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SOME QUARTIC NUMBER FIELDS CONTAINING
AN IMAGINARY QUADRATIC SUBFIELD

BY

STÉPHANE R. LOUBOUTIN (Marseille)

Abstract. Let ε be a quartic algebraic unit. We give necessary and sufficient con-
ditions for (i) the quartic number field K = Q(ε) to contain an imaginary quadratic
subfield, and (ii) for the ring of algebraic integers of K to be equal to Z[ε]. We also
prove that the class number of such K’s goes to infinity effectively with the discriminant
of K.

1. Introduction. People have studied parametrized families of num-
ber fields K = Q(ε) defined by Q-irreducible monic polynomials Πε(X) =
Xn+an−1X

n−1 + · · ·+a1X±1 ∈ Z[X], for which algebraic units are known
beforehand. From these units, they try to build a system of r independent
algebraic units in K, where r is the rank of the unit group of the ring of alge-
braic integers of K. Then they try to find necessary and sufficient conditions
for the rings of algebraic integers of these K’s to be also known beforehand.
In that way, they end up with families of number fields with known rings
of algebraic integers and known regulators for which some information on
their class numbers can be deduced.

The simplest situation is for r = 1, when K is either a real quadratic
number field, or a non-totally real cubic number field, or a totally imaginary
quartic number field. In [Lou06] we solved these questions for non-totally
real cubic number fields, building on [Nag]. Here, we solve these questions
for quartic number fields containing an imaginary quadratic subfield.

Throughout this paper, ε is a totally imaginary quartic algebraic unit.
Let Πε(X) = X4 − aX3 + bX2 − cX + 1 ∈ Z[X] be its Q-irreducible monic
minimal polynomial, of positive discriminant dε > 0. Let K = Q(ε) be
the totally imaginary quartic number field generated by ε. Let dK be the
absolute value of its discriminant. By changing ε into −ε, 1/ε or −1/ε, we
may assume that |c| ≤ a. By choosing another complex root of Πε(X), we
may also assume that |ε| ≥ 1. We will prove the following result (used in
[PL, proof of Th. 3]), which in our situation is more explicit than [PL, Th. 4]:
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Theorem 1. Let ε, with |ε| ≥ 1, be a totally imaginary quartic unit
whose minimal polynomial is of the form Πε(X) = X4−aX3 +bX2−cX+1
∈ Z[X], with |c| ≤ a. Then (i) the totally imaginary quartic number field
K = Q(ε) contains an imaginary quadratic subfield and at the same time
(ii) Z[ε] is the ring of algebraic integers of K if and only if we are in one of
the following mutually exclusive seven cases:

1. Πε(X) = X4−aX3 + bX2−aX+ 1 with b ≥ 3 and 1 ≤ a ≤
√

4b− 11,
(i) b ≡ 0 (mod 2) implies b ≡ 2a (mod 4), (ii) b ≡ 1 (mod 2) implies
b 6≡ a + 1 (mod 4), and (iii) the odd parts of b + 2 − 2a, b + 2 + 2a
and Dε = 4b − 8 − a2 > 0 are square-free. In that case, dK = dε =
((b+ 2)2− 4a2)D2

ε , L = Q(
√
−Dε) is the only quadratic subfield of K,

dL = Dε, K is not normal, and |ε|2 ≤
√
dε/9 + 6.

2. Πε(X) = X4−aX3 +bX2 +aX+1 with b ≥ −1 and 1 ≤ a ≤
√

4b+ 5,
(i) b 6≡ 0 (mod 4), (ii) b ≡ 1 (mod 2) implies b 6≡ a + 1 (mod 4),
(iii) (b − 2)2 + 4a2 ≡ 0 (mod p2) with p ≥ 3 implies b ≡ 2 (mod p),
a ≡ 0 (mod p) but (b − 2)2 + 4a2 6≡ 0 (mod p3), and (iv) the odd
part of Dε = 4b + 8 − a2 > 0 is square-free. In that case, dK = dε =
((b− 2)2 + 4a2)D2

ε , L = Q(
√
−Dε) is the only quadratic subfield of K,

dL = Dε, K is not normal, and |ε|2 ≤
√
dε/9 + 6.

3. Πε(X) = X4−2aX3 +a2X2 +1 with a ≥ 1, and the odd part of a4 +16
is square-free. In that case, dK = dε = 16(a4 + 16), L = Q(

√
−1)

is the only quadratic subfield of K, dL = 4, K is not normal, and
|ε|2 ≤

√
dε/16.

4. Πε(X) = X4 − 2aX3 + (a2 − 1)X2 + aX + 1 with a ≥ 1, a4 + 4a2 +
16 = 2m3nN where gcd(6, N) = 1 and N is square-free. In that case,
dK = dε = 9(a4 +4a2 +16), L = Q(

√
−3) is the only quadratic subfield

of K, dL = 3, K is not normal, and |ε|2 ≤
√
dε/9− 1.

5. Πε(X) = X4 − 2aX3 + (a2 + 1)X2 − aX + 1 with a ≥ 3, a4 − 4a2 +
16 = 2m3nN where gcd(6, N) = 1 and N is square-free. In that case,
dK = dε = 9(a4−4a2 +16), L = Q(

√
−3) is the only quadratic subfield

of K, dL = 3, K is not normal, and |ε|2 ≤
√
dε/9 + 1.

6. Πε(X) = X4 +bX2 +1 with b ≥ 3, (i) b ≡ 0 (mod 4) or b ≡ 3 (mod 4),
and (ii) the odd parts of b− 2 and b+ 2 are square-free. In that case,
K = Q(

√
−(b− 2),

√
−(b+ 2)) is abelian, dK = dε = 16(b2 − 4)2 and

|ε|2 = (b+
√
b2 − 4)/2 ≤ 4

√
dε/16 + 1.

7. Πε(X) = X4 + 1, in which case dK = dε = 256 and K = Q(ζ8);
Πε(X) = X4−X2 +1 or Πε(X) = X4−4X3 +5X2−2X+1, in which
cases dK = dε = 144 and K = Q(ζ12); Πε(X) = X4 − 3X3 + 2X2 + 1
or Πε(X) = X4 − 5X3 + 8X2 − 4X + 1, in which cases Z[ε] = Z[η]
with Πη(X) = X4− 2X3 + 2X2−X + 1, dK = dε = 117 and K is not
normal.
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2. Containing an imaginary quadratic subfield. Our first step is to
characterize in Theorem 2 when K contains an imaginary quadratic subfield.
It will follow that we must be in one of the seven cases of Theorem 1. It
will then remain to obtain in Section 3 necessary and sufficient conditions
for the ring of algebraic integers of Q(ε) to be equal to Z[ε].

Theorem 2. Let ε be a quartic algebraic unit with |ε| ≥ 1. The quartic
number field K = Q(ε) contains an imaginary quadratic subfield if and only
if we are in one of the following (not mutually exclusive) five cases:

1. Πε(X) = X4 − aX3 + bX2 − aX + 1 with b ≥ 3 and |a| ≤
√

4b− 11.
In that case, dε = D2

εfε, where Dε = 4b − 8 − a2 > 0 and fε =
(b+ 2)2 − 4a2 > 0,

(1) (2ε3 − 2aε2 + (2b− 2)ε− a)2 = −Dε,

L = Q(
√
−Dε) ⊆ K, and

(2) |ε|2 =
(
b− 2 +

√
fε +

√
2b2 − 4a2 − 8 + 2(b− 2)

√
fε

)
/4 ≤

√
dε/9 + 6.

2. Πε(X) = X4 − aX3 + bX2 + aX + 1 with b ≥ −1 and |a| ≤
√

4b+ 5.
In that case, dε = D2

εfε, where Dε = 4b + 8 − a2 > 0 and fε =
(b− 2)2 + 4a2 > 0,

(3) (2ε3 − 2aε2 + (2b+ 2)ε+ a)2 = −Dε,

L = Q(
√
−Dε) ⊆ K, and

(4) |ε|2 =
(
b+ 2 +

√
fε +

√
2b2 + 4a2 − 8 + 2(b+ 2)

√
fε

)
/4 ≤

√
dε/9 + 6.

3. Πε(X) = X4 − aX3 + bX2 − cX + 1 with a = 2A and c = 2C even,
and b = (a2 + c2)/4 = A2 + C2. In that case, dε = D2

εfε where Dε =
4(AC − 1) and fε = (A2 + C2)2 − 16(AC − 1) > 0,

(5)
(
Cε3 − (2AC − 1)ε2 + ((A2 + C2)C −A)ε− C2

)
/(AC − 1)

is a complex primitive fourth root of unity, L = Q(
√
−1) ⊆ K,

(6) |ε|2 =
(
b+

√
fε +

√
2b2 − 4ac+ 2b

√
fε)
)
/4,

and ζ given in (5) is in Z[ε] if and only if Πε(X) = X4−4X3 +5X2−
2X + 1 or Πε(X) = X4 − aX3 + (a2/4)X2 + 1, a ≥ 2 even.

4. Πε(X) = X4 − aX3 + (B − 1)X2 − cX + 1 with B = (a2 + ac+ c2)/3
and c ≡ a (mod 3). In that case, dε = D2

εfε, where Dε = 3(AC − 1)
and fε = (B + 4)2 − 4(A + C)2 > 0, where A = (2a + c)/3 and
C = (a+ 2c)/3,

(7)
(
Cε3 − (aC − 1)ε2 + (BC −A)ε− C2

)
/(AC − 1)

is a complex primitive third root of unity, L = Q(
√
−3) ⊆ K,
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(8) |ε|2 =
(
B +

√
fε +

√
2B2 − 4B − 4ac+ 2B

√
fε

)
/4,

and ζ given in (7) is in Z[ε] if and only if Πε(X) = X4−3X3+2X2+1
or Πε(X) = X4 − aX3 + (a2/4− 1)X2 + (a/2)X + 1, a ≥ 0 even.

5. Πε(X) = X4 − aX3 + (B + 1)X2 + cX + 1 with B = (a2 + ac+ c2)/3
and c ≡ a (mod 3). In that case, dε = D2

εfε, where Dε = 3(AC + 1)
and fε = (B − 4)2 + 4(A + C)2 > 0, where A = (2a + c)/3 and
C = (a+ 2c)/3,

(9)
(
−Cε3 + (aC + 1)ε2 − (BC +A)ε− C2

)
/(AC + 1)

is a complex primitive third root of unity, L = Q(
√
−3) ⊆ K and

(10) |ε|2 =
(
B +

√
fε +

√
2B2 + 4B + 4ac+ 2B

√
fε

)
/4,

and ζ given in (9) is in Z[ε] if and only if Πε(X) = X4−5X3 +8X2−
4X + 1 or Πε(X) = X4 − aX3 + (a2/4 + 1)X2 − (a/2)X + 1, a ≥ 2
even.

Proof. LetL be an imaginary quadratic subfield of K. Then ε is quadratic
over L, and ε2 − αε+ β = 0 for some algebraic integers α = (a+

√
−D)/2

and β of L, for some D ≥ 0 such that L = Q(
√
−D) if D > 0. Hence,

Πε(X) = X4 − (α+ ᾱ)X3 + (|α|2 + β + β̄)X2 − (αβ̄ + ᾱβ)X + |β|2.
Therefore, |β|2 = 1, β is a complex root of unity in L and

Πε(X) = X4 − aX3 + ((a2 +D)/4 + 2<(β))X2 − 2<(αβ̄)X + 1.

There are eight cases to look at (with ζn = exp(2πi/n)):

β Πε(X)

±1 X4 − aX3 + ((a2 +D)/4± 2)X2 ∓ aX + 1

±ζ4 X4 − aX3 + a2+D
4

X2 ∓
√
DX + 1

±ζ3 X4 − aX3 + ((a2 +D)/4∓ 1)X2 ± a−
√

3D
2

X + 1

±ζ2
3 X4 − aX3 + ((a2 +D)/4∓ 1)X2 ± a+

√
3D

2
X + 1

The desired results follow. For example, if we are in the case β = ζ3 of this
table, then c = −(a−

√
3D)/2, hence D = (a+2c)2/3 and b = (a2+D)/4−1

= (a2 + ac+ c2)/3− 1. Moreover,

α = (a+
√
−D)/2 = (3a+

√
−3
√

3D)/6 = (3a+ (2ζ3 + 1)(a+ 2c))/6
= ((2a+ c) + (a+ 2c)ζ3)/3,

β = ζ3, and ε2−αε+ β = 0 yield ζ3 = (3ε2− (2a+ c)ε)/((a+ 2c)ε− 3) and
the formula given in (7).

Let us now explain how we obtained the formulae for |ε|2. Assume that
ε is a complex root of unity. Either (i) Πε(X) = X4 + 1, we are in cases 2
(with a = b = 0) and 3 (with a = c = 0) and (4) and (6) are valid, or (ii)
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Πε(X) = X4 − X2 + 1, we are in cases 2 (with a = 0 and b = −1) and 4
(with a = c = 0) and (4) and (8) are valid. Assume that ε is not a complex
root of unity. Then |ε| > 1 ([Was, Lemma 1.6]). Let x1 = ε, x2 = ε̄, x3 = ε′

and x4 = ε̄′ be roots of Πε(X) = X4− σ1X
3 + σ2X

2− σ3X + σ4. The xixj ,
1 ≤ i < j ≤ 4, are roots of

X6 − σ2X
5 + (σ1σ3 − σ4)X4 − (σ2

1σ4 − 2σ2σ4 + σ2
3)X3

+ (σ1σ3σ4 − σ2
4)X2 − σ2σ

2
4X + σ3

4.

Hence, |ε|2 > 1 and 1/|ε|2 < 1 are real roots of

X6 − bX5 + (ac− 1)X4 − (a2 − 2b+ c2)X3 + (ac− 1)X2 − bX + 1.

The absolute values of the other complex roots εε′, εε̄′, ε̄ε′ = 1/εε̄′ and ε̄ε̄′ =
1/εε′ are equal to 1. Therefore, ρ = |ε|2 + 1/|ε|2 > 2, 2<(εε′) ∈ [−2, 2] and
2<(εε̄′) ∈ [−2, 2] are roots of Rε(X) = X3−bX2 +(ac−4)X−(a2−4b+c2),
with

Πε(X) Rε(X)

Case 1 (X − 2)(X2 −BX + a2 − 2b) where B = b− 2

Case 2 (X + 2)(X2 −BX − a2 + 2b) where B = b+ 2

Case 3 X(X2 −BX + ac− 4) where B = (a2 + c2)/4

Case 4 (X + 1)(X2 −BX +B + ac− 4) where B = (a2 + ac+ c2)/3

Case 5 (X − 1)(X2 −BX −B − ac− 4) where B = (a2 + ac+ c2)/3

In these five cases, 2 < |ε|2+1/|ε|2 = ρ = (B+
√
fε)/2 is a root of a quadratic

polynomial X2 − BX + C ∈ Z[X] of positive discriminant fε = B2 − 4C,
and |ε|2 > 1 yields

|ε|2 = (ρ+
√
ρ2 − 4)/2 =

(
B +

√
fε +

√
2B2 − 4C − 16 + 2B

√
fε

)
/4.

Finally, let us determine when ζ given in (5), (7) and (9) is in Z[ε].
Assume that ζ given in (5) is in Z[ε]. Then |C| ≤ A and AC− 1 6= 0 (for

otherwise A = C = 1 and Πε(X) = X4−2X3+2X2−2X+1 is Q-reducible)
and AC−1 divides 2AC−1, hence divides 1. Therefore, either AC = 2, which
on using |C| ≤ A yields A = 2, C = 1, Πε(X) = X4 − 4X3 + 5X2 − 2X + 1
and ζ = ε3 − 3ε2 + 3ε− 1 ∈ Z[ε], or AC = 0, which on using |C| ≤ A yields
C = 0, Πε(X) = X4 − aX3 + (a2/4)X2 + 1 and ζ = −ε2 + (a/2)ε ∈ Z[ε].

Assume that ζ given in (7) is in Z[ε]. Then |C| ≤ A and AC − 1 6= 0
(for otherwise A = C = 1, hence a = c = 1 and Πε(X) = X4 −X3 −X + 1
is Q-reducible) and AC − 1 divides C. Therefore, either C = 0, Πε(X) =
X4 − aX3 + (a2/4 − 1)X2 + (a/2)X + 1 and ζ = −ε2 + (a/2)ε ∈ Z[ε], or
C 6= 0, which on using 1 ≤ |C| ≤ A yields A = 2 and C = 1, i.e. a = 3 and
c = 0, Πε(X) = X4 − 3X3 + 2X2 + 1 and ζ = ε3 − 2ε2 + ε− 1 ∈ Z[ε].

Finally, the proof for ζ given by (9) is similar to the previous one.
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3. Proof of Theorem 1. By Theorem 2, we must be in one of the seven
cases of Theorem 1 (for example, we are in cases 1 and 2 of Theorem 2 if and
only if a = 0, which is dealt with in case 6 of Theorem 1). Moreover, either
(i) K is not normal and contains only one imaginary quadratic subfield, or
(ii) K is abelian and contains two distinct imaginary quadratic subfields. By
using Theorem 2, we check that this latter possibility never occurs in cases
1–5 of Theorem 1.

3.1. Dedekind’s criterion. Let ε be a complex root of a Q-irreducible
monic quartic polynomial Πε(X) = X4 − aX3 + bX2 − cX + 1 ∈ Z[X]
of discriminant dε. Let AK and dK be the ring of algebraic integers and
the discriminant of the quartic number field K = Q(ε). Then dε = (AK :
Z[ε])2dK . If p ≥ 2 is a prime, Z[ε] is called p-maximal if p does not divide
the index (AK : Z[ε]). Therefore, AK is equal to Z[ε] if and only if Z[ε] is
p-maximal for any prime p ≥ 2 such that p2 divides dε.

Lemma 3 (Dedekind’s criterion, see [Coh, Theorem 6.1.4], [ABZ, Lemma
3.1]). Let p ≥ 2, where p2 divides dε. Then Z[ε] is p-maximal if and only if

(i) Πε(α) 6≡ 0 (mod p2) for any α ∈ Z such that Πε(α) ≡ Π ′ε(α) ≡ 0
(mod p), which for p = 2 is equivalent to: b ≡ a + c ≡ 0 (mod 2)
implies b ≡ a+ c (mod 4),

(ii) if Π̄ε(X) = Q̄(X)2 in Fp[X], where Q(X) = X2 − AX + B ∈ Z[X]
is irreducible in Fp[X], then Q̄(X) does not divide f̄(X) in Fp[X],
where f(X) = (Πε(X) − Q(X)2)/p ∈ Z[X], which for p = 2 is
equivalent to: a ≡ b− 1 ≡ c ≡ 0 (mod 2) implies a 6≡ b− 1 (mod 4)
or c 6≡ b− 1 (mod 4).

Proof. We have Πε(α) ≡ Π ′ε(α) ≡ 0 (mod 2) if and only if α ≡ 1 (mod 2)
and b ≡ a + c ≡ 0 (mod 2). In that case, Πε(α) ≡ Πε(1) ≡ 2 − (a + c) + b
(mod 4), which proves the result for p = 2 in (i). Since X2+X+1 is the only
irreducible quadratic polynomial in F2[X], since Πε(X) ≡ (X2 + X + 1)2

(mod 2) if and only if a ≡ b − 1 ≡ c ≡ 0 (mod 2), and since X2 + X + 1
divides

f(X) = (Πε(X)− (X2 +X + 1)2)/2 = X

(
−a+ 2

2
X2 +

b− 3
2

X − c+ 2
2

)
in F2[X] if and only if (a+ 2)/2 ≡ (b− 3)/2 ≡ (c+ 2)/2 (mod 2), we obtain
the result for p = 2 in (ii).

Lemma 4. Set Πε(X) = X4 − aX3 + bX2 − cX + 1 ∈ Z[X]. Let p ≥ 3
be a prime. There exists Q(X) = X2−AX +B ∈ Z[X] irreducible in Fp[X]
with Π̄ε(X) = Q̄(X)2 in Fp[X] such that Q̄(X) divides f̄(X) in Fp[X], where
f(X) = (Πε(X)−Q(X)2)/p ∈ Z[X], if and only if for s = −1 or for s = +1
we have (i) c + sa ≡ 4b + 8s − a2 ≡ 0 (mod p2) and (ii) a2 + 16s is not a
square mod p.
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If (a) Πε(X) = X4−aX3 + bX2−aX+1 and the odd part of 4b−8−a2

is square-free, or if (b) Πε(X) = X4 − aX3 + bX2 + aX + 1, the odd part
of 4b+ 8− a2 is square-free and p4 does not divide (b− 2)2 + 4a2, then this
does not happen.

Proof. Π̄ε(X) = Q̄(X)2 in Fp[X] if and only if for s = −1 or for s = +1
we have B ≡ −s (mod p), 2A ≡ a (mod p) and b+ 2s− A2 ≡ c+ 2sA ≡ 0
(mod p). It follows that 4b + 8s − a2 ≡ c + sa ≡ 0 (mod p), and Q(X) =
X2− p+1

2 aX−s is irreducible in Fp[X] if and only if a2 +16s is not a square
mod p. Then

f(X) = X

(
aX2 +

4b+ 8s− (p+ 1)2a2

4p
X − c+ (p+ 1)sa

p

)
and Q̄(X) divides f̄(X) in Fp[X] if and only if

4b+ 8s− (p+ 1)2a2

4p
≡ −p+ 1

2
a2 (mod p)

and
c+ (p+ 1)sa

p
≡ sa (mod p),

i.e. if and only if 4b+ 8s− a2 ≡ c+ sa ≡ 0 (mod p2).
For the last assertion, in case (a) we must choose s = +1 in (i) (the odd

part of 4b − 8 − a2 being square-free), and we would have c + a = 2a ≡ 0
(mod p2), hence a ≡ 0 (mod p), and a2 + 16s = a2 + 16 ≡ 16 (mod p) would
be a square mod p, a contradiction. In case (b), we must choose s = −1
in (i) (the odd part of 4b + 8 − a2 being square-free), and we would have
c − a = −2a ≡ 0 (mod p2), hence a ≡ 0 (mod p2), and 4b − 8 − a2 ≡ 0
(mod p2) would imply b ≡ 2 (mod p2) and p4 would divide (b− 2)2 + 4a2, a
contradiction.

3.2. Proof of Theorem 1. It remains to prove the necessary and suf-
ficient conditions for Z[ε] to be the ring of algebraic integers of Q(ε).

1. The first case. By Lemma 3, conditions (i) and (ii) combined are
equivalent to Z[ε] being 2-maximal. Now, assume that the odd part of b +
2 − 2a (respectively, of b + 2 + 2a) is not square-free. There exists a prime
p ≥ 3 whose square divides it and we have Πε(1) = b+ 2− 2a ≡ 0 (mod p2)
and Π ′ε(1) = 2(b+2−2a) ≡ 0 (mod p) (respectively, Πε(−1) = b+2+2a ≡ 0
(mod p2) and Π ′ε(−1) = −2(b + 2 + 2a) ≡ 0 (mod p)). Hence, Z[ε] is not
p-maximal, by Lemma 3, and AK 6= Z[ε]. If the odd part of Dε is not
square-free, then AK 6= Z[ε], by (1).

Conversely, assume that the odd parts of b + 2 − 2a, b + 2 + 2a and
Dε = 4b− 8− a2 are square-free, and let us prove that Z[ε] is p-maximal for
any prime p ≥ 3 whose square divides dε = (b+ 2− 2a)(b+ 2 + 2a)D2

ε . By
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Lemmas 3 and 4, it suffices to prove that Πε(α) 6≡ 0 (mod p2) for any α ∈ Z
which is a double root ofΠε(X) modulo p (i.e., such thatΠε(α) ≡ Π ′ε(α) ≡ 0
(mod p)).

First, if p divides b+ 2− 2a or b+ 2 + 2a, then Πε(X) ≡ (X − 1)2(X2−
(a− 2)X + 1) (mod p) or Πε(X) ≡ (X + 1)2(X2 − (a+ 2)X + 1) (mod p).
Hence, α ≡ ±1 (mod p) and Πε(α) ≡ Πε(±1) = b+ 2∓ 2a 6≡ 0 (mod p2).

Second, if p divides Dε = 4b − 8 − a2, then Πε(X) ≡ (X2 − a
2X + 1)2

(mod p). Hence, α2 − a
2α+ 1 ≡ 0 (mod p), α 6≡ 0 (mod p), a2α− 1 ≡ α2 6≡ 0

(mod p), and

Πε(X) =
(
X2 − a

2
X + 1

)2

+
Dε

4

(
X2 − a

2
X + 1

)
+
Dε

4

(
a

2
X − 1

)
yields Πε(α) ≡ Dε

4

(
a
2α− 1

)
6≡ 0 (mod p2).

2. The second case. By Lemma 3, conditions (i) and (ii) together are
equivalent to Z[ε] being 2-maximal. Now, assume that (iii) is not satisfied,
i.e. that (b − 2)2 + 4a2 ≡ 0 (mod p2) for some prime p ≥ 3 and that ei-
ther b 6≡ 2 (mod p), a 6≡ 0 (mod p) or (b − 2)2 + 4a2 ≡ 0 (mod p3). If
p ≡ 3 (mod 4), then b ≡ 2 (mod p2), a ≡ 0 (mod p2), Πε(X) ≡ Q(X)2

(mod p2), where Q(X) = X2 + 1 is irreducible in Fp[X]. Hence, Z[ε] is not
p-maximal, by Lemma 3(ii), and AK 6= Z[ε]. If p ≡ 1 (mod 4), then there
exists ζ ∈ Z such that ζ2 ≡ −1 (mod p3). If b 6≡ 2 (mod p) or a 6≡ 2
(mod p), then p cannot divide both b − 2 − 2aζ and b − 2 + 2aζ. Since
(b − 2 − 2aζ)(b − 2 + 2aζ) ≡ (b − 2)2 + 4a2 ≡ 0 (mod p2), we may as-
sume that b − 2 − 2aζ ≡ 0 (mod p2). If neither b 6≡ 2 (mod p) nor a 6≡ 2
(mod p), then (b − 2 − 2aζ)(b − 2 + 2aζ) ≡ (b − 2)2 + 4a2 ≡ 0 (mod p3)
and we may assume that b − 2 − 2aζ ≡ 0 (mod p2). In both cases, we ob-
tain Πε(ζ) = −(b − 2 − 2aζ) ≡ 0 (mod p2), Π ′ε(ζ) = 2ζ(b − 2 − 2aζ) ≡ 0
(mod p), and Z[ε] is not p-maximal, by Lemma 3, and AK 6= Z[ε]. If (iv) is
not satisfied, i.e. if the odd part of Dε is not square-free, then AK 6= Z[ε],
by (1).

Conversely, assume that (iii) and (iv) are satisfied, and let us prove
that Z[ε] is p-maximal for any prime p ≥ 3 whose square divides dε =
((b− 2)2 + 4a2)D2

ε . By Lemmas 3 and 4, it suffices to prove that Πε(α) 6≡ 0
(mod p2) for any α ∈ Z which is a double root of Πε(X) mod p.

First, assume that p divides Dε = 4b+ 8− a2, whose odd part is square-
free, by assumption. Then Πε(X) ≡ (X2 − a

2X − 1)2 (mod p). Hence, α2 −
a
2α− 1 ≡ 0 (mod p), α 6≡ 0 (mod p), a

2α+ 1 ≡ α2 6≡ 0 (mod p), and

Πε(X) =
(
X2 − a

2
X − 1

)2

+
Dε

4

(
X2 − a

2
X − 1

)
+
Dε

4

(
a

2
X + 1

)
yields Πε(α) ≡ Dε

4 (a2α+ 1) 6≡ 0 (mod p2).
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Second, assume that p does not divide Dε = 4b+ 8−a2. Then p2 divides
(b− 2)2 + 4a2, hence b ≡ 2 (mod p) and a ≡ 0 (mod p), by assumption, and
Πε(X) ≡ (X2 + 1)2 (mod p). If p ≡ 3 (mod 4), then Πε(X) has no double
root modulo p. If p ≡ 1 (mod 4) and ζ ∈ Z is such that ζ2 ≡ −1 (mod p3),
then α ≡ ±ζ (mod p) and Πε(α) ≡ Πε(±ζ) = −(b− 2∓ 2aζ) 6≡ 0 (mod p2)
for otherwise we would have (b− 2)2 + 4a2 ≡ 0 (mod p3).

3. The third case. If the odd part of dε = 16(a4 + 16) is not square-
free, then there exists a prime p ≥ 3 whose square divides dε and we have
Πε(a/2) = dε/256 ≡ 0 (mod p2) and 0 = Π ′ε(a/2) ≡ 0 (mod p). Hence, Z[ε]
is not p-maximal, by Lemma 3, and AK 6= Z[ε]. Conversely, if the odd part
of dε is square-free, then p = 2 is the only prime whose square divides dε
and Z[ε] is 2-maximal, by Lemma 3. Hence, AK = Z[ε].

4. The fourth case. If the square of a prime p > 3 divides dε =
9(a4±4a2+16), we have Πε(a/2) = dε/144 ≡ 0 (mod p2) and 0 = Π ′ε(a/2) ≡
0 (mod p). Hence, Z[ε] is not p-maximal, by Lemma 3, and AK 6= Z[ε].
Conversely, if dε = 2m3nd′ε with gcd(6, d′ε) = 1 and d′ε square-free, then
p = 2 and p = 3 are the only primes whose squares can divide dε. Since Z[ε]
is 2-maximal, by Lemma 3, and 3-maximal, we have AK = Z[ε]. Indeed:

Lemma 5. If Πε(X) = X4 − 2aX3 + (a2 − s)X2 + saX + 1 ∈ Z[X],
s ∈ {±1}, then Z[ε] is 3-maximal.

Proof. By Lemma 4, we cannot be in the situation of Lemma 3(ii) (for
4b−8−a2 = 4(a2−s)−8−a2 6≡ 0 (mod 32) and 4b+8−a2 = 4(a2−s)+8−a2 6≡
0 (mod 32)). Now, since Πε(X) ≡ (X2 − aX + s)2 (mod 3), it follows that
if α ∈ Z is a double root of Πε(X) modulo 3, then α 6≡ 0 (mod 3), α 6≡ a
(mod 3) and Πε(α) ≡ Πε(α)−(α2−aα+s)2 ≡ −3sα(α−a) 6≡ 0 (mod 32).

5. The fifth case. The proof is similar to the previous one.

6 & 7. The sixth and seventh cases. The proof is easy.

4. Conclusion. Let K = Q(ε) be a quartic number field containing
an imaginary quadratic subfield L, where ε with |ε| ≥ 1 is a totally imagi-
nary quartic unit. As in Theorem 1, assume that K contains an imaginary
quadratic subfield L and that Z[ε] is the ring of algebraic integers of K. By
[Lou05, Corollary 11], if K is not normal, we have an explicit lower bound

hKRegK �
√
dK/dL/log2(dK/dL)� d

3/8
K /log2 dK ,

in cases 1 and 2 of Theorem 1 (for dK � d4
L and dK/dL � d

3/4
K in these two

cases), and we have the better lower bound

hKRegK �
√
dK/log dK
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if dL = 3 or 4, i.e. in cases 3, 4 and 5 of Theorem 1. From our explicit upper
bounds on |ε|2 (Theorem 1), we obtain RegK ≤ 2 log |ε| � log dK . Hence,
hK goes effectively to infinity as dK goes to infinity. As in [Lou06], we could
determine all these K’s of class number one by using the method explained
in [Lou95] (by noticing that ε is a fundamental unit of the order Z[ε], except
in six cases, by [Lou08, Theorem 10], and by using [BP] for the special case
that K is abelian, i.e. in case 6 of Theorem 1). However, while we were
completing this paper, we learnt about [PL] in which the determination of
all the totally imaginary quartic number fields K = Q(ε) with class number
one is completed, provided that (i) ε is a totally imaginary quartic algebraic
unit and (ii) the ring of algebraic integers of K is equal to Z[ε]. In fact, they
proved that in this situation, hK goes effectively to infinity as dK goes to
infinity (see [PL, Theorem 3]).
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