VOL. 122

2011

NO. 1

ON φ-INNER AMENABLE BANACH ALGEBRAS

ΒY

A. JABBARI, T. MEHDI ABAD and M. ZAMAN ABADI (Kerman)

Abstract. Generalizing the concept of inner amenability for Lau algebras, we define and study the notion of φ -inner amenability of any Banach algebra A, where φ is a homomorphism from A onto \mathbb{C} . Several characterizations of φ -inner amenable Banach algebras are given.

1. Introduction. In his famous work, Lau [6] introduced a wide class of Banach algebras, called *F*-algebras, and studied the notion of left amenability for these algebras. By definition, an *F*-algebra *A* is a Banach algebra which is the predual of a W^* -algebra *M* such that the identity ϵ of *M* is a multiplicative linear functional on *A*. Although *M* need not be unique [6], we shall identify *M* with the continuous dual A^* of *A* if no confusion can arise. Later on, *F*-algebras were termed *Lau algebras* by Pier [14]. Such an algebra *A* was called *left amenable* if there exists a positive linear functional *m* of norm 1 on the W^* -algebra A^* such that $m(f \cdot a) = m(f)$ for all $f \in A^*$ and $a \in P_1(A) = \{a \in A : \epsilon(a) = ||a|| = 1\}$. Left amenability of *F*-algebras has been characterized in different ways by Lau [6].

Lau algebras have been studied under various aspects in [6, 7], [9], and [11–13]. In [12], Nasr-Isfahani introduced the concept of inner amenability for Lau algebras. A Lau algebra A was said to be *inner amenable* if there exists a *topological inner invariant mean* on the W^* -algebra A^* , that is, a positive linear functional m of norm 1 on A^* such that $m(f \cdot a) = m(a \cdot f)$ for all $f \in A^*$ and all $a \in P_1(A) = \{a \in A : \epsilon(a) = ||a|| = 1\}$ (or equivalently, for all $a \in A$). Commutative Lau algebras, like the Fourier algebra A(G) of a locally compact group G, are examples of inner amenable algebras. Also the group algebra $L^1(G)$ of any locally compact group G is inner amenable. In [12], the author obtained several characterizations of inner amenability of Lau algebras, for instance, inner amenability was shown to be equivalent to a fixed point property. The idea behind this definition was the notion of inner amenability for discrete semigroups studied by Ling [10]. A discrete semigroup S is called *inner amenable* if there is an element m of $P_1(\ell^{\infty}(S)^*)$

²⁰¹⁰ Mathematics Subject Classification: 43A07, 43A60.

Key words and phrases: Lau algebra, left amenable, inner amenable, topological inner invariant mean, φ -mean, φ -amenable.

such that m(ft) = m(tf) for all $f \in \ell^{\infty}(S)$ and $t \in S$, where ft(s) = f(ts) = sf(t) for $s, t \in S$. As pointed out in [12], a discrete semigroup S is inner amenable if and only if $\ell^{1}(S)$ is inner amenable.

In an interesting recent work [4] (continued in [5]), the authors have studied the notion of φ -amenability for an arbitrary Banach algebra A, where φ is a homomorphism from A onto \mathbb{C} , generalizing left amenability for Lau algebras of [6]. A is called (left) φ -amenable if there exists a bounded linear functional m on A^* satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for all $a \in A$ and $f \in A^*$. They characterized φ -amenability in different ways. One may define that A is two-sided φ -amenable if there exists $m \in A^{**}$ with $m(\varphi) = 1$ and $m(f \cdot a) = m(a \cdot f) = \varphi(a)m(f)$ for all $a \in A$ and $f \in A^*$.

In this paper, as in the case of φ -amenability in [4], we are going to define and study the concept of φ -inner amenability for any Banach algebra. Let A be an arbitrary Banach algebra and φ a homomorphism from A onto \mathbb{C} . Let $A_{\varphi} = \{a \in A : \varphi(a) = 1\}$. We call $A \varphi$ -inner amenable if there exists a bounded linear functional m on A^* satisfying $m(\varphi) = 1$ and $m(f \cdot a) =$ $m(a \cdot f)$ for all $f \in A^*$ and for all $a \in A_{\varphi}$ (hence for all $a \in A$, since if $\varphi(a) = 0$ and $b \in A_{\varphi}$ is arbitrary, then $b - a \in A_{\varphi}$, thus $m(f \cdot (b - a)) = m((b - a) \cdot f)$, that is, $m(f \cdot a) = m(a \cdot f)$ because $m(f \cdot b) = m(b \cdot f)$). Such a linear functional m will sometimes be referred to as a φ -inner mean, and we denote by φ -IM(A^*) the set of all φ -inner means on A^* . In case φ is identically zero, it is clear that there is no non-trivial 0-inner amenable Banach algebra. So we always assume that φ is non-zero.

Commutative Banach algebras, two-sided φ -amenable Banach algebras and Banach algebras with a bounded approximate identity are examples of φ -inner amenable algebras (for the latter see Corollary 2.2). As we shall see, the concept of φ -inner amenability is more general than the notion of inner amenability for Lau algebras (Remark 2.4). We give several characterizations of φ -inner amenable Banach algebras. In accomplishing these, the methods employed in [12] and [4] prove extremely useful. Below we outline the content of this paper.

In Section 2, among other things, it is shown that φ -inner amenability of a Banach algebra A is equivalent to; the existence of a bounded net (ν_{α}) in A_{φ} such that $\|\nu_{\alpha}a - a\nu_{\alpha}\| \to 0$ for all $a \in A_{\varphi}$, and the existence of a φ -inner invariant mean (see Section 2 for the definition) on $C_{\mathrm{au}}(A_{\varphi})$, the set of all additively uniformly continuous functions on A_{φ} (Theorem 2.1). The aim of Section 3 is to show that the φ -inner amenability of a Banach algebra A with a bounded right approximate identity is equivalent to the existence of a certain element $\Lambda \in B(X^{**})$ (the Banach space of all bounded operators on X^{**}) such that for all $a \in A_{\varphi}$, $\Lambda A_a = A_a \Lambda$, for every left Banach A-module X (Theorem 3.3). 2. Characterization of φ -inner amenability. Unless otherwise stated, throughout this paper A denotes an arbitrary Banach algebra, $0 \neq \varphi \in \Delta(A)$, the set of all homomorphisms from A onto \mathbb{C} , and $A_{\varphi} = \{a \in A : \varphi(a) = 1\}$. The set A_{φ} , endowed with the induced norm topology of A and the product of A, is a topological semigroup. Let $C_{\mathrm{b}}(A_{\varphi})$ denote the Banach space of all bounded and continuous functions on A_{φ} with the supremum norm, and define the left and right translation operators l_a and r_a on $C_{\mathrm{b}}(A_{\varphi})$ by $l_a \phi(b) = \phi(ab) = r_b \phi(a)$ for all $a, b \in A_{\varphi}$ and $\phi \in C_{\mathrm{b}}(A_{\varphi})$.

As in [12], a function $\phi \in C_{\rm b}(A_{\varphi})$ is called *additively uniformly continuous* on A_{φ} if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $|\phi(a) - \phi(b)| < \varepsilon$ whenever $a, b \in A_{\varphi}$ with $||a - b|| < \delta$. Let $C_{\rm au}(A_{\varphi})$ denote the set of all additively uniformly continuous functions on A_{φ} . Then $C_{\rm au}(A_{\varphi})$ is a norm closed, translation invariant subspace of $C_{\rm b}(A_{\varphi})$ containing the constants and the restrictions to A_{φ} of elements of A^* . An element m of $C_{\rm au}(A_{\varphi})^*$ is called a φ -inner invariant mean if $\langle m, \varphi |_{A_{\varphi}} \rangle = 1$ and $\langle m, l_a \phi \rangle = \langle m, r_a \phi \rangle$ for all $a \in A_{\varphi}$ and $\phi \in C_{\rm au}(A_{\varphi})$, where $\varphi |_{A_{\varphi}}$ denotes the restriction of φ to A_{φ} .

Recall that the second dual A^{**} of A is a Banach algebra with respect to the first and second Arens products denoted by \odot and \diamond , respectively, defined as follows. For $a, b \in A$, $f \in A^*$ and $m, n \in A^{**}$, the elements $f \cdot a$, $a \cdot f$, $m \cdot f$ and $f \cdot m$ of A^* and the elements $m \odot n$ and $m \diamond n$ of A^{**} are defined by

$$\begin{array}{ll} \langle m \odot n, f \rangle = \langle m, n \cdot f \rangle, & \langle n \cdot f, a \rangle = \langle n, f \cdot a \rangle, & \langle f \cdot a, b \rangle = \langle f, ab \rangle, \\ \langle m \diamond n, f \rangle = \langle n, f \cdot m \rangle, & \langle f \cdot m, a \rangle = \langle m, a \cdot f \rangle, & \langle a \cdot f, b \rangle = \langle f, ba \rangle. \end{array}$$

Obviously, $a \odot m = a \diamond m$ and $m \odot a = m \diamond a$ for all $a \in A$ and $m \in A^{**}$. A Banach algebra A is called Arens regular if $m \odot n = m \diamond n$ for all $m, n \in A^{**}$. Now we state and prove the main result of this section.

THEOREM 2.1. For a Banach algebra A and $\varphi \in \Delta(A)$ the following statements are equivalent:

- (i) A is φ -inner amenable.
- (ii) There is a bounded net (ν_{α}) in A_{φ} such that for all $a \in A_{\varphi}$, $\nu_{\alpha}a - a\nu_{\alpha} \to 0$ in the weak topology of A.
- (iii) There is a bounded net (ν_{α}) in A_{φ} such that for all $a \in A_{\varphi}$, $\|\nu_{\alpha}a - a\nu_{\alpha}\| \to 0.$
- (iv) There is a φ -inner invariant mean on $C_{au}(A_{\varphi})$.

Proof. (i) \Rightarrow (ii). Assume that A is φ -inner amenable. Then there exists $m \in A^{**}$ such that $m(\varphi) = 1$ and $\langle m, f \cdot a \rangle = \langle m, a \cdot f \rangle$ for all $a \in A_{\varphi}$ and $f \in A^*$. Choose a net (ν_{α}) in A with the property that $\nu_{\alpha} \to m$ in the weak^{*} topology on A^{**} and $\|\nu_{\alpha}\| \leq \|m\|$ for all α . Since $\varphi(\nu_{\alpha}) \to m(\varphi) = 1$, after passing to a subnet and replacing ν_{α} by $(1/\varphi(\nu_{\alpha}))\nu_{\alpha}$, we can assume that $\varphi(\nu_{\alpha}) = 1$ and $\|\nu_{\alpha}\| \leq \|m\| + 1$ for all α . For all $a \in A_{\varphi}$ and $f \in A^*$, we have $\langle m \odot a, f \rangle = \langle a \odot m, f \rangle$, thus $\langle w^*$ -lim_{$\alpha} <math>\nu_{\alpha} \odot a, f \rangle = \langle a \odot w^*$ -lim_{$\alpha} <math>\nu_{\alpha}, f \rangle$,</sub></sub>

that is, $\lim_{\alpha} f(\nu_{\alpha} a) = \lim_{\alpha} f(a\nu_{\alpha})$ or equivalently $\lim_{\alpha} f(\nu_{\alpha} a - a\nu_{\alpha}) = 0$. The latter means that $\nu_{\alpha} a - a\nu_{\alpha} \to 0$ in the weak topology of A.

(ii) \Rightarrow (iii). Let Y be the vector space $\prod \{A : b \in A_{\varphi}\}$ and let $T : A \to Y$ be the linear map defined by T(a)(b) = ba - ab for all $a \in A$ and $b \in A_{\varphi}$. By assumption, the weak closure of $T(A_{\varphi})$ contains 0. Since Y is a locally convex space with the product of the norm topologies and A_{φ} is convex, the closure of $T(A_{\varphi})$ in this topology contains 0. That is, (iii) holds.

(iii) \Rightarrow (iv). Let (ν_{α}) be as in (iii). If we define $m_{\alpha} \in C_{\mathrm{au}}(A_{\varphi})^*$ by $\langle m_{\alpha}, \phi \rangle = \phi(\nu_{\alpha})$ for all $\phi \in C_{\mathrm{au}}(A_{\varphi})$, then any weak^{*} cluster point of (m_{α}) in $C_{\mathrm{au}}(A_{\varphi})^*$ is a φ -inner invariant mean.

(iv) \Rightarrow (i). Let *m* be a φ -inner invariant mean on $C_{au}(A_{\varphi})$, and define $M \in A^{**}$ by $\langle M, f \rangle = \langle m, f | A_{\varphi} \rangle$ for $f \in A^*$. Then *M* is a φ -inner mean on A^* .

The next corollary gives us a variety of φ -inner amenable Banach algebras.

COROLLARY 2.2. Let A be a Banach algebra with a bounded approximate identity. Then A is φ -inner amenable for all $\varphi \in \Delta(A)$.

Proof. Let $\varphi \in \Delta(A)$. Let $\{e_{\alpha}\}$ be a bounded approximate identity of A. Then $\varphi(e_{\alpha}) \to 1$. Hence, without loss of generality, we may assume that $\varphi(e_{\alpha}) \neq 0$ for all α . Let $\nu_{\alpha} = e_{\alpha}/\varphi(e_{\alpha})$. Then the net $\{\nu_{\alpha}\}$ satisfies condition (iii) of Theorem 2.1, and hence A is φ -inner amenable.

EXAMPLE 2.3. (1) Let G be a locally compact group and let $L^1(G)$ denote the group algebra of G. It is well-known that $L^1(G)$ has a bounded approximate identity. Hence $L^1(G)$ is φ -inner amenable for all $\varphi \in \Delta(L^1(G))$.

(2) As pointed out in the introduction, every commutative Banach algebra A is φ -inner amenable for all $\varphi \in \Delta(A)$. In fact $A_{\varphi} \subseteq \varphi$ -IM(A^{*}). In particular, if G is a locally compact group and A(G) is the Fourier algebra of G [3], then $\Delta(A(G))$ consists of all point evaluations $\varphi_t(f) = f(t)$, $f \in A(G), t \in G$, and so A(G) is φ_t -inner amenable for all $t \in G$.

The following remark asserts that the concept of φ -inner amenability generalizes that of inner amenability of Lau algebras in [12].

REMARK 2.4. Let A be a Lau algebra with ϵ being the identity of A^* . Then it is readily seen that A is ϵ -inner amenable if and only if A is inner amenable. In fact, that inner amenability implies ϵ -inner amenability follows easily from definitions. For the converse, assume that A is ϵ -inner amenable, hence there exists an ϵ -inner mean m on A^* . Thus $a \odot m = m \odot a$ and $a \odot m^* = m^* \odot a$ for all $a \in P_1(A) = \{a \in A : \epsilon(a) = ||a|| = 1\}$ (note in particular that the elements of $P_1(A)$ are positive). So we may assume that m is self-adjoint. Write $m = m^+ - m^-$, the orthogonal decomposition of m. If $a \in P_1(A)$, then $a \odot m = a \odot m^+ - a \odot m^-$ and $m \odot a = m^+ \odot a - m^- \odot a$. Let $a \in P_1(A)$. Since $m^+ \odot a$, $m^- \odot a$, $a \odot m^+$ and $a \odot m^-$ are all positive and

 $\|a \odot m^+\| + \|a \odot m^-\| = \|a \odot m\| = \|m \odot a\| = \|m^+ \odot a\| + \|m^- \odot a\|$

it follows that $a \odot m^+ = m^+ \odot a$ and $a \odot m^- = m^- \odot a$ [15, Theorem 1.14.3]. Therefore if $m^+ \neq 0$ (say) and $n = m^+/m^+(\epsilon)$, then n is the desired topological inner invariant mean.

For a Banach algebra A and $\varphi \in \Delta(A)$ let $\tilde{\varphi}$ denote the unique extension of φ to A^{**} . Clearly, any $\tilde{\varphi}$ -inner mean on A^{***} restricted to A^* is a φ -inner mean on A^* . Thus we have the following proposition.

PROPOSITION 2.5. Let A be an Arens regular Banach algebra. Then A is φ -inner amenable if and only if A^{**} is $\tilde{\varphi}$ -inner amenable.

Proof. Assume that A is φ -inner amenable. Then there exists $m \in A^{**}$ such that $\langle m, \varphi \rangle = 1$ and $\langle m, f.a \rangle = \langle m, a.f \rangle$ for all $a \in A_{\varphi}$ and $f \in A^*$. For given $n \in A_{\tilde{\varphi}}^{**}$ and $u \in A^{***}$, choose nets $(a_{\alpha})_{\alpha}$ in A and $(f_{\beta})_{\beta}$ in A^* such that $a_{\alpha} \to n$ and $f_{\beta} \to u$ with respect to the corresponding w^* -topologies. Now $\varphi(a_{\alpha}) = \langle a_{\alpha}, \varphi \rangle \to \langle n, \varphi \rangle = \tilde{\varphi}(n) = 1$, hence after passing to a subnet and replacing a_{α} by $(1/\varphi(a_{\alpha}))a_{\alpha}$, one may assume that $\varphi(a_{\alpha}) = 1$. Consider m as an element \hat{m} of A^{****} . Then clearly $\hat{m}(\tilde{\varphi}) = 1$ and

$$\begin{split} \langle \hat{m}, u.n \rangle &= \langle u.n, m \rangle = \langle u, n \odot m \rangle = \lim_{\beta} \langle f_{\beta}, n \odot m \rangle = \lim_{\beta} \langle n, m \cdot f_{\beta} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \langle a_{\alpha}, m \cdot f_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \langle m, f_{\beta} \cdot a_{\alpha} \rangle = \lim_{\beta} \lim_{\alpha} \langle m, a_{\alpha} \cdot f_{\beta} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \langle m \cdot a_{\alpha}, f_{\beta} \rangle = \lim_{\beta} \langle m \odot n, f_{\beta} \rangle = \lim_{\beta} \langle f_{\beta}, m \odot n \rangle \\ &= \langle u, m \odot n \rangle = \langle n \cdot u, m \rangle = \langle \hat{m}, n \cdot u \rangle. \end{split}$$

Hence A^{**} is $\tilde{\varphi}$ -inner amenable.

Recall that an element E of A^{**} is called a *mixed identity* if $a \odot E = E \odot a = a$ for all $a \in A$. It is easily seen that an element E of A^{**} is a mixed identity if and only if it is a weak^{*} cluster point of a bounded approximate identity in A, [1]. A Lau algebra A is called *strictly inner amenable* (see [2] and also [8]) if there exists a topological inner invariant mean on A^* which is not a mixed identity of A^{**} . For $\varphi \in \Delta(A)$, let us call an element E of A^{**} a φ -mixed identity if $a \odot E = E \odot a = a$ for all $a \in A_{\varphi}$. Therefore any φ -mixed (or equivalently mixed) identity M of A^{**} such that $M(\varphi) = 1$ is in φ -IM(A^*).

We say that A is strictly φ -inner amenable if there exists a φ -inner mean on A^* which is not a φ -mixed identity. When $\varphi = 1$ and $A = L^1(G)$, the group algebra of a locally compact group G, the notion of strict φ -inner amenability was studied by Effros [2] and also by Lau and Paterson [8]. As an application of the above proposition we have the next corollary.

COROLLARY 2.6. If A is Arens regular and A^{**} is not strictly $\tilde{\varphi}$ -inner amenable, then A is not strictly φ -inner amenable.

Proof. Let $M \in \varphi$ -IM (A^*) . Then by the proof of the above proposition, $M \in \tilde{\varphi}$ -IM (A^{***}) . Since A^{**} is not strictly $\tilde{\varphi}$ -inner amenable, M is a φ -mixed identity of A^{****} . In particular, $a \odot M = M \odot a = a$ for all $a \in A_{\varphi}$, that is, M is a φ -mixed identity of A^{**} and A is not strictly φ -inner amenable.

REMARK 2.7. We remark that every strictly ϵ -inner amenable Lau algebra A is strictly inner amenable, where ϵ is the identity of A^* . Indeed, if A is strictly ϵ -inner amenable, then there exists an ϵ -inner mean m on A^* which is not an ϵ -mixed identity, that is, there exists $b \in A$ with $\epsilon(b) = 1$ such that $m \odot b = b \odot m \neq b$. Suppose that $m^+(\epsilon) \neq 0$. By Remark 2.4, $n = m^+/m^+(\epsilon)$ is a topological inner invariant mean on A^* . Now two cases may occur:

First, $m^{-}(\epsilon) = 0$. In this case, since m^{-} is positive we have $||m^{-}|| = m^{-}(\epsilon) = 0$. Hence $m^{-} = 0$ and therefore $n = m^{+} = m$, and m is the desired topological inner invariant mean which is not a mixed identity.

Second, $m^{-}(\epsilon) \neq 0$. Then the same method as in Remark 2.4 shows that $n' := m^{-}/m^{-}(\epsilon)$ is also a topological inner invariant mean on A^{*} . We are going to show that at least one of the means n or n' is not a mixed identity of A^{**} . To this end, it is enough to show that $n \odot b = b \odot n \neq b$ or $n' \odot b = b \odot n' \neq b$. But this is clear, since otherwise $m \odot b = b \odot m = b$, which is a contradiction.

For every commutative Banach algebra A of dimension more than 1, if $\varphi \in \Delta(A)$ and $a \in A_{\varphi}$ with $a^2 \neq a$, then a is a φ -inner mean on A^* which is not a φ -mixed identity, hence A is strictly φ -inner amenable.

Now we wish to raise the following question:

QUESTION. Can (strictly) 1-inner amenability be characterized in terms of a property of the von Neumann algebra A^* where A is in a certain class of Lau algebras?

To end this section, we prove the next heredity property.

THEOREM 2.8. Let A and B be Banach algebras and suppose that $h : A \to B$ is a continuous homomorphism with dense range. If $\varphi \in \Delta(B)$ and A is $\varphi \circ h$ -inner amenable, then B is φ -inner amenable.

Proof. Let $m \in A^{**}$ satisfy $\langle m, \varphi \circ h \rangle = 1$ and $\langle m, f \cdot a \rangle = \langle m, a \cdot f \rangle$ for all $f \in A^*$ and $a \in A_{\varphi \circ h}$. Define $n \in B^{**}$ by $\langle n, g \rangle = \langle m, g \circ h \rangle$, where $g \in B^*$. Then $\langle n, \varphi \rangle = 1$. Since h(A) is dense in B, for $b \in B_{\varphi}$ there is a net (a_{α}) in A such that $h(a_{\alpha}) \to b$. Therefore $\varphi(h(a_{\alpha})) \to \varphi(b) = 1$. After passing to a subnet and replacing $h(a_{\alpha})$ by $(1/\varphi(h(a_{\alpha})))h(a_{\alpha})$ we can assume that $\varphi(h(a_{\alpha})) = 1$, that is, $h(a_{\alpha}) \in B_{\varphi}$. Now for $\langle n, g \cdot b \rangle = \langle n, b \cdot g \rangle$ to hold for all

 $b \in B_{\varphi}$ and $g \in B^*$, it suffices to verify this equality for $b \in B_{\varphi}$ of the form $b = h(a), a \in A$. Let a and b be as above. Since $b \in B_{\varphi}$, we have $a \in A_{\varphi \circ h}$. Now for all $a' \in A$,

$$\langle (g \cdot h(a)) \circ h, a' \rangle = \langle g, h(a)h(a') \rangle = \langle g \circ h, aa' \rangle = \langle (g \circ h) \cdot a, a' \rangle,$$

hence $(g \cdot h(a)) \circ h = (g \circ h) \cdot a$. Similarly, $(h(a) \cdot g) \circ h = a \cdot (g \circ h)$. Hence for all $g \in B^*$,

$$\begin{split} \langle n, g \cdot b \rangle &= \langle n, g \cdot h(a) \rangle = \langle m, (g \cdot h(a)) \circ h \rangle = \langle m, (g \circ h) \cdot a \rangle \\ &= \langle m, a \cdot (g \circ h) \rangle = \langle m, (h(a) \cdot g) \circ h \rangle = \langle n, h(a) \cdot g \rangle = \langle n, b \cdot g \rangle, \end{split}$$

and the result follows. \blacksquare

3. Bounded right approximate identities and φ -inner amenability. In this section we study the concept of φ -inner amenability for Banach algebras with a bounded right approximate identity. To this end, first we fix some notation and definitions.

Let A be a Banach algebra and let X be a left Banach A-module, i.e. a Banach space X equipped with a bounded bilinear map from $A \times X$ into X, denoted by $(a, x) \mapsto a \cdot x$, such that $a \cdot (b \cdot x) = (ab) \cdot x$ for all $a, b \in A$ and $x \in X$. For all $a \in A, x \in X, x^* \in X^*$ and $x^{**} \in X^{**}$ define

$$\langle a \cdot x^{**}, x^* \rangle = \langle x^{**}, x^* \cdot a \rangle, \quad \langle x^* \cdot a, x \rangle = \langle x^*, a \cdot x \rangle.$$

Let $B(X^{**})$ denote the Banach space of all bounded operators on X^{**} . By weak* operator topology on $B(X^{**})$ we shall mean the locally convex topology of $B(X^{**})$ determined by the family

$$\{T \mapsto |\langle Tx^{**}, x^* \rangle| : x^{**} \in X^{**}, \, x^* \in X^*\}$$

of seminorms on $B(X^{**})$. We denote by $B_{\varphi}(A, X^{**})$ the closure of the set $\{\Lambda_a : a \in A_{\varphi}\}$ in the weak^{*} operator topology, where $\Lambda_a \in B(X^{**})$ is defined by $\Lambda_a(x^{**}) = a \cdot x^{**}$ for all $x^{**} \in X^{**}$.

It is well-known that $(X^{**} \otimes X^*)^*$ is isometrically isomorphic to $B(X^{**})$ with the isomorphism $\phi : (X^{**} \otimes X^*)^* \to B(X^{**})$ defined by $\phi(F) = \phi_F$, where $\phi_F(x^{**})(x^*) = F(x^{**} \otimes x^*)$ for all $x^{**} \in X^{**}$ and $x^* \in X^*$. So the weak^{*} operator topology of $B(X^{**})$ coincides with the weak^{*} topology of $(X^{**} \otimes X^*)^*$ (see [1]).

Note that for each $a \in A_{\varphi}$, $\Lambda_a \in B(X^{**})$, and since ϕ is an isomorphism there exists a unique element $F_a \in (X^{**} \otimes X^*)^*$ such that $\phi(F_a) = \Lambda_a$. Therefore for all $x^{**} \in X^{**}$ and $x^* \in X^*$, $\phi(F_a)(x^{**})(x^*) = \Lambda_a(x^{**})(x^*)$, that is, $F_a(x^{**} \otimes x^*) = \langle a \cdot x^{**}, x^* \rangle = \langle x^{**}, x^* \cdot a \rangle$.

LEMMA 3.1. If $H = \{F_a : a \in A_{\varphi}\} \subset (X^{**} \otimes X^*)^*$. Then $\phi(\overline{H}^{w^*}) = B_{\varphi}(A, X^{**})$, where \overline{H}^{w^*} denotes the weak^{*} closure of H in $(X^{**} \otimes X^*)^*$.

Proof. Indeed, $\phi(H) = \{\Lambda_a : a \in A_{\varphi}\}$. Let $D = \{\Lambda_a : a \in A_{\varphi}\}$, and let $F \in \overline{H}^{w^*}$. Then there is a net $(F_{a_{\alpha}})$ in H such that $F_{a_{\alpha}} \to F$ in the weak* topology of $(X^{**} \otimes X^*)^*$. Since the weak* operator topology of $B(X^{**})$ coincides with the weak* topology of $(X^{**} \otimes X^*)^*$, $\phi_{F_{a_{\alpha}}} \to \phi_F$ in the weak* operator topology on $B(X^{**})$, thus $\Lambda_{a_{\alpha}} \to \phi_F$ in the weak* operator topology on $B(X^{**})$. Therefore ϕ_F belongs to the weak* operator closure of D, which is equal to $B_{\varphi}(A, X^{**})$. Hence $\phi_F \in B_{\varphi}(A, X^{**})$ and so $\phi(\overline{H}^{w^*}) \subseteq B_{\varphi}(A, X^{**})$.

Conversely, let $\Lambda \in B_{\varphi}(A, X^{**})$. Then there is a net $a_{\alpha} \in A_{\varphi}$ such that $\phi_{F_{a_{\alpha}}} = \Lambda_{a_{\alpha}} \to \Lambda$ in the weak^{*} operator topology. Since ϕ is onto, there exists $F \in (X^{**} \otimes X^{*})^{*}$ such that $\Lambda = \phi(F)$. Hence $\phi_{F_{a_{\alpha}}} \to \phi_{F}$ in the weak^{*} operator topology, and so $F_{a_{\alpha}} \to F$ in the weak^{*} topology. That is, $F \in \overline{H}^{w^{*}}$ and $\Lambda = \phi(F) \in \phi(\overline{H}^{w^{*}})$.

PROPOSITION 3.2. If the Banach algebra A is φ -inner amenable, then for each left Banach A-module X there exists $\Lambda \in B_{\varphi}(A, X^{**})$ such that $\Lambda \Lambda_a = \Lambda_a \Lambda$ for all $a \in A_{\varphi}$.

Proof. By Theorem 2.1, there exists a bounded net $a_{\alpha} \in A_{\varphi}$ such that $||a_{\alpha}a - aa_{\alpha}|| \to 0$ for all $a \in A_{\varphi}$. Furthermore, if p denotes the projective tensor norm on $X^{**} \otimes X^*$, then for each α ,

$$\begin{aligned} \|F_{a_{\alpha}}\| &= \sup\{\|F_{a_{\alpha}}(x^{**} \otimes x^{*})\| : p(x^{**} \otimes x^{*}) = \|x^{**}\| \cdot \|x^{*}\| = 1, \\ & x^{**} \in X^{**}, x^{*} \in X^{*} \} \\ &= \sup\{\|\langle x^{**}, x^{*} \cdot a_{\alpha} \rangle\| : \|x^{**}\| \cdot \|x^{*}\| = 1, x^{**} \in X^{**}, x^{*} \in X^{*} \} \\ &\leq \sup\{\|x^{**}\| \|x^{*}\| \|a_{\alpha}\| : \|x^{**}\| \cdot \|x^{*}\| = 1\} = \|a_{\alpha}\|. \end{aligned}$$

But (a_{α}) is bounded, hence the net $(F_{a_{\alpha}})$ is bounded. Therefore $(F_{a_{\alpha}})$ has a cluster point, say F. Assume that $F_{a_{\delta}} \to F$ in the weak^{*} topology on $(X^{**} \otimes X^{*})^{*}$, where (a_{δ}) is a subnet of (a_{α}) . Put $\Lambda = \phi(F)$. Then clearly $\Lambda_{a_{\delta}} \to \Lambda$ in the weak^{*} operator topology. Thus for each $a \in A_{\varphi}$, $\Lambda_{a_{\delta}}\Lambda_{a} \to \Lambda\Lambda_{a}$ and $\Lambda_{a}\Lambda_{a_{\delta}} \to \Lambda_{a}\Lambda$ in the weak^{*} operator topology. Moreover $\|\Lambda_{a_{\delta}}\Lambda_{a} - \Lambda_{a}\Lambda_{a_{\delta}}\| \leq K \|a_{\delta}a - aa_{\delta}\| \to 0$, where K is a constant satisfying

$$\|b \cdot x\| \le K\|b\| \cdot \|x\|$$

for all $b \in A$ and $x \in X$. Consequently, $AA_a = A_aA$ for all $a \in A_{\varphi}$.

We are now in a position to give a characterization of φ -inner amenability of a Banach algebra A with a bounded right approximate identity.

THEOREM 3.3. Suppose that the Banach algebra A has a bounded right approximate identity and let $\varphi \in \Delta(A)$. Then the following are equivalent:

- (i) A is φ -inner amenable.
- (ii) There exists $\Lambda \in B_{\varphi}(A, A^{**})$ such that $\Lambda \Lambda_a = \Lambda_a \Lambda$ for all $a \in A_{\varphi}$.

(iii) For each left Banach A-module X, there exists $\Lambda \in B_{\varphi}(A, X^{**})$ such that $\Lambda \Lambda_a = \Lambda_a \Lambda$ for all $a \in A_{\varphi}$.

Proof. (i) \Rightarrow (iii) follows from Proposition 3.2. (iii) \Rightarrow (ii) is trivial. Now suppose that (ii) holds, and choose an element Λ of $B_{\varphi}(A, A^{**})$ such that $\Lambda A_a = \Lambda_a \Lambda$ for all $a \in A_{\varphi}$. We prove that (i) holds. By Lemma 3.1, $\phi(\overline{H}^{w^*}) = B_{\varphi}(A, A^{**})$, thus for $\Lambda \in B_{\varphi}(A, A^{**})$ there exists $F \in \overline{H}^{w^*}$ such that $\phi(F) = \Lambda$. On the other hand, there is a net (a_{α}) in A_{φ} such that $F_{a_{\alpha}} \to F$ in the weak* topology on $(A^{**} \otimes A^*)^*$, therefore $\phi_{Fa_{\alpha}} \to \phi(F)$ in the weak* operator topology on $B(A^{**})$, that is, $\Lambda_{a_{\alpha}} \to \Lambda$ in the weak* operator topology.

Define $M \in A^{**}$ by $\langle M, f \rangle = \langle F, E \otimes f \rangle$ for all $f \in A^*$, where $E \in A^{**}$ is a weak^{*} cluster point of a bounded right approximate identity of A. Hence E is a right identity of A^{**} . Now

$$\langle M, \varphi \rangle = \langle F, E \otimes \varphi \rangle = \langle w^* - \lim_{\alpha} F_{a_{\alpha}}, E \otimes \varphi \rangle = \lim_{\alpha} \langle F_{a_{\alpha}}, E \otimes \varphi \rangle$$
$$= \lim_{\alpha} \langle E, \varphi \cdot a_{\alpha} \rangle = \lim_{\alpha} \langle a_{\alpha} \diamond E, \varphi \rangle = \lim_{\alpha} \langle a_{\alpha}, \varphi \rangle = 1.$$

It remains to show that $M \odot a = a \odot M$ for all $a \in A_{\varphi}$. To this end, observe that for $a \in A_{\varphi}$ and $f \in A^*$ one has

$$\langle M \odot a, f \rangle = \langle M, a \cdot f \rangle = \langle F, E \otimes (a \cdot f) \rangle = \langle w^* - \lim_{\alpha} F_{a_{\alpha}}, E \otimes (a \cdot f) \rangle$$

$$= \lim_{\alpha} \langle F_{a_{\alpha}}, E \otimes (a \cdot f) \rangle = \lim_{\alpha} \langle E, (a \cdot f) \cdot a_{\alpha} \rangle = \lim_{\alpha} \langle a_{\alpha} \otimes E, a \cdot f \rangle$$

$$= \lim_{\alpha} \langle a_{\alpha}, a \cdot f \rangle = \lim_{\alpha} \langle a_{\alpha}, (a \cdot E) \cdot f \rangle = \lim_{\alpha} \langle a_{\alpha} \odot (a \cdot E), f \rangle$$

$$= \lim_{\alpha} \langle (a_{\alpha}a) \otimes E, f \rangle = \lim_{\alpha} \langle E, f \cdot (a_{\alpha}a) \rangle.$$

On the other hand,

$$\langle a \odot M, f \rangle = \langle a, M \cdot f \rangle = \langle M, f \cdot a \rangle = \langle F, E \otimes (f \cdot a) \rangle = \langle w^* - \lim_{\alpha} F_{a_{\alpha}}, E \otimes (f \cdot a) \rangle = \lim_{\alpha} \langle F_{a_{\alpha}}, E \otimes (f \cdot a) \rangle = \lim_{\alpha} \langle E, (f \cdot a) \cdot a_{\alpha} \rangle = \lim_{\alpha} \langle E, f \cdot (aa_{\alpha}) \rangle$$

It is enough to observe that the right hand sides of the above equalities coincide, that is,

$$(\star) \qquad \qquad \lim_{\alpha} \langle E, f \cdot (a_{\alpha} a) \rangle = \lim_{\alpha} \langle E, f \cdot (a a_{\alpha}) \rangle$$

Fix $a \in A_{\varphi}$ and $f \in A^*$. We have $\Lambda_a \Lambda(E) = \Lambda \Lambda_a(E)$, hence $\langle a \cdot (\Lambda E), f \rangle = \langle \Lambda(a \cdot E), f \rangle$, and $\langle a \diamond (\Lambda E), f \rangle = \langle \Lambda(a \cdot E), f \rangle$. Therefore $\langle \Lambda E, f \cdot a \rangle = \langle \Lambda(a \cdot E), f \rangle$.

Since $\Lambda_{a_{\alpha}} \to \Lambda$ in the weak^{*} operator topology, $\Lambda_{a_{\alpha}}(E)(f) \to \Lambda(E)(f)$ for all $f \in A^*$. Thus $\lim_{\alpha} \langle \Lambda_{a_{\alpha}}(E), f \cdot a \rangle = \lim_{\alpha} \langle \Lambda_{a_{\alpha}}(a \cdot E), f \rangle$. It follows that $\lim_{\alpha} \langle a_{\alpha} \cdot E, f \cdot a \rangle = \lim_{\alpha} \langle a_{\alpha} \cdot (a \cdot E), f \rangle$. Hence $\lim_{\alpha} \langle f, a_{\alpha} a E \rangle = \lim_{\alpha} \langle f, a_{\alpha} a E \rangle$, and therefore $\lim_{\alpha} \langle f \cdot (aa_{\alpha}), E \rangle = \lim_{\alpha} \langle f \cdot (a_{\alpha}a), E \rangle$. It follows that (\star) holds. Consequently, $a \odot M = M \odot a$ for all $a \in A_{\varphi}$, and A is φ -inner amenable.

Acknowledgments. The authors would like to thank Professor H. R. Ebrahimi-Vishki for his helpful suggestions on this work. Also the very nice suggestions of the referee are gratefully acknowledged.

REFERENCES

- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
- [2] E. Effros, Property Γ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486.
- P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236.
- [4] E. Kaniuth, A. T.-M. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Phil. Soc. 144 (2008), 85–96.
- [5] —, —, —, On character amenability of Banach algebras, J. Math. Anal. Appl. 344 (2008), 942–955.
- [6] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161– 175.
- [7] —, Uniformly continuous functionals on Banach algebras, Colloq. Math. 51 (1987), 195–205.
- [8] A. T.-M. Lau and A. L. T. Paterson, *Inner amenable locally compact groups*, Trans. Amer. Math. Soc. 325 (1991), 155–169.
- [9] A. T.-M. Lau and C. S. J. Wong, Invariant subspaces for algebras of linear operators and amenable locally compact groups, Proc. Amer. Math. Soc. 102 (1988), 581–586.
- [10] J. M. Ling, Inner amenable semigroups I, J. Math. Soc. Japan 49 (1997), 603–616.
- R. Nasr-Isfahani, Fixed point characterization of left amenable Lau algebras, Int. J. Math. Sci. 61–64 (2004), 3333–3338.
- [12] —, Inner amenability of Lau algebras, Arch. Math. (Brno) 37 (2001), 45–55.
- [13] —, Strongly amenable *-representations of Lau *-algebras, Rev. Roumaine Math. Pures Appl. 49 (2004), 545–556.
- [14] J.-P. Pier, Amenable Banach algebras, Pitman Res. Notes in Math. 172, Longman Sci./Tech., 1988.
- [15] S. Sakai, C^{*}-Algebras and W^{*}-Algebras, Springer, 1971.

A. Jabbari	T. Mehdi Abad, M. Zaman Abadi
Department of Mathematics	Faculty of Mathematics
University of Kerman	Free University of Kerman
P.O. Box 76135-133	P.O. Box 76351-31167
Kerman, Iran	Kerman, Iran
E-mail: jabbari@mail.uk.ac.ir	E-mail: Mahtab-math@yahoo.com

Received 5 January 2010; revised 30 January 2010

(5328)