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ALMOST PRÜFER v-MULTIPLICATION DOMAINS AND
THE RING D + XDS [X]

BY

QING LI (Chengdu)

Abstract. This paper is a continuation of the investigation of almost Prüfer v-
multiplication domains (APVMDs) begun by Li [Algebra Colloq., to appear]. We show
that an integral domain D is an APVMD if and only if D is a locally APVMD and D is
well behaved. We also prove that D is an APVMD if and only if the integral closure D of
D is a PVMD, D ⊆ D is a root extension and D is t-linked under D. We introduce the
notion of an almost t-splitting set. D(S) denotes the ring D + XDS [X], where S is a mul-
tiplicatively closed subset of D. We show that the ring D(S) is an APVMD if and only if
D(S) is well behaved, D and DS [X] are APVMDs, and S is an almost t-splitting set in D.

1. Introduction. Throughout this paper, D will be an integral domain
with quotient field K, D the integral closure of D, and X an indeterminate
over D.

In this paper we shall use the notions of ∗-operations. Let F (D) denote
the set of nonzero fractional ideals of D. A function ∗: F (D) → F (D),
written as A 7→ A∗, is called a ∗-operation if for all A, B ∈ F (D) and for
all a ∈ K − {0}, (i) (a)∗ = (a) and (aA)∗ = aA∗, (ii) A ⊆ A∗ and A ⊆ B
implies A∗ ⊆ B∗, and (iii) (A∗)∗ = A∗.

We review some terminology related to the v-, w- and t-operations. For
I ∈ F (D), set I−1 = {x ∈ K | xI ⊆ D}, Iv = (I−1)−1, It =

⋃
Jv, the union

being taken over all finitely generated subideals J of I, and Iw = {x ∈ K |
xJ ⊆ I with J−1 = D for some finitely generated fractional ideal J of D}. If
I = Iv (resp., I = It, I = Iw), then I is said to be a v-ideal (resp., a t-ideal,
a w-ideal).

A ∗-ideal I is said to be of finite type if I = J∗ for some finitely generated
ideal J ∈ F (D). An ideal maximal with respect to being a t-ideal is called
a maximal t-ideal. A maximal t-ideal is a prime ideal. For I ∈ F (D), I is
t-invertible if it satisfies (II−1)t = D. For details on ∗-operations the readers
may consult Sections 32 and 34 of [6].

In [9], M. Zafrullah began to develop a general theory of almost facto-
riality. One important class of integral domains introduced in [9] was that
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of almost GCD-domains (AGCD-domains). He defined D to be an AGCD-
domain if for each a, b ∈ D \ {0}, there is a positive integer n = n(a, b)
such that anD ∩ bnD is principal (or equivalently, (an, bn)v is principal).
Recall that a GCD-domain D is characterized by the property that for all
a, b ∈ D \ {0}, (a, b)v is principal. So a GCD-domain is an AGCD-domain.
According to [7], an integral domain D is defined to be an almost Prüfer
v-multiplication domain (APVMD) if for each a, b ∈ D \{0}, there is a posi-
tive integer n = n(a, b) such that (an, bn) is t-invertible. It is easily seen that
an APVMD is a generalization of an AGCD-domain. Recall that D is defined
to be a Prüfer v-multiplication domain (PVMD) if for each a, b ∈ D \ {0},
(a, b) is t-invertible. Obviously a PVMD is an APVMD, but an APVMD is
not necessarily a PVMD.

According to [3, Theorem 4.17], the domain Z+2iZ = Z[2i] is an AGCD-
domain that is not integrally closed. By [7, Theorem 3.1], R is an APVMD
with torsion t-class group if and only if R is an AGCD-domain. Hence an
APVMD is not integrally closed. Thus an APVMD need not be a PVMD
since a PVMD is integrally closed. From [7, Theorem 2.4], we know that D
is an integrally closed APVMD if and only if D is a PVMD. In Section 2,
we show that a locally APVMD is not necessarily an APVMD. However, we
show that D is an APVMD if and only if D is a locally APVMD and D is well
behaved. Also, we prove that D is an APVMD if and only if D ⊆ D is a root
extension, D is a PVMD and D is t-linked under D. Recall that an extension
D ⊆ R of integral domains is said to be a root extension if for each x ∈ R
there exists a natural number n (depending on x) with xn ∈ D. According
to [11], D is t-linked under an integral domain R if for each finitely generated
fractional ideal A of D such that (AR)−1 = R (or equivalently, (AR)v = R),
one has (AD)−1 = D (or equivalently, (AD)v = D). Here note that the first
“v” is the v-operation on R, but the second “v” is the v-operation on D.

In [7, Theorem 3.10], we have proved that D is an APVMD if and only
if D + XK[X] is an APVMD. We know that K = DS with S = D \ {0}.
Our next goal is to study the composite polynomial ring D + XDS [X] =
{f(X) ∈ DS [X] | f(0) ∈ D} for any multiplicatively closed set S of D when
D is an APVMD. For convenience, D(S) will denote the ring D + XDS [X].
In Section 4 we show that if D is an APVMD then D(S) need not be an
APVMD. So we investigate the conditions under which D(S) is an APVMD.

Recall that a saturated multiplicatively closed subset S of D is said to
be t-splitting if for every nonzero d ∈ D we have (d) = (AB)t, where A and
B are integral ideals of D with At ∩ sD = sAt for all s ∈ S and Bt ∩ S 6= ∅.
In [1, Theorem 2.5], it was shown that D(S) is a PVMD if and only if D is
a PVMD and S is a t-splitting set.

In Section 3, we introduce the notion of an almost t-splitting set. We say
that a saturated multiplicatively closed subset S of D is almost t-splitting
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if for every nonzero d ∈ D, there is a positive integer n = n(d) such that
(dn) = (AB)t, where A and B are integral ideals of D with At ∩ sD = sAt

(or equivalently, (A, s)t = D) for all s ∈ S and Bt ∩ S 6= ∅. In Section 4, we
prove that the ring D(S) is an APVMD if and only if D(S) is well behaved,
D and DS [X] are APVMDs, and S is an almost t-splitting set in D. At the
same time, we show that D(S) is an AP-domain (respectively, AB-domain)
if and only if D is an AP-domain (respectively, AB-domain) and DS = K.
According to [3], an integral domain D is defined to be an almost Bézout
domain (AB-domain) if for each a, b ∈ D \ {0}, there is a positive integer
n = n(a, b) such that (an, bn) is principal; while D is an almost Prüfer
domain (AP-domain) if for each a, b ∈ D \ {0}, there is a positive integer
n = n(a, b) such that (an, bn) is invertible. Obviously, AB-domains and
AP-domains are APVMDs.

2. Basic theory of APVMDs. In [10, Corollary 4.4], it is shown that
D is a PVMD if and only if D is a locally PVMD (i.e., if for every max-
imal ideal P , DM is a PVMD) and D is well behaved. We shall extend
this result to APVMDs. Recall that an integral domain D is well behaved
(respectively, conditionally well behaved) if for every prime (respectively,
maximal) t-ideal P , PDP is also a t-ideal of DP . Here we say that D is a
locally APVMD if for every maximal ideal M , DM is an APVMD (or equiv-
alently, for every prime ideal P of D, DP is an APVMD). Note that given
a prime ideal P of D, there exists a maximal ideal M of D with P ⊆ M .
Every localization of an APVMD is also an APVMD, by [7, Proposition 3.4].
Therefore, if DM is an APVMD, then DP = (DM )PM

is also an APVMD.
As in [3], D is said to be an almost valuation domain (AV-domain) if

for any nonzero a, b ∈ D, there exists a positive integer n = n(a, b) with
an | bn or bn | an. By [7, Theorem 2.3], D is an APVMD if and only if DP is
an AV-domain for each prime t-ideal P of D, and if and only if DM is an
AV-domain for each maximal t-ideal M of D.

Lemma 2.1. Let D be an AV-domain. Then Spec(D) is totally ordered.

Proof. Assume that P1, P2 ∈ Spec(D) and P1 is not included in P2.
Then there exists a ∈ P1 \P2. For each nonzero b ∈ P2, we have (bn) ⊆ (an)
for some positive integer n. Indeed, if (bn) is not included in (an), then
(an) ⊆ (bn) since D is an AV-domain. So (an) ⊆ (bn) ⊆ P2, and hence
a ∈ P2, a contradiction. Therefore, (bn) ⊆ (an) ⊆ P1, so b ∈ P1. Thus
P2 ⊆ P1. So Spec(D) is totally ordered.

Lemma 2.2. Let D be an integral domain with Spec(D) totally ordered.
Then every nonzero prime ideal of D is a t-ideal.

Proof. This follows from [5, Theorem 9.1.2].
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Example 2.3. According to [11, Example 4.7], let E be the ring of entire
functions and S be the multiplicatively closed set generated by principal
nonzero primes of E. Then E(S) = E + XES [X] is a locally GCD-domain
that is not a PVMD. By [12, Proposition 4.3], E(S) is not well behaved.
So E(S) is not an APVMD by Theorem 2.4. Note that a locally GCD-
domain is a locally AGCD-domain, and thus a locally APVMD. So E(S) is
a locally APVMD. Hence we conclude that a locally APVMD need not be
an APVMD. However we have

Theorem 2.4. The following are equivalent:

(1) D is an APVMD.
(2) D is a locally APVMD and D is well behaved.
(3) D is a locally APVMD and D is conditionally well behaved.

Proof. (1)⇒(2): If D is an APVMD, then D is a locally APVMD by
[7, Proposition 3.4]. For each nonzero prime t-ideal P of D, DP is an AV-
domain. Then by Lemmas 2.1 and 2.2, PDP is a t-ideal of DP . Therefore,
D is well behaved.

(2)⇒(3): This is clear.
(3)⇒(1): For each nonzero maximal t-ideal M of D, DM is an APVMD

and MDM is a t-ideal of DM . So DM = (DM )MDM
is an AV-domain. Thus

D is an APVMD.

Analogously, D is a PVMD if and only if D is a locally PVMD and D is
well behaved, by [10, Corollary 4.4]. Now recall that a nonzero prime ideal
U of the polynomial ring D[X] (in one indeterminate X) with U ∩ D = 0
is called an upper to zero. The domain D is said to be a UMT -domain if
every upper to zero in D[X] is a maximal t-ideal.

Proposition 2.5. Let D be an APVMD. Then D is t-linked under D.

Proof. Assume that (ID)−1 = D for each finitely generated fractional
ideal I of D. We need to show that (ID)−1 = D, or equivalently, (ID)t = D.
If (ID)t 6= D, then (ID)t ⊆M for some maximal t-ideal of D. Since D ⊆ D
is an integral extension, there exists a prime ideal P of D such that M =
P ∩D. Because an APVMD is a UMT-domain by [7, Theorem 3.8], P is a
t-ideal by [5, Proposition 1.4]. As ID = (ID)D ⊆ MD = (P ∩ D)D ⊆ P ,
we have D = (ID)t ⊆ Pt = P , a contradiction. Therefore, (ID)t = D. So D
is t-linked under D.

Corollary 2.6. D is an APVMD if and only if D ⊆ D is a root
extension, D is a PVMD and D is t-linked under D.

Proof. (⇐) This follows from [7, Theorem 3.7].
(⇒) This follows from Proposition 2.5 and [7, Theorem 3.6].
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3. Almost t-splitting sets. We say d ∈ D∗ = D \ {0} is an almost
t-split by S if there exists an n = n(d) with (dn) = (AB)t for some integral
ideals A and B of D, where At ∩ sD = sAt (or equivalently, (A, s)t = D)
for all s ∈ S and Bt ∩ S 6= ∅. Note that A, B are both t-invertible. We say
that S is an almost t-splitting set in D if for each d ∈ D∗ is an almost t-split
by S.

Lemma 3.1. Suppose that D is an integral domain, S is a multiplicatively
closed subset of D and d ∈ D∗ is an almost t-split by S. Then there exists an
n = n(d) with (dn) = (AB)t for some integral ideals A and B of D, where
At ∩ sD = sAt for all s ∈ S and Bt ∩ S 6= ∅. Thus At = dnDS ∩D, hence
dnDS ∩D is a t-invertible t-ideal. Also, Bt = dnA−1.

Proof. We only need to show that At = dnDS∩D. Since AtBt ⊆ (AB)t ⊆
(dn), we have At ⊆ AtDS ∩D = AtBtDS ∩D ⊆ (AB)tDS ∩D ⊆ dnDS ∩D.
Note that BtDS = DS since Bt∩S 6= ∅. On the other hand, let x ∈ dnDS∩D,
so that sx ∈ (dn) for some s ∈ S. Then sx ∈ (AB)t ⊆ At. So sx ∈ At∩sD =
sAt, and hence x ∈ At. Therefore At = dnDS ∩D.

Lemma 3.2. Suppose that D is an integral domain and S is a multiplica-
tively closed subset of D. Let d ∈ D∗ be such that dnDS ∩D is t-invertible
for some n = n(d). Then d is an almost t-split by S.

Proof. Let A = dnDS ∩D. Hence A is a t-ideal. Clearly (dn) ⊆ A. Set
B = dnA−1. Then B is an integral t-invertible t-ideal of D and (dn) = (AB)t.
Now BS = (dnA−1)S = dnDS(A−1)S = dnDS(AS)−1 = dnDS(dnDS)−1 = DS .
Hence B ∩ S 6= ∅. Next we show that A ∩ sD = sA. Clearly it suffices to
show that A ∩ sD ⊆ sA. Let x ∈ A ∩ sD. Then x = sb for some b ∈ D.
Hence b = x/s ∈ AS ∩D = dnDS ∩D = A. So x = sb ∈ sA.

The following is a straightforward consequence of Lemmas 3.1 and 3.2.

Corollary 3.3. Suppose that D is an integral domain and S is a mul-
tiplicatively closed subset of D. Then d ∈ D∗ is an almost t-split by S if and
only if dnDS ∩ D is t-invertible for some n = n(d). Hence S is an almost
t-splitting set in D if and only if for each d ∈ D∗, dnDS ∩D is t-invertible
for some n = n(d).

Let S be a multiplicatively closed subset of D. Recall that a prime ideal
Q of D with Q ∩ S 6= ∅ is said to intersect S in detail if P ∩ S 6= ∅ for each
prime ideal P ⊆ Q.

Lemma 3.4. Suppose that D is an integral domain, S is an almost t-
splitting set in D and Q is a prime t-ideal of D with Q ∩ S 6= ∅. Then Q
intersects S in detail.

Proof. Let 0 6= P ⊆ Q be a prime ideal of D. Let 0 6= x ∈ P . Then we
can shrink P to a prime ideal minimal over (x) which is a t-ideal. Thus we
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can assume that P is a t-ideal. Suppose that P ∩ S = ∅. As S is an almost
t-splitting set, (xn) = (AB)t, where Bt ∩ S 6= ∅ and (A, s)t = D for each
s ∈ S. Then AtBt ⊆ (AB)t = (xn) ∈ P and Bt is not included in P since
Bt ∩ S 6= ∅. Thus At ⊆ P ⊆ Q. Let s ∈ Q ∩ S. Then D = (A, s)t ⊆ Q, a
contradiction. So P ∩ S 6= ∅. Therefore Q intersects S in detail.

Proposition 3.5. Let D be an APVMD and S a saturated almost t-
splitting set in D. Then S is also a saturated almost t-splitting set in D.

Proof. For each d ∈ D \ {0}, dn ∈ D for some n ≥ 1 since D ⊆ D is a
root extension. As S is an almost t-splitting set in D, there exists a positive
integer m such that (dn)m = (dnm) = (AB)t for some finitely generated
ideals A and B of D, where At ∩ sD = sAt (or equivalently, (A, s)t = D)
and Bt ∩ S 6= ∅. Because D is t-linked over D by the proof of [7, Theorem
3.6], ((A, s)D)t = D.

4. The ring D + XDS [X]. Recall that an overring T of a domain D is
said to be a w-domain over D if T , as a D-module, is a w-module. Clearly,
if T is a flat D-module, then T is a w-domain over D. From [8, Theorem
8.8.2], it follows that T is a w-domain over D if and only if for every w-ideal
I of T , I ∩D is a w-ideal of D.

According to [1, Theorem 2.5], D +XDS [X] is a PVMD if and only if D
is a PVMD and S is a t-splitting set. Now we shall consider the D+XDS [X]
construction from an APVMD. By Example 2.3, we know that if E is the
ring of entire functions and S the multiplicatively closed set generated by
the principal primes of E, then E(S) = E +XES [X] is not an APVMD. But
we note that E is an APVMD. Thus we conclude that D(S) = D + XDS [X]
is not necessarily an APVMD when D is an APVMD. However we have

Theorem 4.1. Let D be an integral domain and S a saturated multi-
plicatively closed subset of D. Then D(S) = D + XDS [X] is an APVMD if
and only if

(1) D(S) is well behaved,
(2) D and DS [X] are APVMDs,
(3) S is an almost t-splitting set in D.

Proof. (⇒) Suppose that D(S) = D + XDS [X] is an APVMD. Then
D(S) is well behaved by Theorem 2.4. Since DS [X] = (D(S))S , DS [X] is an
APVMD by [7, Proposition 3.4].

We next show that D is an APVMD. Let x, y ∈ D. Then there ex-
ists an integer n ≥ 1 such that (xn, yn)D(S) is t-invertible, and hence
(xn, yn)−1D(S) = ((xn, yn)D(S))−1 is a t-invertible t-ideal of D(S). So by
[4, Proposition 3.9], (xn, yn)−1 is a t-invertible t-ideal of D. Hence D is an
APVMD.
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Next we claim that S is an almost t-splitting set. By [7, Theorem 3.6],
the integral closure D(S) of D(S)is a PVMD. The integral closure of D(S)

is D(S) = D + XDS [X] by [2, Theorem 2.7], where D
(S) = D + XDS [X].

Then by [1, Theorem 2.5], D is a PVMD and S is a t-splitting set in D.
Let d ∈ D∗ ⊆ D. By [1, Lemma 2.4], (d, X)D(S) is t-invertible in D

(S).
Because D

(S) = D(S), (d, X)D(S) is t-invertible in D(S). Thus there exists a
finitely generated ideal J of D(S) such that ((d, X)JD(S))t = D(S). Set J =
(f1, . . . , fn) ⊆ D(S). Since D(S) is an APVMD, D(S) ⊆ D(S) is a root exten-
sion. So there exists a positive integer m with (fi)m ∈ D(S) for i = 1, . . . , n.
By [3, Lemma 3.3], (((f1)m, . . . , (fn)m)D(S))t = ((f1, . . . , fn)mD(S))t =
(JmD(S))t. We have ((d, X)mJmD(S))t = D(S) because ((d, X)JD(S))t =
D(S). Hence ((d, X)m((f1)m, . . . , (fn)m)D(S))t =D(S). As we know, D(S) is
t-linked under D(S), so ((d, X)m((f1)m, . . . , (fn)m)D(S))t = D(S). Therefore
(d, X)D(S) is t-invertible in D(S). Then by [1, Lemma 2.4], S is a t-splitting
set in D. Thus S is an almost t-splitting set in D.

(⇐) Let P be a prime t-ideal of D(S). To show that D(S) is an APVMD,
it suffices to show that (D(S))P is an AV-domain. If P ∩D = 0, then (D(S))P

is a DVR and thus an AV-domain. Assume that P∩D 6= 0. We claim that p =
P∩D is a prime t-ideal of D. Since D ⊆ D(S) is a flat extension, D(S) is a flat
D-module. Therefore D(S) is a w-domain over D, hence p = P ∩D is a prime
w-ideal of D. Because D is an APVMD, D is a UMT-domain by [7, Theorem
3.8]. Hence a prime w-ideal is a t-ideal. So p = P ∩D is a prime t-ideal of D.

Case 1: Suppose that P∩S 6= ∅. Then (D(S))D−p = Dp+XDS(D−p)[X] =
Dp + XK[X] is a AB-domain by [3, Theorem 4.9]. Thus (D(S))P is a lo-
calization of the AB-domain Dp + XK[X]. Here the equality DS(D−p) = K

follows from Lemma 3.4 and hence (D(S))P is a quasi-local AB-domain by
[3, Theorem 4.6]. So (D(S))P is an AV-domain.

Case 2: Suppose that P ∩ S = ∅. Since D(S) is well behaved, it fol-
lows that P (D(S))S = PDS [X] is a prime t-ideal by [12, Corollary 1.3].
Then (D(S))P = ((D(S))S)PDS [X] = (DS [X])PDS [X] is an AV-domain be-
cause DS [X] are APVMDs. Therefore D(S) is an APVMD .

From [3, Theorem 4.9], we know that D is an AB-domain (respectively,
AP-domain) if and only if D + XK[X] is an AB-domain (respectively,
AP-domain). To generalize these results, we naturally consider the condi-
tions under which D(S) = D + XDS [X] is an AB-domain (respectively,
AP-domain) for any saturated multiplicatively closed subset S of D.

Theorem 4.2. Let D be an integral domain and S a saturated multi-
plicatively closed subset of D. Then D(S) = D + XDS [X] is an AP-domain
if and only if D is an AP-domain and DS = K.
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Proof. (⇐) This follows from [2, Theorem 4.9].
(⇒) If D(S) = D + XDS [X] is an AP-domain, then the integral closure

D(S) of D(S) is a Prüfer domain and D(S) ⊆ D(S) is a root extension by [3,
Corollary 4.8]. Note that D(S) = D + XDS [X] by [2, Theorem 2.7]. Thus
by [1, Theorem 3.6], D is a Prüfer domain and DS = K.

We now show that DS = K. Since D ⊆ D is an integral extension,
for each prime ideal P of D there exists a prime ideal M of D such that
M ∩D = P . Note that DS = K if and only if each nonzero prime ideal of
D meets S. So M ∩ S 6= ∅. Hence P ∩ S = (M ∩ D) ∩ S = M ∩ S 6= ∅.
Therefore DS = K.

We claim that D ⊆ D is a root extension. For each x ∈ D ⊆ D(S), we
have xn ∈ D(S) for some integer n ≥ 1. Also xn ∈ K. So xn ∈ D(S)∩K = D.
Therefore, D is an AP-domain by [3, Corollary 4.8].

Recall that the t-class group Clt(D) is defined to be the group of t-
invertible t-ideals of D modulo the subgroup of principal ideals of D.

Corollary 4.3. Let D be an integral domain and S a saturated multi-
plicatively closed subset of D. Then D(S) = D + XDS [X] is an AB-domain
if and only if D is an AB-domain and DS = K.

Proof. (⇐) This follows from [3, Theorem 4.9].
(⇒) If D(S) = D + XDS [X] is an AB-domain, then D(S) is an AP-

domain. Hence by Theorem 4.2, D is an AP-domain and DS = K. Thus
D is a Prüfer domain and D ⊆ D is a root extension by [3, Corollary 4.8].
Since D is integrally closed, the groups Clt(D) and Clt(D(S)) are isomorphic
by [4, Corollary 4.5]. Since Clt(D(S)) is torsion by [3, Corollary 4.8], so is
Clt(D). Thus by [3, Corollary 4.8], D is an AB-domain.
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