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TRANSLATIVE PACKING OF A SQUARE WITH
SEQUENCES OF SQUARES

BY

JANUSZ JANUSZEWSKI (Bydgoszcz)

Abstract. Let S be a square and let S′ be a square of unit area with a diagonal
parallel to a side of S. Any (finite or infinite) sequence of homothetic copies of S whose
total area does not exceed 4

9
can be packed translatively into S′.

1. Introduction. Let C,C1, C2, . . . be convex bodies in the plane. We
say that the sequence (Ci) can be packed translatively into C if there are
translations σi such that σiCi are subsets of C with mutually disjoint interi-
ors. We say that the sequence (Ci) permits a translative covering of C if there
are translations σi such that C ⊂

⋃
σiCi. The area of C is denoted by |C|.

Let S be a square. Moon and Moser showed in [5] that any sequence of
squares homothetic to S can be packed translatively into S provided the
total area of the squares in the sequence does not exceed 1

2 |S|. Additionally,
any sequence of homothetic copies of S with total area not smaller than 3|S|
permits a translative covering of S. In [4] it is shown that any sequence of
homothetic copies of S whose total area is not smaller than 2.5|S′| permits a
translative covering of S′, where S′ is a square with a diagonal parallel to a
side of S. The aim of this paper is to give an analog of this result for packing.
We show that if S′ is a square with a diagonal parallel to a side of S, then
any sequence of homothetic copies of S can be packed translatively into S′

provided the total area of the copies does not exceed 4
9 |S
′|. The bound of 4

9
cannot be improved upon. The reason is that two homothetic copies of S,
each of area greater than 2

9 |S
′|, cannot be packed translatively into S′ (see

Fig. 1, left).
Various results concerning packings and coverings are discussed in [1–3].

2. Packing method. Denote by S′ a square whose vertices are (0,−1),
(1, 0), (0, 1), (−1, 0). Let S be a square with sides parallel to the coordinate
axes, let (Si) be a sequence of homothetic copies of S and let a1 ≥ a2 ≥ · · · ,
where ai denotes the side length of Si, for i = 1, 2, . . . .
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Fig. 1

We describe a method of translative packing of S1, S2, . . . into S′.
The first square from the sequence is packed into S′ as low as possible,

i.e.,

σ1S1 =
{

(x, y); −1
2
a1 ≤ x ≤

1
2
a1, −1 +

1
2
a1 ≤ y ≤ −1 +

3
2
a1

}
(see Figs. 1 and 2; in Figs. 2–7 each square σiSi is denoted by the integer i,
for short).

We will pack S2, S3, . . . into S′ in layers. Let −1 < d < 1 and h > 0. By
a layer L of height h we mean {(x, y); d ≤ y ≤ d + h}; by a container we
mean the intersection of a layer with S′.

Each container is a polygon. The longest side of this polygon that is
parallel to the x-axis is called the base of the container. If there are two
such sides, then we mean the lower one. The height h(K) of a container
K = L ∩ S′ is equal to the height of L. We say that Si is k-packed into a
container K if it is packed translatively into K so that one side of σiSi is
contained in the base of K and, at the same time, no point of the interior
of K lying on the right side of σiSi belongs to σ1S1 ∪ · · · ∪ σi−1Si−1.

Let

L2 =
{

(x, y); −1 +
3
2
a1 ≤ y ≤ −1 +

3
2
a1 + a2

}
and let K2 = L2 ∩ S′. We declare that this container is basic and 2-open.
We k-pack the second square from the sequence into K2 as far to the left as
possible (see S2 in Fig. 2).

For each i ≥ 3 we proceed as follows. Assume that the translations
σ1, . . . , σi−1 have already been provided, that the (i − 1)-open containers
have been defined and that the basic containers K(j), for some j < i, are
defined.
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Fig. 2

1. If there is an (i− 1)-open container K into which Si can be k-packed
and if ai ≥ 1

2h(K), then each (i− 1)-open container is i-open. Denote
by K(i) the lowest i-open container into which Si can be k-packed.
We k-pack Si into K(i) as far to the left as possible (see S4, S5 and
S7 in Fig. 2).

2. If there is an (i− 1)-open container K into which Si can be k-packed
and if ai <

1
2h(K), then let m be an integer such that 2−m−1h(K) <

ai ≤ 2−mh(K). Each (i−1)-open container is divided into 2m contain-
ers of height 2−mh(K). Only the newly created containers of height
2−mh(K) are i-open. Denote by K(i) the lowest i-open container into
which Si can be k-packed. We k-pack Si into K(i) as far to the left
as possible (see S3 in Fig. 2).

3. If there is no (i−1)-open container K into which Si can be k-packed,
then we create a new layer L(i) of height ai directly above the highest
layer. We declare that the container K(i) = L(i) ∩ S′ is basic. More-
over, only K(i) is i-open. We k-pack Si into K(i) as far to the left as
possible (see S6 in Fig. 2).

3. Packing density in basic containers. In this section we show that
a large part of each basic container is filled with packed squares.

Lemma. Assume that K is a basic container, that Sp is the first square
from the sequence packed into K, that Sq+1 is the first square which cannot
be packed into K by the method presented in Section 2 and that q ≥ p + 1.
Then the total area of the squares packed into K is greater than 4

9 |K|.

Proof. Consider two cases depending on the size of the last square packed
into K.

Case 1: aq ≥ 1
2ap. Let R be the set of points of K lying between the

right side of σpSp and the straight line containing the left side of σqSq (see
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Fig. 3

Fig. 3). Obviously,

(1)
q−1∑

i=p+1

|Si| ≥
1
2
|R|

(if q = p+1, then R = ∅ and the sum on the left-hand side of this inequality
is meant to be zero).

We show that

(2) |Sp|+ |Sq| >
4
9
|K \R|.

First consider the case where K is a trapezoid. Since
(

3
2aq − ap

)2 ≥ 0 it
follows that

3aqap − a2
p ≤

9
4
a2

q .

As a consequence,

|K \R| < 2a2
p + (3aq − ap)ap <

9
4
a2

p +
9
4
a2

q =
9
4
(
|Sp|+ |Sq|

)
(see Fig. 3 (left), where v < 3aq − ap).

Now consider the case whereK is a hexagon. Denote by b and c the length
of the sides of K parallel to the x-axis and let t = ap − 1

2 |b− c| (see Fig. 4).

Fig. 4

If t ≤ aq, then we argue as in the case where K is a trapezoid (see Fig. 3,
right).

If t > aq, then

|K \R| < 2a2
p −

(
t√
2

)2

+ ap(2aq + t− ap) = a2
p + 2apaq −

1
2
t2 + apt
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(see Fig. 4, where w < 2aq + t− ap). Consequently,

|K \R| < a2
p + 2apaq −

1
2
a2

p + a2
p =

3
2
a2

p + 2apaq.

Since

9
4
a2

p −
3
2
a2

p − 2apaq +
9
4
a2

q >
3
4
a2

p −
3
√

3
2
apaq +

9
4
a2

q =
(√

3
2
ap −

3
2
aq

)2

≥ 0

it follows that

|K \R| < 9
4
a2

p +
9
4
a2

q =
9
4

(|Sp|+ |Sq|).

We conclude from (1) and (2) that
q∑

i=p

|Si| >
4
9
|K|.

Case 2: aq < 1
2ap. Let m be an integer such that 2−m−1ap < aq ≤

2−map. Denote by Kq(1), . . . ,Kq(2m) the q-open containers of height 2−map

obtained by partitioning K. For each i ∈ {1, . . . , 2m} denote by sq(i) the
maximum value of the x-coordinate on (σ1S1 ∪ · · · ∪ σqSq) ∩ IntKq(i). Let
Rq(i) be the set of points of Kq(i) lying between the right side of σpSp and
the straight line x = sq(i) and let Rq =

⋃2m

i=1Rq(i). By the description of
the packing method we deduce that

q∑
i=p+1

|Si| ≥
1
2
|Rq|

(see Fig. 5). Moreover,

|K \Rq| <
3
2
a2

p + 2m · 3
2

(2−map)2 =
3
2
a2

p +
3
2
· 2−ma2

p ≤ a2
p

(
3
2

+
3
4

)
=

9
4
|Sp|.

Fig. 5

Consequently,
q∑

i=p

|Si| >
4
9
|K|.
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4. The main result

Theorem. Assume that S is a square and that S′ is a square with a di-
agonal parallel to a side of S. Any (finite or infinite) sequence of homothetic
copies of S can be packed translatively into S′ provided the total area of the
copies does not exceed 4

9 |S
′|.

Proof. Due to the affine invariant nature of the problem we can assume
that the vertices of S′ are (0,−1), (1, 0), (0, 1), (−1, 0). Let (Si) be a sequence
of homothetic copies of S and let

∑
|Si| ≤ 4

9 |S
′|. Denote by ai the side

length of Si for i = 1, 2, . . . . Without loss of generality we can assume that
a1 ≥ a2 ≥ · · · .

We show that S1, S2, . . . can be packed translatively into S′.
Suppose that it is impossible to pack S1, S2, . . . into S′ by the method

described in Section 2. Let Sz be the first square which cannot be packed
into S′.

Denote by K+
1 the set of the points of S′ with y-coordinate not greater

than −1 + 3
2a1. All basic containers are denoted by K2, . . . ,Kl+1 in such a

way that Ki is higher than Kj provided i > j (l = 3 and z = 8 in Fig. 2).
Moreover, let K+

l be the set of points of S′ lying above the base of Kl. Into
Kl+1 = K(z) no square has been packed—this container is z-open, but it is
impossible to pack translatively Sz into Kl+1.

First we show that l ≥ 2. Since |S1| ≤ 4
9 |S
′| < 1

2 |S
′| it follows that l ≥ 1

(|S1| = 1
2 |S| in Fig. 1, right). If l = 1, then 3

2a1 + 3
2a2 > 2 (see Fig. 1 (left),

where 3
2a1 + 3

2a2 = 2). Consequently,

a2
1 + a2

2 > a2
1 +

(
4
3
− a1

)2

≥ 8
9

=
4
9
|S′|,

which is a contradiction.
Obviously,

(3) S′ = K+
1 ∪K2 ∪ · · · ∪Kl−1 ∪K+

l .

Observe that

(4) |S1| ≥
4
9
|K+

1 |

(see Fig. 6, left).
Denote by σrSr the first square packed into Kl. We show that

(5)
z∑

i=r

|Si| >
4
9
|K+

l |.

Let Tl be the smallest right-angled isosceles triangle containing K+
l . Ob-

viously, if Kl is a trapezoid, then Tl = K+
l . Denote by bl the length of the

hypotenuse of Tl and denote by bl+1 the length of the base of Kl+1.
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Fig. 6

Observe that z ≤ r + 2. If z ≥ r + 3, then 2ar + ar+1 + 2ar+2 ≤ bl (see
Fig. 6, right). Since 2ar + 3ar+2 ≤ bl and bl+1 = bl − 2ar it follows that
3ar+2 ≤ bl+1, i.e., Sz can be packed into Kl+1, which is a contradiction.

There are two possibilities: either z = r + 1 or z = r + 2.
If z = r + 1, then 2ar + 2az > bl (see Fig. 7, left). Consequently,

|Sr|+ |Sz| > a2
r +
(

1
2
bl−ar

)2

= 2a2
r −arbl +

1
4
b2l ≥

1
8
b2l ≥

1
2
|K+

l | >
4
9
|K+

l |.

If z = r+ 2, then 2ar + ar+1 + 2az > bl (see Fig. 7, right). Consequently,

|Sr|+ |Sr+1|+ |Sz| = a2
r + a2

r+1 + a2
z > a2

r + a2
r+1 +

(
1
2
bl − ar −

1
2
ar+1

)2

.

By using the standard method of finding the minimum of a function of two
variables it is easy to check that this value is not less than 1

9b
2
l ≥

4
9 |K

+
l |.

Fig. 7

It is easy to see that if j ∈ {2, . . . , l} and if only one square is packed
into Kj , then j = l (as in Fig. 7, left). Consequently, at least two squares
are packed into Kj for j = 2, . . . , l − 1. By (3)–(5) and by the Lemma we
deduce that

z∑
i=1

|Si| >
4
9

(|K+
1 |+ |K2|+ · · ·+ |Kl−1|+ |K+

l |) =
4
9
|S′|,

which is a contradiction.
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