, τ ] the Cauchy integral formula

(1.4) u(t) = e−Atu0 +
t�

0

e−A(t−s)F (u(s)) ds.
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If furthermore F : Xα → Xβ takes bounded sets to bounded sets, then u(t)
has a continuation (denoted the same and called a maximally defined Xα-
solution) onto a maximal interval of existence [0, τu0) such that

either τu0 =∞ or lim sup
t→τ−u0

‖u(t)‖Xα =∞.

A nontrivial task arises when (1.2) is to be solved with initial data in a
certain larger space Xζ with ζ < α and F is not continuous on bounded sets
from Xζ into Xδ for any δ ≥ 0 such that 1 > ζ − δ ≥ 0; in fact, the map F
may not be well defined on Xζ with values in Xδ for any δ ≥ 0 such that
1 > ζ − δ ≥ 0. This is the situation that will be investigated in the main
body of this paper.

Our concern will be to prove local solvability of (1.2)–(1.3) in a possibly
large fractional power space from the scale FPS assuming that the nonlinear
term F satisfies (1.1) and the growth condition

(1.5) ∃ρ>1 ∃c>0 ‖F (v)‖Xβ ≤ c(1 + ‖v‖ρXα), v ∈ Xα.

To do so we will prove the following result.

Theorem 1.2. Suppose that A is a sectorial operator in a Banach space
X with compact resolvent and the assumptions (1.1), (1.5) hold. Let ζ ≥ 0
be such that

(1.6) α > ζ ≥ −1− β + αρ

ρ− 1
, ζ > α− 1

ρ
.

Then there exists a positive constant θ0, depending only on A,F, α, β, ζ, such
that given any ũ0 ∈ Xζ and any θ ∈ (0, θ0), there are r0, δ0 > 0 for which
the following conditions hold.

(i) For each u0 ∈ Xα ∩ BXζ (ũ0, r0), where BXζ (ũ0, r0) = {u0 ∈ Xζ :
‖u0 − ũ0‖Xζ < r0}, any maximally defined Xα-solution u(t) of (1.2)–(1.3)
from Proposition 1.1 exists for all t ∈ [0, δ0] and satisfies the estimate

(1.7) sup
t∈[0,δ0]

tα−ζ‖u(t)‖Xα ≤ θ.

(ii) For each u0 ∈ BXζ (ũ0, r0), for any sequence {u0n} ⊂ Xα that con-
verges to u0 in Xζ , and for any sequence {un} where un, n ∈ N, is a
maximally defined Xα-solution of (1.2) through un(0) = u0n resulting from
Proposition 1.1, there is a subsequence {unk} and a function

(1.8) φ ∈ C([0, δ0], Xζ) ∩ C((0, δ0], Xα+ε), ε ∈ [0, 1 + β − α),

such that

(1.9) unk(t)→ φ(t) in Xα+ε as k →∞ for each ε ∈ [0, 1 + β − α)
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uniformly for t in compact subintervals of (0, δ0] and

sup
t∈(0,δ0]

tα−ζ‖φ(t)‖Xα ≤ θ,(1.10)

lim
t→0+

tα−ζ‖φ(t)‖Xα = 0.(1.11)

(iii) The function φ defined in (ii) satisfies the variation of constants
formula (1.4) in [0, δ0].

Consequently, Theorem 1.2 and Proposition 1.1 yield the following local
existence result.

Theorem 1.3. If A is a sectorial operator in a Banach space X with
compact resolvent, F satisfies (1.1), (1.5), and ζ ≥ 0 is such that (1.6)
holds, then for each ũ0 ∈ Xζ there are r0, δ0 > 0 such that for each u0 in
a ball BXζ (ũ0, r0) there exists a mild solution u of the problem (1.2) in the
class

(1.12) C := {χ ∈ C([0, δ0], Xζ) ∩ C((0, δ0], Xα) : lim
t→0+

tα−ζ‖χ(t)‖Xα = 0}.

Furthermore, u has a continuation (denoted the same) onto an interval
[0, τu0) such that

either τu0 =∞ or lim sup
t→τ−u0

‖u(t)‖Xα =∞.

Under a stronger assumption on the nonlinear term,

(1.13) ∃ρ>1∃C>0‖F (v)−F (w)‖Xβ ≤C‖v−w‖Xα(1+‖v‖ρ−1
Xα +‖w‖ρ−1

Xα ),
v, w ∈ Xα,

the problem (1.2) will be locally uniquely solvable in Xζ with ζ as in (1.6).
The following conclusion, which goes back to the results of [2], is a conse-
quence of Theorem 1.2 and (1.13).

Corollary 1.4. If A is a sectorial operator in a Banach space X with
compact resolvent, F satisfies (1.1), (1.13), and ζ ≥ 0 is such that (1.6)
holds, then Theorem 1.3 applies and the solution of the problem (1.2)–(1.3)
in the class C is unique.

Remark 1.5. Under the assumptions of Corollary 1.4, for suitably cho-
sen r0 and δ0, there are L, L̃ > 0 such that for each u0 ∈ BXζ (ũ0, r0) the
corresponding solutions u, ũ of (1.2) with u(0) = u0 and ũ(0) = ũ0 satisfy

‖u(t)− ũ(t)‖Xα ≤ Ltζ−α‖u0 − ũ0‖Xζ , t ∈ (0, δ0],(1.14)

‖u(t)− ũ(t)‖Xζ ≤ L̃‖u0 − ũ0‖Xζ , t ∈ [0, δ0].(1.15)

To compare our results with those in the references we remark that in [2]
the problem (1.2) has been considered under the assumption that F belongs
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to the class F [X1, X0, ε, ρ, γ(ε)] of ε-regular maps such that

(1.16) ‖F (φ1)−F (φ2)‖Xγ(ε) ≤C‖φ1−φ2‖X1+ε (1 + ‖φ1‖ρ−1
X1+ε +‖φ2‖ρ−1

X1+ε)

for φ1, φ2 ∈ X1+ε, with constants ρ > 1, ε ∈ (0, 1/ρ), γ(ε) ∈ [ρε, 1) and
C > 0.

Note that (1.16) implies (1.13) and hence also (1.5) with α = 1 + ε
and β = γ(ε). In the latter case when γ(ε) = ερ we can also allow ζ = 1
in (1.6), which corresponds to the critical case described in [2]. Thus, for
semilinear problems with sectorial operators possessing compact resolvents,
Theorems 1.2 and 1.3 generalize earlier considerations of [2] to the case of
non-Lipschitz nonlinearities.

The proofs of Theorems 1.2, 1.3 and Corollary 1.4 will be given in Sec-
tion 2. In the closing Section 3 some applications involving 2mth order
parabolic problems and strongly damped wave equations will be discussed.

2. Abstract results. We now proceed with the proofs of the results
reported in Section 1. We start from the following two propositions, which
go back to the results in [2, 11].

Proposition 2.1. Let A be a sectorial operator in a Banach space X.
Then

(i) for σ0 > 0 and τ0 > 0 there is a positive constant M such that for
any 0 ≤ γ ≤ σ ≤ σ0 and all v ∈ Xγ and t ∈ (0, τ0],

(2.1) ‖e−Atv‖Xσ ≤Mtγ−σ‖v‖Xγ ,

(ii) given σ > γ ≥ 0 and a subset J of Xγ precompact in Xγ, we have

(2.2) lim
t→0+

sup
v∈J
‖tσ−γe−Atv‖Xσ = 0,

(iii) given σ > γ ≥ 0 and ṽ ∈ Xγ we also have

(2.3) ∀ε>0 ∃r>0 ∃δ>0 ∀v∈BXγ (ṽ,r) ∀t∈(0,δ] ‖tσ−γe−Atv‖Xσ < ε.

Proof. Part (i) follows from [11, Theorem 1.4.3].
Now, if J is precompact in Xγ , for any ε > 0 there exist k ∈ N and

v1, . . . , vk ∈ Xγ such that

J ⊂ clXγJ ⊂
k⋃
j=1

BXγ

(
vj ,

ε

4M

)
.

Therefore, by density of Xσ in Xγ ,

(2.4) J ⊂
k⋃
j=1

BXγ

(
ṽj ,

ε

2M

)
with certain ṽ1, . . . , ṽk ∈ Xσ ⊂ Xγ ,
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Also, for j = 1, . . . , k there exists δj ∈ (0, 1) such that

(2.5) tσ−γ‖e−Atṽj‖Xσ ≤ tσ−γM‖ṽj‖Xσ < ε/2 for t < δj .

Combining (2.1) and (2.4)–(2.5), we find that if v ∈ J then for t < δ =
min{δ1, . . . , δk},

tσ−γ‖e−Atv‖Xσ ≤ tσ−γ(‖e−Atṽj‖Xσ + ‖e−At(v − ṽj)‖Xσ)
< ε/2 +M‖v − ṽj‖Xγ < ε,

which proves (ii).
Finally, if (iii) were false then one could choose ṽ ∈ Xγ , ε > 0 and

sequences vn
Xγ

→ ṽ and tn → 0+ such that ‖tσ−γn e−Atnvn‖Xσ ≥ ε, which
contradicts (ii).

Proposition 2.2. If A is a sectorial operator in a Banach space X,
(1.1), (1.5) hold and u ∈ C([0, τ ], Xα) for some τ > 0, then for ζ ≥ 0
satisfying (1.6) and each 0 ≤ t ≤ τ the following estimate holds:

tα−ζ
t�

0

‖e−A(t−s)F (u(s))‖Xα ds

≤ cMt1+β−ζ

1 + β − α
+ cMt1+β−ζ−ρ(α−ζ)λρ(t)B(1 + β − α, 1− ρ(α− ζ))

where

(2.6) λ(t) := sup
s∈(0,t]

sα−ζ‖u(s)‖Xα

and B is the beta function, B(a, b) =
	1
0 (1− x)a−1xb−1 dx for a, b > 0.

Proof. We start from the remark that 1+β−α > 0 by assumption (1.1),
and consequently 1+β−ζ > 0 as α > ζ in (1.6). Condition (1.6) also implies
that 1 + β − ζ − ρ(α− ζ) ≥ 0 and 1− ρ(α− ζ) > 0.

Using the estimate

‖e−A(t−s)‖L(Xβ ,Xα) ≤M(t− s)β−α, τ ≥ t > s ≥ 0,

observe that, by (1.5),

tα−ζ
t�

0

‖e−A(t−s)F (u(s))‖Xα ds ≤ tα−ζM
t�

0

(t− s)β−α‖F (u(s))‖Xβ ds

≤ tα−ζcM
t�

0

(t− s)β−α(1 + ‖u(s)‖ρXα) ds

=
cM

1 + β − α
t1+β−ζ + tα−ζcM

t�

0

(t− s)β−α‖u(s)‖ρXα ds.
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Now we estimate the second term on the right hand side:

tα−ζcM

t�

0

(t− s)β−α‖u(s)‖ρXα ds

= tα−ζcM

t�

0

(t− s)β−αs−ρ(α−ζ)‖sα−ζu(s)‖ρXα ds

≤ tα−ζcMλρ(t)
t�

0

(t− s)β−αs−ρ(α−ζ) ds

= cMt1+β−ζ−ρ(α−ζ)λρ(t)
1�

0

(1− s)β−αs−ρ(α−ζ) ds

= cMt1+β−ζ−ρ(α−ζ)λρ(t)B(1 + β − α, 1− ρ(α− ζ)).

We now recall from [9, 7.5.7] the following compactness criterion.

Proposition 2.3. Suppose that X is a Banach space and Y is a compact
metric space. A necessary and sufficient condition for G ⊂ C(Y,X ) to be
relatively compact in C(Y,X ) is that G is equicontinuous and, for each y ∈ Y,
the set {g(y) : y ∈ Y} is relatively compact in X .

Proof of Theorem 1.2. The proof will be given in a sequence of lemmas.
We define

D := cMB(1 + β − α, 1− ρ(α− ζ)),(2.7)

θ0 := (2D)−1/(ρ−1),(2.8)

where α, β, ζ, ρ, c are as in the assumptions of Theorem 1.2 and M is chosen
by application of Proposition 2.1(i) with τ0 = 1 and σ0 = β + 1, that is,
uniformly for the unit time interval and for the portion of the fractional
power scale considered below.

Also, fix ũ0 ∈ Xζ and choose θ > 0 such that

(2.9) θ0 = (2D)−1/(ρ−1) > θ.

Then, with the aid of (2.3), choose r0 > 0 and δ0 ∈ (0, 1] for which

(2.10) sup
u0∈BXζ (ũ0,r0)

tα−ζ‖e−Atu0‖Xα < 1
4θ for t ∈ (0, δ0]

and

(2.11)
cM

1 + β − α
δ1+β−α
0 < 1

4θ.

With the above set-up we now prove the following lemmas.

Lemma 2.4. If u0 ∈ Xα ∩BXζ (ũ0, r0) and u ∈ C([0, τu0), X
α) is a max-

imally defined Xα-solution of (1.2)–(1.3) through u0 defined on its maximal
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interval of existence [0, τu0) as in Proposition 1.1, then

(2.12) τu0 > δ0

and

(2.13) ∀τ∈[0,δ0) τα−ζ‖u(τ)‖Xα < θ.

Proof. Writing the variation of constants formula associated with (1.2)
we know via Proposition 2.2 that, as long as the solution u exists,

(2.14) tα−ζ‖u(t)‖Xα

≤ tα−ζ‖e−Atu0‖Xα + tα−ζ
∥∥∥ t�

0

e−A(t−s)F (u(s)) ds
∥∥∥
Xα

≤ tα−ζ‖e−Atu0‖Xα +
cM

1 + β − α
t1+β−ζ

+ cMt1+β−ζ−ρ(α−ζ)λρ(t)B(1 + β − α, 1− ρ(α− ζ)),
where λ(t) is given in (2.6). From (2.14) and (2.10)–(2.11) we next have

tα−ζ‖u(t)‖Xα < 1
2θ +D( sup

s∈[0,τ ]
{sα−ζ‖u(s)‖Xα})ρ

for 0 ≤ t ≤ τ < min{δ0, τu0},
and consequently,

(2.15) λ(τ) = sup
s∈[0,τ ]

sα−ζ‖u(s)‖Xα ≤ 1
2θ +Dλρ(τ)

for 0 ≤ τ < min{δ0, τu0}.

Note that λ(0) = 0 and λ(s) is continuous with respect to s ∈ [0, τu0) as
u ∈ C([0, τu0), X

α), which ensures that the set

Iu0 = {τ ∈ [0,min{δ0, τu0}) : ∀s∈[0,τ ] s
α−ζ‖u(s)‖Xα < θ}

is nonvoid.
Suppose now that (2.12) is not true, so min{δ0, τu0} = τu0 is finite and,

by Proposition 1.1, lim sups→τ−u0
‖u(s)‖Xα =∞. Defining

τ̃u0 := sup Iu0

we have τ̃u0 < τu0 , sups∈[0,τ̃u0 ] s
α−ζ‖u(s)‖Xα = θ and, from (2.9), (2.15),

(2.16) sup
s∈[0,τ̃u0 ]

sα−ζ‖u(s)‖Xα = θ ≤ 1
2θ +Dθρ.

Since for θ satisfying (2.9) it is evident that (2.16) yields θ ≤ 1
2θ+Dθρ < θ,

we reach a contradiction and thus (2.12) is true.
From the earlier reasoning, any Xα-solution u ∈ C([0, τu0), X

α) of
(1.2)–(1.3) through u0 ∈ Xα ∩ BXζ (ũ0, r0) from Proposition 1.1 actually
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cannot cease to exist before time δ0; in particular min{δ0, τu0} = δ0 for each
u0 ∈ Xα ∩BXζ (ũ0, r0).

Now, if the condition (2.13) fails, then there are τ ∈ [0, δ0) and u0 ∈
Xα ∩ BXζ (ũ0, r0) such that τα−ζ‖u(τ)‖Xα = θ and tα−ζ‖u(t)‖Xα < θ for
t ∈ [0, τ). Consequently, as before we get from (2.15)

sup
s∈[0,τ ]

sα−ζ‖u(s)‖Xα = θ ≤ 1
2θ +Dθρ < θ,

which is absurd.
Lemma 2.4 is thus proved.
This completes the proof of part (i). For the rest of the proof of The-

orem 1.2 let us fix u0 ∈ BXζ (ũ0, r0) and choose any {u0n} ⊂ Xα that
converges to u0 in Xζ . Since FPS is compactly embedded, without loss of
generality we may assume that u0n ∈ BXζ (ũ0, r0) for each n ∈ N.

In what follows we write un for a maximally defined Xα-solution of (1.2)
with un(0) = u0n resulting from Proposition 1.1. Since, via Lemma 2.4, the
domain of definition of each un actually contains [0, δ0], we will establish in
this interval suitable properties of the family of maps

{un} =: H.

Lemma 2.5. The family H has the property

(2.17) ∀ε>0 ∃h∈(0,δ0) ∀n∈N ∀τ∈[0,h) τα−ζ‖un(τ)‖Xα < ε.

Proof. For each ε > 0 there exists h ∈ (0, δ0] for which
cM(1 + β − α)−1h1+β−α < ε/4

and, via (2.2), also
sup
n∈N

tα−ζ‖e−Atu0n‖Xα < ε/4 for t ∈ [0, h).

Recalling (2.7), (2.14) we have
tα−ζ‖un(t)‖Xα < ε/2 +D( sup

s∈[0,τ ]
{sα−ζ‖un(s)‖Xα})ρ for 0 ≤ t ≤ τ < h,

and with the aid of (2.13) we obtain

(2.18) sup
s∈[0,τ ]

sα−ζ‖un(s)‖Xα

≤ ε/2 +Dθρ−1 sup
s∈[0,τ ]

{sα−ζ‖un(s)‖Xα} for 0 ≤ τ < h.

From (2.9), (2.18), we now get
sup
s∈[0,τ ]

sα−ζ‖un(s)‖Xα < ε for 0 ≤ τ < h.

Hence τα−ζ‖un(τ)‖Xα < ε for all n ∈ N and τ ∈ [0, h), and the proof is
complete.
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Lemma 2.6 (Equicontinuity of H). For each ε ∈ (0, 1+β−α) and k ∈ N
satisfying 1/k < δ0 the following condition holds:

(2.19) ∀ν>0 ∃η>0 ∀t1,t2∈[1/k,δ0] ∀n∈N

|t2 − t1| < η ⇒ ‖un(t2)− un(t1)‖Xα+ε < ν.

Proof. Fix k > δ−1
0 , ε ∈ (0, 1 + β − α), and let 1/k ≤ t1 < t2 ≤ δ0. From

the variation of constants formula we have

(2.20) ‖un(t2)− un(t1)‖Xα+ε ≤ ‖(e−At2 − e−At1)u0n‖Xα+ε

+
∥∥∥ t1�

0

(e−A(t2−s) − e−A(t1−s))F (un(s)) ds
∥∥∥
Xα+ε

+
∥∥∥ t2�
t1

e−A(t2−s)F (un(s)) ds
∥∥∥
Xα+ε

=: J1 + J2 + J3

and we next estimate each term Jj , j = 1, 2, 3.
For the last term, using (1.5) and (2.13) we obtain

J3 ≤
t2�

t1

‖e−A(t2−s)F (un(s))‖Xα+ε ds(2.21)

≤M
t2�

t1

(t2 − s)β−α−ε‖F (un(s))‖Xβ ds

≤ cM
t2�

t1

(t2 − s)β−α−ε(1 + ‖un(s)‖ρXα) ds

= cM

t2�

t1

(t2 − s)β−α−ε ds

+ cM

t2�

t1

(t2 − s)β−α−εsρ(ζ−α)(sα−ζ‖un(s)‖Xα)ρ ds

≤ cM 1
1 + β − α− ε

(t2 − t1)1+β−α−ε

+ cθρM

t2�

t1

(t2 − s)β−α−εsρ(ζ−α) ds

≤ cM 1
1 + β − α− ε

(t2 − t1)1+β−α−ε

+ cθρM
kρ(α−ζ)

1 + β − α− ε
(t2 − t1)1+β−α−ε.
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Now we fix δ > 0 such that 1 + β − α − δ − ε > 0 and we will use the
estimate (1.5) together with

(2.22) ‖(e−At − I)w‖X ≤ c(δ)tδ‖w‖Xδ , t ∈ [0, 1], w ∈ Xδ,

(see [11, Theorem 1.4.3]) to get

J2 ≤
t1�

0

‖[e−A(t2−t1) − I]e−A(t1−s)F (un(s))‖Xα+ε ds

≤ c(δ)(t2 − t1)δ
t1�

0

‖e−A(t1−s)F (un(s))‖Xα+δ+ε ds

≤ c(δ)M(t2 − t1)δ
t1�

0

(t1 − s)β−α−δ−ε‖F (un(s))‖Xβ ds

≤ cc(δ)M(t2 − t1)δ
t1�

0

(t1 − s)β−α−δ−ε(1 + ‖un(s)‖ρXα) ds

≤ cc(δ)M(t2 − t1)δ
t1�

0

(t1 − s)β−α−δ−ε ds

+ cc(δ)M(t2 − t1)δ
t1�

0

(t1 − s)β−α−δ−εsρ(ζ−α)(sα−ζ‖un(s))‖Xα)ρ ds.

Consequently, using (2.13) we have

J2 ≤ cc(δ)M(t2 − t1)δ
(

t1+β−α−δ−ε
1

1+β−α−δ−ε
+ θρ

t1�

0

(t1 − s)β−α−δ−εsρ(ζ−α) ds

)(2.23)

≤ cc(δ)M(t2 − t1)δ
δ1+β−α−δ−ε
0

1 + β − α− δ − ε
+ cc(δ)θρM(t2 − t1)δt1+β−α−δ−ε+ρ(ζ−α)

1 B(1 + β − α− δ − ε, 1 + ρ(ζ − α)),

where
t
1+β−α−δ−ε+ρ(ζ−α)
1 ≤ δ1+β−α−δ−ε

0 kρ(α−ζ).

Estimating J1 we use (2.22) to get

J1 = ‖(e−A(t2−t1) − I)e−At1u0n‖Xα+ε ≤ c(δ)(t2− t1)δ‖e−At1u0n‖Xα+δ+ε

(2.24)

≤ c(δ)M(t2− t1)δtζ−α−δ−ε1 ‖u0n‖Xζ ≤ c(δ)M(t2− t1)δk−ζ+α+δ+ε‖u0n‖Xζ .

Thus, for every k ∈ N, t1, t2 ∈ [1/k, δ0] and for each ν we infer from
(2.20)–(2.24) that

‖un(t2)− un(t1)‖Xα+ε ≤ J1 + J2 + J3 < ν
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whenever n ∈ N and |t1 − t2| ≤ η(ν), where η(ν) is a multiple of ν1/κ and
κ = min{δ, 1+β−α−ε}. Consequently, the family H = {un : n ∈ N} can be
viewed as an equicontinuous subfamily of C([1/k, δ0], Xα+ε) for each k ∈ N,
which completes the proof of Lemma 2.6.

For each t ∈ (0, δ0] we now define the set

H(t) = {un(t) : n ∈ N}
and prove that H(t) is precompact in Xα+ε whenever ε ∈ (0, 1 + β − α).
Since by assumption the embedding

Xσ ⊂ X σ̃, σ > σ̃ ≥ 0,

is compact, this will be a consequence of the boundedness of the solutions
derived in the lemma below.

Lemma 2.7 (Boundedness of H(t)). For each ε ∈ (0, 1+β−α) and every
t ∈ (0, δ0], H(t) is a bounded subset of the space Xα+ε.

Proof. Choose any t ∈ (0, δ0] and ε > 0 such that 1 + β − α − ε > 0.
Note that

‖un(t)‖Xα+ε ≤ ‖e−Atu0n‖Xα+ε +
∥∥∥ t�

0

e−A(t−s)F (un(s)) ds
∥∥∥
Xα+ε

≤Mt−α−ε+ζ‖u0n‖Xζ +M

t�

0

(t− s)β−α−ε‖F (un(s))‖Xβ ds

≤Mt−α−ε+ζ‖u0n‖Xζ + cM

t�

0

(t− s)β−α−ε(1 + ‖un(s)‖ρXα) ds

and hence, via (2.13),

‖un(t)‖Xα+ε ≤Mt−α−ε+ζ‖u0n‖Xζ + cM

t�

0

(t− s)β−α−ε ds

+ cM

t�

0

(t− s)β−α−εsρ(ζ−α)(sα−ζ‖un(s)‖Xα)ρ ds

≤Mt−α−ε+ζ‖u0n‖Xζ

+ cM

t�

0

(t− s)β−α−ε ds+ cθρM

t�

0

(t− s)β−α−εsρ(ζ−α) ds

≤Mt−α−ε+ζ‖u0n‖Xζ + cM
t1+β−α−ε

1 + β − α− ε
+ cθρMt1+β−α−ε−ρ(α−ζ)B(1 + β − α− ε, 1− ρ(α− ζ)).

Since {u0n} is convergent in Xζ , it is also bounded, which completes the
proof of Lemma 2.7.
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We are now ready to construct a mild solution of (1.2) through the initial
condition u0 ∈ BXζ (ũ0, r0).

Lemma 2.8. There exists a subsequence {unk} of {un} such that, for each
ε ∈ [0, 1 + β −α), {unk} converges in Xα+ε almost uniformly on (0, δ0] to a
function φ ∈ C((0, δ0], Xα+ε) satisfying (1.10).

Proof. Let

εk = 1 + β − α− 1/k, where k ≥ max{(1 + β − α)−1, δ−1
0 } =: k∗.

From Proposition 2.3 and Lemmas 2.6, 2.7 we conclude that for each such
k ∈ N the set H is precompact in C([1/k, δ0], Xα+εk). Hence

(2.25) ∀k≥k∗∃{n(k)
l }l∈N

∃φk∈C([1/k,δ0],Xα+εk )∀t∈[1/k,δ0] u
n

(k)
l

(t) Xα+εk−−−−→ φk(t).

We remark that {n(k)
l } in (2.25) can be chosen in such a manner that if

k1 < k2, then for all i ∈ N we have n(k2)
i ∈ {n(k1)

j : j ∈ N}. Consequently,
φk2 |[1/k1,δ0](t) = φk1(t) for t ∈ [1/k1, δ0].

We also remark that, by a standard diagonal argument, there exists a
subsequence {unm} of {un}, and a function φ defined on (0, δ0] with values
in Xα+ε, such that, whenever δ ∈ (0, δ0) and ε ∈ [0, 1 + β − α),

(2.26) unm(t)→ φ(t) in Xα+ε uniformly for t ∈ [δ, δ0].

Since from (2.13) we have

(2.27) ∀t∈[0,δ0] ∀m∈N tα−ζ‖unm(t)‖Xα ≤ θ,
passing to the limit as m→∞ we obtain

(2.28) ∀t∈(0,δ0] tα−ζ‖φ(t)‖Xα ≤ θ,
which completes the proof of Lemma 2.8.

In what follows we show that, extending φ to the interval [0, δ0] by

φ(0) = u0

and writing again φ for this extension, we have

φ ∈ C([0, δ0], Xζ).

In fact, since φ is continuous on (0, δ0] as a map with values in Xα, it suffices
to prove the right hand continuity of φ at t = 0 in the Xζ norm.

Lemma 2.9. The function φ in Lemma 2.8 satisfies (1.11) and

‖φ(t)− u0‖Xζ → 0 as t→ 0+.

Proof. Firstly, from (2.17) and (2.26), passing to the limit as k →∞ we
infer that

(2.29) ∀ε>0 ∃h∈(0,δ0) ∀s∈(0,h] sα−ζ‖φ(s)‖Xα ≤ ε.
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Secondly, we use (1.5) to estimate the difference Unk(t) := ‖unk −u0‖Xζ .
If ζ ≥ β then

Unk(t) ≤ ‖e
−Atu0nk − u0‖Xζ +

t�

0

‖e−A(t−s)F (unk(s))‖Xζ ds

≤ ‖e−Atu0nk − u0‖Xζ +M

t�

0

(t− s)β−ζ‖F (unk(s))‖Xβ ds

≤ ‖e−Atu0nk − u0‖Xζ + cM

t�

0

(t− s)β−ζ(1 + ‖unk(s)‖
ρ
Xα) ds

≤ ‖e−Atu0nk − u0‖Xζ + cM

t�

0

(t− s)β−ζ ds

+ cM

t�

0

(t− s)β−ζsρ(ζ−α)( sup
s∈(0,t)

sα−ζ‖unk(s)‖Xα)ρ ds, t ∈ [0, δ0],

so that for D̃ := cMB(1 + β − ζ, 1− ρ(α− ζ)) we have

Unk(t) ≤ ‖e
−Atu0nk − u0‖Xζ + cM

t1+β−ζ

1 + β − ζ
(2.30)

+ D̃( sup
s∈(0,t)

sα−ζ‖unk(s)‖Xα)ρ, t ∈ [0, δ0].

We remark that if β > ζ then there exists D̃ > 0 such that the estimate of
the form (2.30) holds as well.

Recalling that 1 + β − ζ > 1 + β − α > 0, u0nk converges to u0 in Xζ ,
{e−At} is a C0-semigroup and (2.29) holds, we infer from (2.30) that

∀ε>0 ∃δ∈(0,δ0) ∃k0>0 ∀k≥k0 ∀t∈(0,δ] Unk(t) ≤ ε.

Then passing to the limit as k →∞ we get

∀ε>0 ∃δ∈(0,δ0) ∀t∈(0,h] ‖φ(t)− u0‖Xζ ≤ ε,

which completes the proof of Lemma 2.9.

Part (ii) is thus proved and we now show that φ satisfies in [0, τ0] the
variation of constants formula associated with (1.2)–(1.3).

Lemma 2.10. The function φ from Lemma 2.8 satisfies

(2.31) φ(t) = e−Atu0 +
t�

0

e−A(t−s)F (φ(s)) ds, t ∈ [0, δ0].
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Proof. Note that if ζ > β, then for s ∈ (0, t) ⊂ (0, δ0] and n ∈ N we have

(2.32) ‖e−A(t−s)[F (un(s))− F (φ(s))]‖Xζ

≤ M

(t− s)ζ−β
‖F (un(s))− F (φ(s))‖Xβ .

Note also that unk(s)
Xα

−−→ φ(s) in (0, δ0] for a suitable subsequence {unk}
and hence, as F ∈ C(Xα, Xβ), the right hand side of (2.32) tends to zero
for each s ∈ (0, t).

From (1.5), (2.27) and (2.28) we next have

‖e−A(t−s)[F (unk(s))− F (φ(s))]‖Xζ

≤ M

(t− s)ζ−β
(‖F (unk(s))‖Xβ + ‖F (φ(s))‖Xβ )

≤ cM

(t− s)ζ−β
[2 + ‖unk(s)‖

ρ
Xα + ‖φ(s)‖ρXα ]

≤ 2cM
(t− s)ζ−β

+
cM

(t− s)ζ−βsρ(α−ζ)
(‖sα−ζunk(s)‖

ρ
Xα + ‖sα−ζφ(s)‖ρXα)

≤ 2cM
(t− s)ζ−β

+
2cθρM

(t− s)ζ−βsρ(α−ζ)
=: h(s),

which ensures that for each t ∈ (0, δ0] the left hand side of (2.32) is, as
a function of s ∈ (0, t), bounded uniformly for n ∈ N by a function h(s)
integrable over (0, t).

Using Lebesgue’s dominated convergence theorem we now conclude that
for all t ∈ (0, δ0] we have

(2.33)
t�

0

e−A(t−s)F (u(s, u0nk)) ds
Xζ

−−→
t�

0

e−A(t−s)F (φ(s)) ds as k →∞.

Similar considerations lead to (2.33) also when ζ ≤ β, so (2.31) holds
and Lemma 2.10 is proved.

With Lemmas 2.4–2.10 the proof of Theorem 1.2, and thus also of The-
orem 1.3, is now straightforward.

Proof of Corollary 1.4. First note that (1.13) implies (1.5) with c =
2C + ‖F (0)‖Xβ so that Theorem 1.3 applies.

Suppose now that for i = 1, 2 there are given functions ui ∈ C((0, τi), Xα)
such that ui(0) = u0 ∈ Xζ , and ui satisfies on a certain interval (0, τ0] ⊂
(0, τi) the variation of constants formula associated with (1.2)–(1.3) and
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limt→0+ tα−ζ‖ui(t)‖Xα = 0. The latter implies

(2.34) ∀ε∈(0,τ0) ∃δε∈(0,ε) ∀s∈(0,δε) sα−ζ(‖u1(s)‖Xα+‖u2(s)‖Xα)ε1/(ρ−1),

and with the aid of (1.13) we then get

(2.35) ‖u1(t)− u2(t)‖Xα ≤
t�

0

‖e−A(t−s)[F (u1(s))− F (u2(s))]‖Xα ds

≤ CM
t�

0

(t− s)β−α‖u1(s)− u2(s)‖Xα(1 + ‖u1(s)‖ρ−1
Xα + ‖u2(s)‖ρ−1

Xα ) ds

≤ CM
t�

0

(t− s)β−α‖u1(s)− u2(s)‖Xα ds

+ εCM

t�

0

(t− s)β−αs−(ρ−1)(α−ζ)‖u1(s)− u2(s)‖Xα ds, t ∈ (0, δε).

Define next

z(t) := sup
s∈(0,t)

sα−ζ‖u1(s)− u2(s)‖Xα , t ∈ (0, δε),

D̂ := CM max{B(1 + β − α, 1 + ζ − α),B(1 + β − α, 1− ρ(α− ζ))}.
From (1.6) we have 1 + ζ − α > 0 and 1 + β − ζ − ρ(α − ζ) ≥ 0, and from
(2.35) we obtain

tα−ζ‖u1(t)− u2(t)‖Xα

≤
( t�

0

(t− s)β−αsζ−α ds+ ε

t�

0

(t− s)β−αs−ρ(α−ζ) ds
)
CMtα−ζz(t)

= (t1+β−αB(1 + β − α, 1 + ζ − α)

+ εt1+β−ζ−ρ(α−ζ)B(1 + β − α, 1− ρ(α− ζ)))CMz(t)

= (t1+β−α + ε)D̂z(t) ≤ (δ1+β−α
ε + ε)D̂z(τ) for 0 < t ≤ τ < δε.

Consequently, for each τ ∈ (0, δε), we have

0 ≤ z(τ) ≤ (δ1+β−α
ε + ε)D̂z(τ),

and choosing in (2.34) ε ∈ (0, τ0) such that (ε1+β−α + ε)D̂ < 1, we conclude
that

z(τ) = 0, τ ∈ (0, δε).

The solution is thus locally unique and Corollary 1.4 follows.

Proof of Remark 1.5. Recall that now (1.5) holds with c := C+‖F (0)‖Xβ ,
fix ũ0 ∈ Xζ and let θ = (8D)−1/(ρ−1) in (2.9). Then choose r0 > 0 and
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δ0 ∈ (0, 1] as in (2.10)–(2.11) and restrict δ0 by the additional condition

(2.36) CMδ1+β−α
0 B(1 + β − α, 1 + ζ − α) ≤ 1/4.

Note that the unique solution u through any point of u0 ∈ BXζ (ũ0, r)
considered in Corollary 1.4 will satisfy (1.10), that is,

sup
t∈(0,δ0]

tα−ζ‖u(t)‖Xα ≤ θ,

as this solution can be constructed via Theorem 1.2.
With the above set-up for each t ∈ [0, δ0] we get

‖u(t)− ũ(t)‖Xα

≤ ‖e−At(u0 − ũ0)‖Xα +
t�

0

‖e−A(t−s)[F (u(s))− F (ũ(s))]‖Xα ds

≤Mtζ−α‖u0 − ũ0‖Xζ

+ CM

t�

0

(t− s)β−α‖u(s)− ũ(s)‖Xα(1 + ‖u(s)‖ρ−1
Xα + ‖ũ(s)‖ρ−1

Xα ) ds

≤Mtζ−α‖u0 − ũ0‖Xζ + CM

t�

0

(t− s)β−α‖u(s)− ũ(s)‖Xα ds

+ 2Cθρ−1M

t�

0

(t− s)β−αs−(ρ−1)(α−ζ)‖u(s)− ũ(s)‖Xα ds,

and consequently, by (1.6),

tα−ζ‖u(t)− ũ(t)‖Xα

≤M‖u0 − ũ0‖Xζ

+ CMt1+β−αB(1 + β − α, 1 + ζ − α) sup
s∈(0,t)

sα−ζ‖u(s)− ũ(s)‖Xα

+ 2Cθρ−1Mt1+β−ζ−ρ(α−ζ)

×B(1 + β − α, 1− ρ(α− ζ)) sup
s∈(0,t)

sα−ζ‖u(s)− ũ(s)‖Xα

≤M‖u0 − ũ0‖Xζ + (CMt1+β−αB(1 + β − α, 1 + ζ − α) + 2Dθρ−1)

× sup
s∈(0,t)

sα−ζ‖u(s)− ũ(s)‖Xα .

Since θ = (8D)−1/(ρ−1) and (2.36) holds we actually have

tα−ζ‖u(t)− ũ(t)‖Xα ≤M‖u0 − ũ0‖Xζ + 1
2 sup
s∈(0,δ0)

sα−ζ‖u(s)− ũ(s)‖Xα

for t ∈ (0, δ0], which ensures that (1.14) holds with L = 2M .
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Now we write again the variation of constants formula and use (1.14) to
obtain

‖u(t)− ũ(t)‖Xζ ≤ ‖e−At(u0− ũ0)‖Xζ +
t�

0

‖e−A(t−s)[F (u(s))−F (ũ(s))]‖Xζ ds

≤M‖u0 − ũ0‖Xζ

+ CM

t�

0

(t− s)β−ζ‖u(s)− ũ(s)‖Xα(1 + ‖u(s)‖ρ−1
Xα + ‖ũ(s)‖ρ−1

Xα ) ds

≤M‖u0 − ũ0‖Xζ + CLM

t�

0

(t− s)β−ζsζ−α‖u0 − ũ0‖Xζ ds

+ 2Cθρ−1LM

t�

0

(t− s)β−ζs−ρ(α−ζ)‖u0 − ũ0‖Xζ ds

= M
(
1 + CLB(1 + β − ζ, 1 + ζ − α)

+ 2Cθρ−1LB(1 + β − ζ, 1− ρ(α− ζ))
)
‖u0 − ũ0‖Xζ

=: L̃‖u0 − ũ0‖Xζ , t ∈ (0, δ0).

The proof is complete.

Remark 2.11. Note that, due to [11] (see [8] and [6, Appendix]), the
solution u in Corollary 1.4 has further regularity properties:

(2.37) u(t) ∈ C([0, τ̃ ], Xζ) ∩ C((0, τ̃ ], Xβ+1) ∩ C1((0, τ̃ ], Xα+ε),
ε ∈ [0, 1 + β − α),

and u(t) satisfies both relations in (1.2).

3. Examples. In this section we discuss a few applications of the ab-
stract results to sample problems involving non-Lipschitz nonlinearities and
critical exponents.

Example 3.1. Consider first

(3.1)


ut −∆u = f(u), t > 0, x ∈ Ω,
u(t, x) = 0, t > 0, x ∈ ∂Ω,
u(0, x) = u0(x), x ∈ Ω,

where Ω is a bounded domain in RN with smooth boundary and f : R→ R
is a continuous function satisfying

(3.2) ∃ρ>1 ∀s∈R |f(s)| ≤ c(1 + |s|ρ).

In this example, A is defined by the negative Laplacian in X = Lp(Ω), p > 1,
with the domain W 2,p(Ω) ∩W 1,p

0 (Ω).
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Whenever N(ρ− 1)/(2pρ) < 1 we find that (1.1) satisfied with α =
N(ρ− 1)/(2pρ), β = 0 as a consequence of the Sobolev embedding

Xα = W 2α,p
0 (Ω) ⊂ Lpρ(Ω).

Being now interested in solvability of (3.1) with initial conditions in
W 1,p

0 (Ω) we refer to (1.6) and obtain 1/2 = ζ = −1/(ρ− 1) +N/(2p), from
which the exponent ρ can be derived. Hence we conclude that Theorem 1.3
applies with Xζ = X1/2 and ρ = (N + p)/(N − p) when N > p.

Note that this ρ is a critical exponent for local solvability of (3.1) in
W 1,p

0 (Ω) (see [2]) and that the results in [2] are generalized here to non-
Lipschitz nonlinearities f satisfying merely continuity and growth assump-
tions.

We remark that for p = 2 and N = 3 we have ρ = 5 and that for initial
data in H1

0 (Ω) the approach of [11] does not apply with such growth even
for Lipschitz continuous right hand sides, as for a sample power function s5
one has |φ|5 ∈ H−1(Ω) for φ ∈ H1

0 (Ω).

Example 3.2. More generally, consider a higher order initial-boundary
value problem

(3.3)


ut +

∑
|σ|≤2m aσ(x)D

σu = f(u),
t > 0, x ∈ Ω ⊂ RN , N > 2m > 2,

B0u = · · · = Bm−1u = 0, t > 0, x ∈ ∂Ω,
u(0, x) = u0 ∈ Hm

2,{Bj}(Ω),

(see [6]), where Ω is a bounded smooth domain in RN , aσ ∈ C(Ω) for
|σ| = 2m, aσ ∈ L∞(Ω) for |σ| < 2m, and

Bj =
∑
|σ|≤mj

bσj(x)Dσ, j = 0, . . . ,m− 1,

are boundary operators with coefficients bσj ∈ C2m−mj (∂Ω) such that (3.3)
falls into the class of abstract parabolic problems of the form (1.2) (see [10,
Theorem 19.4, p. 78] and the assumptions therein).

In this example A is considered inX=Lp(Ω) with the domainH2m
p,{Bj}(Ω)

and corresponds to a regular elliptic boundary value problem (L, {Bj}, Ω),
where Lu =

∑
|σ|≤2m aσ(x)D

σu is the operator appearing in the linear main
part of (3.3) and the spaces H2m

p,{Bj}(Ω) are defined as in [14, Chapter 4].
Suppose that f ∈ C(R,R) satisfies (3.2) and that N(ρ− 1)/(2mpρ) < 1.

Then (1.1) is satisfied with α = N(ρ− 1)/(2mpρ) and β = 0 by the embed-
ding

XN(ρ−1)/(2mpρ) ⊂ HN(ρ−1)/(pρ)
p (Ω) ⊂ Lpρ(Ω),
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Being now interested in local solvability of (1.6) with initial conditions
in Hm

p,{Bj}(Ω) we observe that (1.6) now implies for the critical exponent ρ
the relation 1/2 = ζ = −1/(ρ− 1)+N/(2pm). We thus conclude that Theo-
rem 1.3 applies in this example withXζ = X1/2 and ρ = (N +mp)/(N −mp)
when N > mp. This generalizes the considerations of [6] that have been car-
ried out in the Hilbert setting and for Lipschitz continuous nonlinearities.

Example 3.3. Consider the initial boundary value problem for the wave
equation with a structural damping

(3.4)


utt + η(−∆)1/2ut + (−∆)u = f(u), t > 0, x ∈ Ω,
u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω,
u(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(see [3–7]), where Ω is a bounded smooth domain in RN , η > 0 and f ∈
C(R,R) satisfies (3.2).

Denoting by Λ the negative Laplacian in E = L2(Ω) with the domain
D(Λ) = H2(Ω) ∩H1

0 (Ω) recall that the problem (3.4) can be viewed in the
form (1.2) as

(3.5)
d
dt

[
u

v

]
+A

[
u

v

]
=F

([
u

v

])
, t > 0,

[
u

v

]
t=0

=
[
u0

v0

]
∈X1/2

p ×Xp,

where

A =
[

0 −I
Λ 2ηΛ1/2

]
is a sectorial positive operator in X0 = L2(Ω) × H−1(Ω) with the domain
X1 = H1

0 (Ω)× L2(Ω) (see [3]) and F
([

u
v

])
=
[ 0
f(u)

]
.

Next, denoting by {Eσ : σ ∈ R} the fractional power scale associated
with Λ in E recall also from [3] that

(3.6) Xσ = Eσ/2 × E(σ−1)/2, σ ∈ [0, 2].

We now choose

(3.7) α = 1 + 1/(2ρ), β = 1/2, ζ = 1,

which satisfy (1.6), and with the aid of (3.2), (3.6) we obtain∥∥∥∥F([uv
])∥∥∥∥

X1/2

= ‖f(u)‖E−1/4 ≤ c1‖f(u)‖L2N/(N+1)(Ω)

≤ c1c(‖1‖L2N/(N+1)(Ω) + ‖u‖ρ
L2N/(N+1)(Ω)

).

Since E1/2+1/(4ρ) ⊂ H1+1/(2ρ)(Ω), (1.5) will hold with the parameters as
in (3.7) provided that H1+1/(2ρ)(Ω) is embedded in L2Nρ/(N+1)(Ω), which,
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assuming N > 2, translates into the condition
2Nρ
N + 1

≤ 2Nρ
ρ(N − 2)− 1

.

Thus for the problem (3.4) Theorem 1.3 applies with ρ = (N + 2)/(N − 2)
and α, β, ζ as in (3.7).

Similar considerations apply in the Lp-setting and can also be carried out
for more general strongly damped wave equations of the form

(3.8)

{
utt + 2ηAθLut +ALu = f(u) + g(ut), t > 0, x ∈ Ω,
u(0) = u0 ∈ X1/2, ut(0) = v0 ∈ X,

where θ ∈ [1/2, 1) and (η, θ, AL) is an admissible triple (see [7, Definition 1.1])
corresponding to a regular elliptic boundary value problem (L, {Bj}, Ω) as
in Example 3.2.

Applying Theorem 1.3 we infer that (3.8) has a local solution through
each point

[
u0
v0

]
∈ Hm

p,{Bj}(Ω) × Lp(Ω) provided that f, g ∈ C(R,R), N >

mp, p ≥ 2 and
|f(s)| ≤ c(1 + |s|(N+mp)/(N−mp)), s ∈ R,

|g(s)| ≤ c(1 + |s|(N+2mpθ)/N ), s ∈ R,
which extends the results of [7, Theorem 1.2] to non-Lipschitz nonlinearities.
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