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PRIME FACTORS OF VALUES OF POLYNOMIALS

BY

J. BROWKIN and A. SCHINZEL (Warszawa)

Abstract. We prove that for every quadratic binomial f(x) = r2®+s € Z[z] there are
pairs (a,b) € N? such that a # b, f(a) and f(b) have the same prime factors and min{a,b}
is arbitrarily large. We prove the same result for every monic quadratic trinomial over Z.

1. Introduction. Let P(n) = {p prime : p|n}. We study the problem
when for a given polynomial f € Z[z] there exist infinitely many pairs
(a,b) € N? such that a # b and P(f(a)) = P(f(b)). For polynomials of
degree one the question is easily answered by

THEOREM 1. For all r,s € Z there exists a strictly increasing sequence
a; of positive integers such that P(ra; + s) is the same for all i.

A related problem of whether P(a +1i) = P(b+1) (i =1,...,k) implies
a = b has been treated (see [1, Problem B29]).

For quadratic polynomials of non-zero discriminant an analogue of the
above theorem is not true (by Pélya’s theorem, the greatest prime factor of
a value of such a polynomial tends to infinity with this value), and we only
have

THEOREM 2. For all r,s € 7, there exist pairs {a,b) € N? such that
a # b, P(ra® +s) = P(rb? + s) and min{a, b} is arbitrarily large.

THEOREM 3. For every monic quadratic polynomial f € Z[x] there exist
pairs {a,b) € N? such that a # b, P(f(a)) = P(f(b)) and min{a,b} is
arbitrarily large.

We have not been able to prove, even for f(z) = x? — 1, the existence of
infinitely many triples (a, b, c) € N® such that a # b # ¢ # a and P(f(a)) =
P(f(b)) = P(f(c).

For polynomials of degree higher than two we know only numerical re-
sults communicated to us by J. Brzeziniski and E. Reyssat. In particular, for
max{a,b} < 4-10% and n = 3, and for max{a,b} < 10* and 4 < n < 50,
there is only one pair (a, b) € N? such that a # b and P(a"™ —1) = P(b" — 1),
namely P(574 — 1) = P(99* — 1).
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2. Proofs

Proof of Theorem 1. We can assume that » > 0. Let d := (r,s). Then
f(z) = dfi(z), where fi(x) =mrz+ s1 and (r1,s1) = 1.

It follows that

P(f(n)) =P(d)UP(fi(n)) forevery n e N.

Take m = r1a; + s1 > 1. Then (m,r;) = 1.

The Euler theorem gives, for every i € N,

mUm VPO =y (a; — a1) + m = ria; + 51 = fi(as).
Hence
P(fi(ai)) = P(fi(ar)) = P(m).
It follows that
P(f(a;)) =P(m)UP(d) (i=1,2,...). =

DEFINITION. Let d € N be a non-square. We say that a unit u +vv/d of
the order Z[Vd] is singular if (v,d) > 1.

Let us remark that if the fundamental unit of the order Z[v/d] is singular,
then every unit of this order is singular.

LEMMA. Letq,s €Z,q#0,e==x1. Ifthereisak € Z, k = ¢ (mod q),
(k,s) = 1, such that d := qs + k* is positive, but not a square, and the
fundamental unit n of the order Z[\/ZZ] 18 non-singular, then there are pairs
{a,b) € N? such that a # b, P(qa® + s) = P(qb? + s) and min{a,b} is
arbitrarily large.

Moreover, if qs is odd, a and b can be chosen odd.

Proof. In order to prove the first assertion of the lemma it suffices to
find infinitely many pairs (a,b) € N? such that

qa’ +s5=(gs + k*)(¢v* +s) and gs+k*|qh® + s.
Equivalently,
d—1
a2—d62:s-T and d|qb* + s.

We have

NA1+Vd) =1—d, N(k—eVd)=k—d=—gs;
then
) a::(lJr\/g)'k—a\/&:k—ngrk—a\/g

q q q
is in Z[+/d] and satisfies N (a) = s- %. Therefore, it suffices to find infinitely
many n € Z such that

a+bVd:=an® satisfies d |gb? + s, or equivalently d|q?b? — k2.
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Let I := dZ[\/d] be the ideal of the ring Z[v/d] generated by d. Then
0" = (u+vVd)" = u" + nu" " wvd (mod T),

hence

anq = (k+ (k — &)Vd)(u" + nu" vV d)

= u" Y (ku + ((k — e)u + nkv)Vd) (mod I).

Therefore,
(2) ga = ku"™ (mod d),
(3) gb=u""1((k — €)u + nkv) (mod d).
From u? — dv? = N(n) we obtain u? = N(n) (mod d), hence
(4) v = N()" H((k — €)u + nkv)? (mod d).
Therefore ¢?b? = k? (mod d) holds provided
(5) n=1 (mod 2), (k—¢e)u+nkv=~k (modd).

There are infinitely many n satisfying this system of congruences, since
(kv,d) =1 and if d = 1 (mod 2) the Chinese Remainder Theorem applies,
while if d =0 (mod 2) then £ =1 (mod 2) and the congruences in question
are compatible.

In order to prove the second assertion of the lemma we notice that if
k=1 (mod 2), then d = 0 (mod 2), hence uv =1 (mod 2) and, by (2)—(5),
ab =1 (mod 2).

If k = 0 (mod 2), then d = 1 (mod 2), hence, by (1), @ = 1++/d (mod 2).
Also 0" = u, + vaVd, where u, + v, =1 (mod 2), hence

a+bvVd=(1+Vd)(up +v,Vd) =1+ Vd (mod 2)
and ab=1 (mod 2). =
Proof of Theorem 2. We may assume rs # 0. Put
w? —1

w=900rs+1, p= 1

and take in the Lemma
q=900r(w+2)%, k=pgs+ 1.
Hence

w2
d=qs+k =p*s* + (2p+ 1)gs +1 = 42<<

P
We have 8(2p?qs+2p+1) = 15w? (mod w?), and since w is odd and |w| > 1,
2p%qs +2p + 1 c 2p%qs +2p + 1

w? w

2p%qs + 2p + 1)2 - 1>

w

Z, ‘ >1, d>0,d#0.
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In the order Z[v/d] there is a non-singular unit

w2gs +2p+1\2 d 2p2qs + 2p + 1
77:<pqu +E'4pz+\/g.4p'pqw2p el

2p%qs +2p + 1 d
(= FTLEZLI o [ 5
w w

is a unit of Z[\/d/w?| and, since (w,15) =1,

<2p2qs+2p+ 1 >
PETPT ) =1.

where

w2
Hence, by the lemma, there exist pairs (a,b) € N2 such that a # b,
P(qa® + s) = P(gb* + s) and min{a, b} is arbitrarily large.
Since qa? = r(30(w + 2)a)?, ¢b* = r(30(w + 2)b)? and w # —2, the
theorem follows. m

Proof of Theorem 3. Applying, if necessary, an integral translation of z
we may assume that f(z) = 22+ s or 22 + x +t. In the first case we apply
Theorem 2.

In the second case we apply the second assertion of the Lemma with
g=1, s=4t—-1land k=2ift=0,k=t—1if ¢t #0,¢t =0 (mod 3), and
k=3t —1ift#0 (mod 3). In the order Z[v/d] there is a non-singular unit
243, t+1++/d and 9t — 1 + 3V/d, respectively.

We infer the existence of a, b odd such that a # b, P(a?+s) = P(b* + s)
and min{a, b} is arbitrarily large. Taking a = 2a; + 1, b = 2b; + 1 we
conclude that P(4f(a1)) = P(4f(b1)). Since f(a1) =t = f(b1) (mod 2), the
last equality implies P(f(a1)) = P(f(b1)). =
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