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ON k-LINDELOF SPACES

BY

ALEJANDRO RAMIREZ-PARAMO (Puebla)

Abstract. We use the Hausdorff pseudocharacter to bound the cardinality and the
Lindelof degree of x-Lindelof Hausdorff spaces.

1. Introduction and preliminaries. Like compactness, the Lindel6f
property has been generalized in different ways, by several authors: linearly
Lindeldf, strongly discretely linearly Lindelof and k-Lindeléf spaces have
been defined. Of course, for each property of Lindeldf type, P, it is natural
to consider the following two general questions:

QUESTION 1.1. Which additional conditions force a space X which sat-
isfies P to be Lindelof?

QUESTION 1.2. Which theorems on Lindeldf spaces can be extended to
spaces which satisfy P ¢

In [2] and [3] Arhangel’skii and Buzyakova make a contribution in both
directions for P = linearly Lindeldf. In this paper we will do it for P =
k-Lindelof. In other words, we are interested in the following problems:
(1) Which additional conditions force a x-Lindel6f space to be Lindel6f? and
(2) Which theorems on Lindeldf spaces can be extended to x-Lindeldf spaces?
In particular we will prove that: (1) the cardinality of a k™ -Lindelof Haus-
dorff space with Hi(X) < k is at most 2", assuming that every closed subset
A of X is a Gor-set. (2) The cardinality of a k™ -Lindelof Hausdorff space
with Hy(X) < k is at most 22", (Here Hy(X) is the Hausdorff pseudochar-
acter of X; see Definition [1.3])

We refer the reader to [7] and [9] for definitions and terminology on car-
dinal functions not explicitly given here. Let w, nw, L, s, x, ¥, ¥, and t
denote the following standard cardinal functions: weight, net weight, Lin-
delof degree, spread, character, pseudocharacter, closed pseudocharacter and
tightness, respectively. If ¢ is a cardinal function, then the hereditary ver-
sion of ¢, denoted h¢, is defined by h¢(X) = sup{p(Y) : Y C X}. It is well
known that ¢ is monotone if and only if ¢ = hdo.
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DEerFINITION 1.3 ([8]). The Hausdorff pseudocharacter of X, denoted
H(X), is the smallest infinite cardinal x such that for each z € X, there
is a collection B, of open neighborhoods of x, such that:

(1) |B:| < k.
(2) If z # y there are V, € B, and V,, € B, such that V, NV, = 0.

Let x be an infinite cardinal, and let X be a set. Suppose that for each
z € X, V, is a family of subsets of X which contain x. For every L C X let
L*={xeX:VNL#0Dforall VeV,} (see Hodel [§]).

In the proofs of Theorems and we will make use of the
following result due to Hodel [§].

THEOREM 1.4 ([8]). Let k be an infinite cardinal, and let X be a set. If
for each x € X, V, = {Vy(x) : v < K} is a family of subsets of X which
contain x such that for x # vy, there exists v € k such that Vo, (z)NV,(y) = 0,
then for every L C X:

(1) |L*| < [L]*.
(2) If L =ycp+ EL, where {Eq : 0 < a < KT} is a sequence of subsets
of X with Ugo, By C Eq for all « < kT, then L* = L.

2. k-Lindelof spaces

DEFINITION 2.1 ([1]). A topological space X is called k- Lindeldf if every
open cover U of X with || < k has a countable subcover.

It follows that every Lindelof space is k-Lindelof for every infinite car-
dinal . However, a x-Lindel6f space need not be Lindeldf (see [4]). On the
other hand, every linearly Lindel6f space (every increasing open cover of X
has a countable subcover) is wi-Lindelof. Of course, every topological space
which can be represented as a countable union of subspaces each of which
is k-Lindelof is itself k-Lindelof.

The next result is easy to prove.

THEOREM 2.2. The following are equivalent for a topological space X
and an infinite cardinal number K:

(1) X is k-Lindeldf.

(2) For every collection F of nonempty closed subsets of X with |F| < K
which satisfies the countable intersection property, (\{F : F € F}
£ 9.

(3) For every collection F of nonempty sets of X with |F| < r which
satisfies the countable intersection property, ({F : F € F} # (.

One easily checks that if a subspace F' of a topological space X is a
k-Lindelof space, then for every collection i/ of open subsets of X with
F C JU, there exists V € [U]=* such that F C JU.
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Like Lindel6fness, k-Lindelofness is preserved by continuous mappings
and closed subsets, which is easy to prove:

THEOREM 2.3. If X is a k-Lindeldf space, then so is every closed subset
and every continuous image of X.

It is clear from Definition that if X is a k-Lindelof space for some
infinite cardinal k, then X is y-Lindelof for every infinite cardinal v < k.
Now let k be an infinite cardinal and suppose that X is «-Lindelof for every
infinite cardinal v < k. Is it true that X is k-Lindel6f? In the next result
we give a partial affirmative answer to this question. The proof follows the
pattern of Theorem 45 in [10].

THEOREM 2.4. Suppose that k is a singular cardinal with cf(k) # w

and X s a topological space that is 0-Lindeldf for every cardinal number
w <0 < k. Then X is k-Lindeldf.

Proof. Let U = {U, : @ < Kk} be an open cover of X. Choose cardinals
kg < K, B € cf(k), for which sup{xg : § € cf(k)} = k. For each § € & let
Ve =U{Us:a<kg}and W= {Vg: [ ecf(r)}.

Clearly JW = X and |W)| < cf(k) < k; hence, by hypothesis, there is
W' € [W]=¥ such that X = |JW'. Now, since cf(k) is regular, there exists
B € cf(k) such that W' C |J{Uqs : @ < kg}. Thus {U, : a < kg} cover X
and due to kg < K, there exists V € [{U, : @ < kg}|=¥ such that X =J V. =

As we mentioned after Definition 2.1, every Lindeldf space is k-Lindelof.
Now, it is not difficult to show that if X is a k-Lindelof space such that
k> w(X) or kK > nw(X), then X is Lindelof. This fact suggests the next
question.

QUESTION 2.5. For which infinite cardinals k, does rk-Lindelof imply
Lindelof?

In connection with the last question we have the following simple result.

_ PROPOSITION 2.6. Let X be a k-Lindelof space with s(X) < x such that
D is Lindeldf for every discrete subspace D of X. Then X is Lindelof.

Proof. Let U be an open cover of X. Since s(X) < &k, there exists
D € [X]=F discrete and V) € [U]=" such that X = JU = DUJV; (see
Proposition 4.8 of [7]). Now, as D C JU and D is Lindeldf, there exists
Vs € [U]=¥ such that D C (JVi. Then ¥V = V; UVy € [U]=F and X = [JV.
Thus, since X is x-Lindelof, there is W € [V]= (and therefore W € [U]=%)
such that JW =X. =

COROLLARY 2.7. If X is a linearly Lindeldf space with s(X) < w1 such
that D is Lindeldf for every discrete subspace D of X, then X is Lindeldf.

The author does not know the answer to the following question.



268 A. RAMIREZ-PARAMO

QUESTION 2.8. Let X be a topological space and suppose that D is k-
Lindeldf for every discrete subspace D of X. Is X a k-Lindeldf space?

Note that if X is a topological space with s(X) = w and D is s-Lindelof
for every discrete subspace D of X, then X is k-Lindel6f.

Arhangel’skii and Buzyakova have proved in [2] that if X is a Tikhonov
space with t(X) = k such that D is Lindeldf for every discrete subspace D
of X, then X is k™ -Lindelof.

It is of interest whether Arhangel’skii’s inequality and its generalizations
hold in the class of wi-Lindelof spaces. In [4], Buzyakova proved that ev-
ery first countable wi-Lindelof Hausdorff space has cardinality at most 22°;
and countable pseudocharacter can be replaced by countable tigthness plus
closed pseudocharacter (see [4]).

In [§], Hodel obtained a very nice generalization of Arhangel’skii’s in-
equality by showing that |X| < 2L(XHVX) for every Hausdorff space.
This generalizes Arhangel’skii’s inequality in that it replaces x with Hvy
(the Hausdorff pseudocharacter), a local cardinal function that captures the
Hausdorff property of X. At the same time H4 is a strengthening of . (the
closed pseudocharacter) and so tightness can be omittted from the hypothe-
ses. Hence it is natural to ask: Let X be a k*-Lindelof Hausdorff space with
Hy(X) < k; is it true that (a) | X| < 2%; (b) |X]| < 2277

We will use the elementary submodels technique (see [5] or [6]) to obtain
a couple of positive partial answers to (a).

Let x be an infinite cardinal. Recall that a subset A of a space X is
called a G-set if there is a family V4 of open subsets of X with [V4| < k
such that A = Va.

THEOREM 2.9. Let X € Ty be a k't -Lindelof space with Hp(X) < k
such that every closed subset A € [X]=%" is a Gox-set in X. Then | X| < 2%,

Proof. Foreach z € X fix a collection B, of open neighborhoods of z with
|B;| < ksuch that if z # y, then there are V,, € B, and V;, € B, which satisfy
V>NV, = 0. Consider a chain of elementary submodels {M,, : & € K"} such
that {X, 7,25} U 2" C My, My € Mat1, |[Ma| < 2% and M, is closed
under k-sequences, for every a < k. Let M = J{My:a € kT}.

Claim: XNM = (XnM)* ={z e X : VN(XNM) £ for all V € B, }.
Indeed, it is clear that X N M C (X N M)*. Now, if z € (X N M)*, then
there exists A € [X N M]|=F such that z € A*. Since |A| < x and kT is
regular, there exists o € k™ such that A C M,. Moreover A € M,, hence
A* € M,. Now, from Theorem |A*| < 2%, so A* C M,. Thus A* C
My C XNMy € XNM; hence 2 € X N M. Therefore (XN M)* C XNM.

From the claim we know that X N M is closed in X. Therefore X N M
is kT-Lindelof. Moreover X N M = J{(X " My)*: a € kT }.
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For every a € k, we fix a family V(xna,)+ of open subsets of X with
Vixnma)<| < 2% such that (Vixaa,) = (X N Ma)*.

The proof will be complete once we show that X = X N M. Assume that
there is p € X'\ (XNM). Then for each a € k, we can choose Uy € V(xnpm,)*
such that p ¢ U,. Then U = {U, : o € k*} is an open covering of X N M,
so there exists V € [U]=¥ such that X " M C U V.

Since ¥V € M and |V| < k, we have V € M, so |JV € M. Thus JV
covers X, which is a contradiction because p € |JV. Therefore X = X N M.
Thus | X| < 2". =

COROLLARY 2.10 ([2]). Let X be a first countable wy-Lindeldf Hausdorff
space such that every closed subset A € [X]S%" is a Gaw-set in X. Then
| X| < 2v.

DEFINITION 2.11 ([I]). Let X be a topological space. A subspace Y C X
is k-Lindelof in X if for each open covering U of X with |U| < k there is
V € [U]=¥ such that Y C V.

THEOREM 2.12. Let X be a Hausdorff space with HY(X) < k, and let
Y be a dense subspace of X which is 2"-Lindeldf in X. Then | X| < 2.

Proof. Assume that M is an elementary submodel of some sufficiently
large fragment of the universe with |[M| < 2% such that M is closed under
r-sequences and {X,Y,7,2"} U 2% C M.

For each x € X fix a collection B, of open neighborhoods of z with
|Bz| < k such that if  # y, then there are V, € B, and V,, € B, with
VeV =0.

Note that YN M = Y nM)* ={z € X : VN (Y N M) # 0 for all
V € B,}; hence Y N M is closed in X, and thus actually in Y. Moreover
Y N M is 2%-Lindel6f in X.

Claim: Y C Y N M. Indeed, assume that there is p € Y\ (Y N M). Then
for every y € Y N M, there are U, € B, and V,, € B, such that U, NV, = 0.
Clearly U ={Uy € By :y € Y N M}U{X \ (Y N M) is an open cover of X
with cardinality < 2%. Since Y N M is 2"-Lindel6f in X, there is V € [U]=¥
such that Y N M C [ J{V : V € V}. Since V¥ C M (note that B, C M for
every y € Y N M) and |V| < K, we have V € M, so |JV € M. Thus V
covers Y, which is a contradiction because p ¢ (JV. Hence Y CY N M.

Now, from our claim, we see that |Y| < 2% and, in virtue of the fact that
X =Y*, Theorem [1.4] implies that | X| < 2~.

COROLLARY 2.13 ([1]). Let X be a Hausdorff space with x(X) < k, and
let Y be a subspace of X which is dense in X and 2%-Lindelof in X. Then
| X| < 2.

The proof of the next theorem is similar to the proof of Lemma 3.1 in [4].
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THEOREM 2.14. Let X € Ty be a v -Lindelof space with H(X) < k.
Then L(X) < 2%,

Proof. Let U be an arbitrary open cover of X. For each o < k1 define a
subset A, of X with |A,| < k as follows:

(1) Ap = 0.

(2) Since [U{Ap : B < a}| < K, we have [(U{Ag : B < a})*| < 2°
(Theorem [L.4)), where Z* = {zx € X : VNZ # O forall V € B,};
hence there exists U, € [U]=?" such that (J{As: B < a})* € UUa.
Choose z, € X \ U{UUs : B < a}. If no such point exists then
stop the inductive definition. Otherwise, put A, = (U{4p: B < a})

U{za}-

To finish the proof, note that for some step o < k* our process must
stop (to see this, assume the contrary and use the fact that if A = [J{A} :
a < kT} then A = A* to obtain a contradiction). Hence, there exists o < ™
such that X C | J{UUs: < a}. =

COROLLARY 2.15. If X € Ty is a kT -Lindelof space with Hip(X) < k,
then | X| < 22",

COROLLARY 2.16. Assume GCH. If X is a k*-Lindelof Hausdorff space
with HY(X) < k, then X is Lindeldf and | X| < 2.

COROLLARY 2.17. Assume CH. If X 1is a linearly Lindelof Hausdorff
space with H(X) < w, then X is Lindeldf and | X| < 2¢.

COROLLARY 2.18 ([4]). If X is a kT -Lindelof Hausdorff space with x(X)
< K, then L(X) < 2% and | X| < 2%".
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