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ELASTICITY OF A+XB[X] WHEN A ⊂ B IS A MINIMAL
EXTENSION OF INTEGRAL DOMAINS

BY
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Abstract. We investigate the elasticity of atomic domains of the form < = A +
XB[X], where X is an indeterminate, A is a local domain that is not a field, and A ⊂ B
is a minimal extension of integral domains. We provide the exact value of the elasticity
of < in all cases depending the position of the maximal ideals of B. Then we investigate
when such domains are half-factorial domains.

Introduction. We begin by recalling some basic definitions. An integral
domain R satisfies the ascending chain condition on principal ideals (ACCP)
if any ascending chain of principal ideals of R terminates. Classical classes
of domains satisfying ACCP are Dedekind, Krull and Noetherian domains.
These domains are atomic. Following P. M. Cohn [10], we say that an integral
domain R is atomic if each nonzero nonunit of R is a product of irreducible
elements of R. It is well-known that if R satisfies ACCP, then R is atomic,
but the converse is false. The first counter-example is due to A. Grams [17,
Example 2.1]. If R is a unique factorization domain (UFD), then any two
factorizations of a nonzero nonunit of R into the product of irreducible ele-
ments have the same length. However, this need not be true for an arbitrary
atomic domain. Following A. Zaks [21], we say that an atomic domain is
a half-factorial domain (HFD) if whenever x1 · · ·xm = y1 · · · yn with each
xi, yj ∈ A irreducible, then m = n. Examples of HFDs are UFDs, and more
generally any Krull domain R with class group such that |Cl(R)| ≤ 2 [22,
Theorem 1.4]. Recently, there has been much activity on HFD’s, other fac-
torization properties weaker than unique factorization [4], [5], [6], [9], [12]
and on invariants that measure different lengths of factorizations. In order
to measure how far an atomic domain R is from being an HFD, we define
the elasticity of R to be

ρ(R) = sup{m/n : x1 · · ·xm = y1 · · · yn for xi, yj ∈ R irreducible}
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if R is not a field, and ρ(R) = 1 if R is a field. Thus 1 ≤ ρ(R) ≤ ∞, and
ρ(R) = 1 if and only if R is an HFD. The elasticity of an integral domain
was first introduced by R. J. Valenza [20] for Dedekind domains with finite
divisor class group. Subsequently ρ(R) has received considerable attention
[1], [2], [3].

Throughout this paper, A is a local integral domain with maximal ideal
m that is not a field and A ⊂ B is a minimal extension of integral domains,
i.e. B is an integral domain containing A such that there is no proper inter-
mediate ring between A and B. Two cases may happen [11], [18]: Either A is
integrally closed inB, or A ⊂ B is an integral extension. Let < = A+XB[X].
In [19], the authors have studied the transfer of some properties from A and
B to < because, in fact, this type of construction is useful in order to get
examples of domains which satisfy or do not satisfy assigned factorization
properties. Our main purpose here is to determine the elasticity of <, so the
present work is a continuation of the investigation developed in [15] and [16].

We first prove that if A is atomic and integrally closed in B, then A
is a rank one discrete valuation domain with quotient field B. In this case
we show that < is never an atomic domain. So, we will focus on the case
where A ⊂ B is a (minimal) integral extension. Under such conditions, we
can provide the exact value of ρ(<). We find that ρ(<) = ∞ when B has
two maximal ideals M and N and satisfies ACCP; ρ(<) = ρ(B[X]) if B is
local with maximal ideal M = m; and finally 3/2 ≤ ρ(<) ≤ 3ρ(B[X]) if B
is local with maximal ideal M 6= m and satisfies ACCP. In particular, if B
is a local UFD with maximal ideal M 6= m, we get ρ(<) = 3/2.

Consequently, we conclude that < is a HFD if and only if A ⊂ B is a
minimal integral extension, B[X] is a HFD and B is local with maximal
ideal m. Finally, to illustrate all different cases of our study, we produce
some explicit examples.

If R is an integral domain, U(R) will denote its group of units. For any
undefined terminology or notation, see [13].

Elasticity of A+XB[X]

Lemma 1. If A is atomic and integrally closed in B, then A is a rank
one discrete valuation domain with quotient field B.

Proof. According to [8, Theorem 1.2], there is a prime ideal P of A
such that PAP = P , B = AP and A/P is a rank one-valuation domain
with quotient field B/P . Let p be an element of P . If p 6= 0, then p is a
nonzero nonunit of A. We claim that p is not irreducible in A. Indeed, pick
an element α ∈ m \ P . Then p = α(p/α), where α is not a unit of A and
p/α is not a unit of A since p/α ∈ PAP = P ⊂ m. Now, as A is atomic,
p can be written as a product p1 · · · pn of irreducible elements of A. One of
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the pi, say p1, necessarily belongs to P . But this implies, as above, that p1

is not irreducible in A, a contradiction. Thus P = (0), and hence A is a
rank one-valuation domain with quotient field B. Finally, it is known that
an atomic nontrivial valuation domain is a discrete valuation domain.

Theorem 2. If A is integrally closed in B, then < is never atomic.

Proof. Suppose, by way of contradiction, that < is atomic. Since A and <
have the same units, A is also atomic. But in light of Lemma 1, we conclude
that A is a discrete valuation domain with quotient field B. Let α ∈ m,
α 6= 0. Then X = (X/α)α is not a product of irreducible elements of <, a
contradiction.

Now, suppose that A ⊂ B is a (minimal) integral extension of rings. From
[19, Proposition 3.2], we know that m = (A : B) = {x ∈ A : xB ⊆ A} is the
conductor of A in B, and there are at most two maximal ideals of B lying
over m [14, Corollary 2.2]. On the other hand, the extension < ⊂ B[X]
is integral, therefore, if B satisfies ACCP, then B[X] satisfies ACCP [17,
p. 321]. This implies that < satisfies ACCP [17, Proposition 2.1], so < is
atomic.

Theorem 3. Assume that A ⊂ B is an integral extension such that B
satisfies ACCP. If there are two maximal ideals M and N of B lying over m,
then the elasticity of < is infinite.

Proof. Let x ∈M and y ∈ N be such that x+ y = 1. Then x ∈M \N ,
y ∈ N \M and

xy ∈MN = M ∩N = M ∩A = N ∩A = m.

If u is a unit of B, then uxn /∈ A for all n ≥ 1. Indeed, if uxn ∈ A for
some n ≥ 1, then uxn ∈ A ∩M = m. It follows that uxn ∈ N , so x ∈ N , a
contradiction. Likewise, we can show that uyn /∈ A for all n ≥ 1.

Consider the polynomials rn = X(X + x)n and sn = X(X + y)n. Then
rn and sn are irreducible [15, Lemma 3.1]. Moreover, we have the following
factorizations in <:

rnsn = X2(X2 +X + xy)n.

We deduce that ρ(<) ≥ (2 + n)/2.

Now, we will treat the case where B is local with maximal ideal M . We
distinguish two cases: M = m and M 6= m. To study the first case, we recall
two useful conditions that are introduced by N. Gonzalez [15, Definitions
1.3 & 2.3] to control the irreducible polynomials of < of order 0 or 1.

We say that A ⊂ B satisfies condition (C∗1 ) if, for each a ∈ A, a = xy
(x, y ∈ B) implies a = x′y′, where x′, y′ ∈ A, x = ux′, y = vy′ and uv = 1
(u, v are units of B).
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We say that A ⊂ B satisfies condition (C∗2 ) if each element of B is
associated in B to an element of A, i.e., for each b ∈ B, there exists a unit
u of B such that ub ∈ A.

It is shown that these two conditions are independent [15, Examples
1.10(1) & 2.8]. However, if A ⊂ B satisfies condition (C∗2 ) and (A : B) is a
maximal ideal of A, then A ⊂ B satisfies condition (C∗1 ) [15, Lemma 2.9].
This fact will play an important role in the following result.

Theorem 4. Assume that A ⊂ B is an integral extension such that B[X]
is atomic. If B is local with maximal ideal m = M , then ρ(<) = ρ(B[X]).

Proof. We will prove that A ⊂ B satisfies condition (C∗2 ). Let b ∈ B \A.
Then b is integral over A, so b is a root of an equation of the form

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0,

where a0, a1, . . . , an−1 ∈ A and n > 1. We may suppose that this integrality
equation has minimal degree for b over A. We have

b(bn−1 + an−1b
n−2 + · · ·+ a1) = −a0 ∈ A.

If a0 ∈ m, then u = bn−1 + an−1b
n−2 + · · ·+ a1 ∈M = m. It follows that

bn−1 + an−1b
n−2 + · · ·+ a2b+ (a1 − u) = 0.

But this contradicts the choice of n. Thus a0 /∈ m. We deduce that u is a
unit of B and ub ∈ A. Therefore, A ⊂ B satisfies (C∗2 ). As m = (A : B) is a
maximal ideal of A, the extension A ⊂ B satisfies condition (C∗1 ) [15, Lemma
2.9]. It follows that < ⊂ B[X] satisfies condition (C∗1 ) [15, Proposition 2.6].
Hence, < is atomic and ρ(<) = ρ(B[X]) [15, Proposition 2.7].

The most interesting case turns out to be when M 6= m. In this special
case, we have M =

√
m. Let x ∈ M \ m. Then xr ∈ m for some integer

r ≥ 2. Set ζ = xr−1. Then ζ ∈ M \m and ζ2 ∈ m. As ζ ∈ B \ A, we have
B = A[ζ] = A+Aζ. We keep this notation for the remainder of this paper.

Theorem 5. Assume that A ⊂ B is an integral extension such that B
satisfies ACCP. If B is local with maximal ideal M 6= m, then 3/2 ≤ ρ(<) ≤
3ρ(B[X]).

Proof. ζX is irreducible in <. Indeed, suppose that ζX = a(bX), where
a ∈ A and b ∈ B. Then ζ = ab. If a ∈ m, then ζ ∈ m, a contradiction, so
a ∈ A \m = U(A). We have the following factorizations in <:

(ζX)(ζX) = ζ2X2

with two irreducible factors on the left and at least three irreducible factors
on the right. Thus ρ(<) ≥ 3/2.

To get an upper bound on ρ(<), we distinguish four types of polynomials
in B[X]:



ELASTICITY OF A + XB[X] 15

• Type α: a0 + a1ζ +Xϕ (X), where ϕ(X) ∈ B[X], a0 ∈ m and a1 ∈ m.
• Type β: a0 + a1ζ + Xϕ (X), where ϕ(X) ∈ B[X], a0 ∈ U(A) and
a1 ∈ m.
• Type γ: a0 + a1ζ + Xϕ (X), where ϕ(X) ∈ B[X], a0 ∈ m and a1 ∈
U(A).
• Type δ: a0 + a1ζ + Xϕ (X), where ϕ(X) ∈ B[X], a0 ∈ U(A) and
a1 ∈ U(A).

Note that the polynomials of types α and β are in < whereas those of
type γ and δ are in B[X]. Furthermore, a polynomial of type δ is associated
(in B[X]) to a polynomial of type β: indeed, if g = a0 + a1ζ +Xϕ(X) is of
type δ, then u = a0 − a1ζ ∈ U(B) and (a0)2 − (a1)2ζ2 ∈ U(A), so

(a0 − a1ζ)g(X) = (a0)2 − (a1)2ζ2 +X(a0 − a1ζ)ϕ (X)

is of type β. Therefore, in any factorization of a polynomial of B[X] into
irreducible polynomials, we may consider only polynomials of type α, β
and γ. The type of their products depends only on the product of their
constant terms in B = A+Aζ:

× α β γ

α α α α

β α β γ

γ α γ α

Let f be an irreducible polynomial in <. We factor it in B[X]: since
B[X] is atomic, we write

f = αrβsγt

to indicate that the numbers of irreducible factors in B[X] of type α, β and
γ are, respectively, r, s and t.

(1) Suppose that r 6= 0. Note that the product of a polynomial of type α
by any other polynomial of B[X] is also of type α. Since r 6= 0, f necessarily
has a factor of type α, which will be denoted by α∗. We claim that no
product of other factors can be in <. Towards a contradiction, suppose that
such a product g belongs to < and let h be the product of the remaining
factors. Then f = α∗gh. As f = g(α∗h), and the polynomial α∗h is in <
because of type α, we obtain a contradiction, since f is irreducible in <.
Consequently, the hypothesis r 6= 0 implies r = 1, s = 0 and t ≤ 1. In this
situation, the longest factorizations are of the form f = αγ.

(2) Suppose that r = 0. We have f = βsγt. Then either s 6= 0, so s = 1
and t = 0; or s = 0 and 2 ≤ t ≤ 3. In this situation, the longest factorizations
are of the form f = γ3.

In conclusion, the longest factorizations of f are always of length 3. In
view of [15, Lemma 2.1], we obtain ρ(<) ≤ 3ρ(B[X]).
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In the case where B is a UFD, we are able to provide the exact value of
ρ(<).

Theorem 6. Assume that A ⊂ B is an integral extension such that B
is a UFD. If B is local with maximal ideal M 6= m, then ρ(<) = 3/2.

The proof breaks into two lemmas:

Lemma 7. Assume that A ⊂ B is an integral extension such that B is
local with maximal ideal M 6= m and B[X] is atomic. Then every polynomial
f ∈ < of type β that is prime in B[X] is also prime in <.

Proof. We will show that the ideal f< generated by f is a prime ideal
of <. Let g and h be two polynomials of < such that gh ∈ f<. As fB[X]
is a prime ideal of B[X], we may assume that g ∈ fB[X]. Thus, there is a
polynomial k ∈ B[X] such that g = fk. As f is of type β, the multiplication
table of types shows that the polynomials g and k have the same type. Hence
k ∈ < and g ∈ f<.

The second lemma makes use of a length function. In fact, length func-
tions are frequently used to determine upper and lower bounds for the elas-
ticity of an atomic domain. Let us recall the definition of a length function
on an atomic domain R. A function ϕ : R − {0} → N is called a length
function on R if it satisfies the following two conditions:

(i) ϕ(xy) = ϕ(x) + ϕ(y) for every x, y ∈ R− {0}.
(ii) ϕ(x) = 0 if and only if x ∈ U(R).

For a length function ϕ on R, we set

M∗ = M∗(R,ϕ) = sup{ϕ(x) : x ∈ R is irreducible but not prime},
m∗ = m∗(R,ϕ) = inf{ϕ(x) : x ∈ R is irreducible but not prime},

with the convention M∗ = m∗ = 1 if R is a UFD. According to [1, Theorem
2.1], we have 1 ≤ ρ(R) ≤ M∗/m∗. This double inequality has often been
used to compute the elasticity of some polynomial rings [5, Lemma 2.3], [6,
Lemma 2.3], [7, Theorems 4.3 & 4.4], [15, Theorem 3.11].

Finally, if T is a subring of R and ϕ is a length function on R, then the
restriction of ϕ on T is a length function to T if and only if U(R)∩T = U(T )
[1, Example 1].

Now, we will define a length function using the classification of polyno-
mials of B[X]. More precisely, if f is a nonzero polynomial of B[X], we can
decompose f into irreducible factors of B[X] of type α, β and γ, namely
f = αrβsγt, where r, s and t indicate, respectively, the number of irre-
ducible factors of type α, β and γ. We can verify easily that the function
ϕ : B[X]− {0} → N defined by
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(i) ϕ(f) = 2r + s+ t,
(ii) ϕ(u) = 0 if and only if u ∈ U(B),

is a length function on B[X].
Since U(B[X])∩< = U(B)∩A = U(A) = U(<), the restriction ϕ′ of ϕ to

< is also a length function on <. We can then consider the notations M∗ =
M∗(<, ϕ′) and m∗ = m∗(<, ϕ′), as defined above. With these notations and
hypotheses, we obtain the following.

Lemma 8. Assume that A ⊂ B is an integral extension such that B is
a local UFD with maximal ideal M 6= m. Then M∗ ≤ 3 and m∗ = 2.

Proof. As shown in the proof of Theorem 5, if f is an irreducible poly-
nomial in <, then f can be factorized in B[X] as f = αrβsγt. Moreover, we
have the following possibilities:

• r = 1, s = 0 and t ≤ 1,
• r = 0, s = 1 and t = 0,
• r = 0, s = 0 and 2 ≤ t ≤ 3.

Hence, in any case, ϕ′(f) = 2r + s+ t ≤ 3. Thus M∗ ≤ 3.
Now, we will show that m∗ = 2. The polynomial X is irreducible in <

of type α. But X is not prime in < since X divides ζ3X = ζ2(ζX) while X
divides neither ζ2 nor ζX. Thus, ϕ′(X) = 2 and m∗ ≤ 2. For the reverse
inequality, let f be an irreducible polynomial of < such that ϕ′(<) = 1.
Then f is necessarily of type β. As f is also irreducible in B[X], f is a
prime element of B[X] since B[X] is a UFD. From Lemma 7, f is prime
in <. It follows that m∗ ≥ 2.

Finally, by application of Theorem 5, Lemma 8 and the inequality ρ(R) ≤
M∗/m∗, we deduce Theorem 6.

From our study, we derive the following interesting characterization:

Corollary 9. Let A ⊂ B be a minimal extension of rings such A is
local with maximal ideal m. Then < is a HFD if and only if the following
three conditions hold:

(i) A ⊂ B is an integral extension.
(ii) B[X] is a HFD.

(iii) B is local with maximal ideal m.

We now present some examples to illustrate different cases of our study.

Example 10. Let B = K[[Y ]] be the ring of power series in one inde-
terminate Y over a field K and A = K + Y 2K[[Y ]]. Then A is a local ring
with integral closure B. We have B/Y 2B ' K[Y ]/(Y 2) and A/Y 2B ' K.
If t is the coset Y + (Y 2) of B/Y 2B, then B/Y 2B is a 2-dimensional vector
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space over K with basis {1, t}, where t2 = 0. Thus K ⊂ B/Y 2B is a min-
imal extension. It follows that A ⊂ B is also a minimal integral extension.
Set < = A+XB[X] = K + Y 2K[[Y ]] +XK[[Y ]][X]. Then ρ(<) = 3/2, by
Theorem 6.

Example 11. Let K ⊂ L be an extension of fields such that [L : K]
is a prime number and Y an indeterminate over K. Let B = L[Y ](Y ) =
L+(Y )L[Y ](Y ) and A = K+(Y )L[Y ](Y ). As K ⊂ L is a minimal extension,
it follows that A ⊂ B is also a minimal integral extension. Set < = A +
XB[X] = K + (Y )L[Y ](Y ) + XL[Y ](Y )[X]. Then ρ(<) = ρ(B[X]) = 1, by
Theorem 4, so < is a HFD.

Example 12. Let K be a field and Y an indeterminate over K. Consider
two valuation domains: V = K[Y ](Y ) = K +M1, where M1 = (Y )K[Y ](Y ),
and W = K[Y ](Y +1) = K + N1, where N1 = (Y + 1)K[Y ](Y +1). Then
V and W are incomparable (for instance, if V ⊆ W , then N1 ⊆ M1, so
1 = (Y + 1)− Y ∈M1, a contradiction). Set B = V ∩W . Then B is a PID
with two maximal ideals M = M1∩B and N = N1∩B such that B/M ' K
and B/N ' K. Set m = M ∩ N and A = K + m. Then A is local with
maximal ideal m. As B/m ' K×K is a 2-dimensional vector space over K,
it follows that A/m ⊂ B/m is a minimal extension. Hence A ⊂ B is also a
minimal integral extension. Set < = A+XB[X] = K+M∩N+X(V ∩W )[X].
Then ρ(<) =∞, by Theorem 3.

Example 13. Let B = K[[Y ]] be the ring of power series in one inde-
terminate Y over a field K and A = K[[Y 2, Y 3]] the subring of B consisting
of those power series with zero Y -term. Then A is a local ring with maximal
ideal m = Y 2A+Y 3A. We claim that A ⊂ B is a minimal extension. Indeed,
if C is an intermediate ring between A and B, and δ = a0+a1Y +a2Y

2+· · · ∈
C \ A, then a1 6= 0 and Y = (1/a1)(δ − a0 − a2Y

2 − · · · ) ∈ C, so C = B.
Set < = A + XB[X] = K[[Y 2, Y 3]] + XK[[Y ]][X]. Then ρ(<) = 3/2, by
Theorem 6.
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