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AN ALGORITHM FOR COMPUTING THE KERNEL OF A
LOCALLY FINITE HIGHER DERIVATION UP TO
A CERTAIN DEGREE

BY

YUKI ITO and HIDEO KOJIMA (Niigata)

Abstract. This paper gives an algorithm for computing the kernel of a locally finite
higher derivation on the polynomial ring k[z1, ..., %] up to a given bound.

1. Introduction. Derivations and their kernels play an important role in
mathematics. See [8], [3], [1], [4] for excellent accounts. To study the kernel of
a derivation, it is important to find generators of the kernel. There are several
techniques to compute them. We recall some results. Van den Essen [2] gave
an important algorithm which computes all generators of the kernel of a
locally nilpotent derivation on a finitely generated k-algebra provided k is a
field of characteristic zero and the kernel is finitely generated as a k-algebra.
Later on, Maubach [5] gave an algorithm which computes generators of the
kernel of a (not necessarily locally nilpotent) k-derivation on a polynomial
ring k[z1,...,2,] up to a certain degree provided k is a field of characteristic
zero. We note that, if k is a field of positive characteristic, then the kernel of
a k-derivation on a finitely generated k-algebra is finitely generated (cf. [9]
Proposition 4.1]). In this case, Okuda [10] gave an algorithm which computes
the kernel.

In positive characteristic, locally finite higher derivations and the study
of their kernels (for the definitions, see Section 2) play an important role.
For example, the additive group scheme action on an affine algebraic variety
X = Spec(A) defined over an algebraically closed field k can be interpreted
in terms of a locally finite iterative higher derivation on the coordinate ring
A of X. Recently, the kernels of locally finite iterative higher derivations have
been studied by several authors. For example, Okuda [10] gave generators
for the kernel of a locally finite iterative higher derivation with a slice, where
a slice of a locally finite iterative higher derivation {D,,},>¢ is an element
s € A such that D;(s) =1 and D;(s) = 0 for every i > 2. Later on, by gen-
eralizing van den Essen’s algorithm in [2], Tanimoto [I1] gave an algorithm
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for computing the kernel of a locally finite iterative higher derivation pro-
vided the kernel is finitely generated. The outline of Tanimoto’s algorithm is
almost the same as van den Essen’s, and heavily depends on Grobner bases
computations.

In this paper, we give an algorithm for computing generators of the ker-
nel of a (not necessarily iterative) locally finite higher derivation up to a
certain degree. In Section 2, we recall some elementary results on locally fi-
nite higher derivations and their kernels. Moreover, for a locally finite higher
derivation D, we explain the concept of D-grading, which is a word-for-word
translation of that in [5, Section 3|. In Section 3, we give an algorithm com-
puting the kernel of a “w-homogeneous” locally finite higher derivation. In
Section 4, we show how to extend the algorithm of Section 3 to all locally
finite higher derivations. The outline of the algorithm mimics Maubach’s
algorithm in [5].

2. Preliminary results. Let k be a field of characteristic p > 0 and let
A be a k-algebra.

DEFINITION 2.1. A locally finite higher derivation (abbreviated as an
Ifhd) on A is a set of k-linear endomorphisms D = {D,, },>¢ of A satisfying
the following conditions:

(1) Dy is the identity map of A.

(2) For any a,b € A and for any integer n > 0,

Dn(ab) = > Di(a)D;(b).
i+j=n
(3) For any a € A, there exists an integer n > 0 such that D,,(a) = 0

for every integer m > n.

An Ithd D = {D,}n>0 on A is said to be iterative if it satisfies the following
additional condition:

(4) For any i,j > 0,
147
Di ODj = ( i j)DH_j.
A locally finite iterative higher derivation is abbreviated as an Ifihd.

The following lemma is clear from the definition of locally finite higher
derivations (cf. [7, Lemma 1.1.2 (p. 15)]).

LEMMA 2.2. Let D = {Dy}n>0 be a set of endomorphisms of A, where
Dy s the identity map. Then the following conditions are equivalent to each
other:

(1) D is an Ilfhd on A.
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(2) The mapping ¢p : A — Al[t]], where A[[t]] is the formal power series
ring in one variable t over A, given by op(a) = > ;50 Di(a)t’, is
a homomorphism of k-algebras and Im pp C A[t], where Alt] is the
polynomial Ting in one variable t over A.

We call the mapping ¢p as in (2) the homomorphism associated to an lfhd D.

We now define the kernel of an Ifhd. For an Ithd D = {D,, },>0 on A, we
define AP := {a € A| D,(a) = 0 for every n > 0}. It is clear that A" is a
k-subalgebra of A. We call it the kernel of D. We note that, for an element
a € A, a € AP if and only if pp(a) = a, where ¢p is the homomorphism
associated to D (cf. Lemma 2.2).

We shall give the concept of D-grading which is a word-for-word trans-
lation of that in [0, Section 3|, where Maubach defines a D-grading for a
k-derivation D. From now on, we assume that A = k[z1,...,x,] is a polyno-
mial ring in n variables over k. We denote the set of all non-negative integers
by Z>o. Let w € (Z>0)"™ be a non-zero vector. Then we can define a function

on monomials X< := z{*--- 22" on A by

deg(X®) = (a, w),

where o = (ai,...,ay) is a vector of (Z>o)"™ and (,) is the usual inner
product. By using the degree function deg, we define

Ay, = span, { X% | deg(X“) = m}.

Then A = @,,~( An is a well-defined grading. We can extend the degree
function deg on elements of A,: if 0 # F € A,, then we define deg(F) = n.

DEFINITION 2.3. Assume that A has a well-defined grading A = @,, A,
given by a function deg coming from a w-grading. Let D = {D,,},>0 be an
Ifhd on A. Then D is said to be homogeneous of degree m with respect to
the grading if, for all non-negative integers v, i and for all F' € A,, we have
D;(F) € Ay—_im. Conversely, if D is homogeneous of degree m with respect
to the grading, then the grading is said to be a D-homogeneous grading of
degree m.

We recall the notion of a combined grading given in [5, Section 3].

DEFINITION 2.4. Let ¢ be a positive integer and let wy, ..., wy € (Z>0)".
Then the associated (Zx>0)?-grading “grad” on A is defined by

grad(X*) := ((a,w1), ..., (a,wy)).

Such a grading is called a combined grading if each deg,, is a D-homogeneous
grading of degree m;. In this case, the Ithd D is said to be homogeneous of
degree m = (my, ..., m,) with respect to grad.
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3. Homogeneous kernel algorithm. In this section, we describe an
algorithm computing a minimal set of generators of the kernel of a homo-
geneous lfthd. The outline of this algorithm mimics Maubach’s algorithm in
[5, Section 5|. In fact, all the definitions, assumptions and lemmas in this
section are word-for-word translations of those in [5, Section 5|. Moreover,
all the lemmas in this section can be proved by using the same arguments
as in [5], Section 5|. For the reader’s convenience, we reproduce the proofs.

DEFINITION 3.1. Let ¢ be a positive integer and let v = (v1,...,vq) and
w = (wy,...,wy) be elements of (Z>0)?. We write w < v if w; < v; for any
i=1,...,q. We also write w < v if w < v and w # v.

Now, let k be a field of characteristic p > 0, A = k[z1,...,2,] the
polynomial ring in n variables over k, and D = {D,,},>0 an lfthd on A.

ASSUMPTIONS. In this section, we assume that the ring A has a grading

such that
A= @ A,
VE(Z>0)4
and
dimy A, < oo
for any v € (Z>0)? and that D is homogeneous of degree m = (my,...,my)

with respect to this grading.

DEFINITION 3.2. For v € (Z>()?, we set

B, = @Aw and B, := @Aw.
w<v w<v
DEFINITION 3.3. We fix v € (Z>¢)?. For a finite set F:={F},..., Fs} CA,
we set k[F]:=k[F1,..., Fy], the k-subalgebra of A generated by Fi,..., Fs.
For each i =1,...,s, we set F; := F \ {F;}.
(1) A finite set F = {Fy,...,Fs} C B, is called good for v € (Z>¢)9 if:
e cach F; belongs to A, for some w < v;
e k[F]NB, = AP N B,;
o for any i (1 <i<s), F; & k[F;].
(2) A finite set F = {Fy,...,Fs} C B, is called good for v™ if:
e cach F; belongs to A, for some w < v;
e k[FINB, = AP N B, ;
o for any i (1 <i<s), F; € k[F;].
For any v € (Z>()? and n > 0, we denote the restriction of D,, to A, by

Dy, |,. Note that D,,|, is a k-linear map from A, to A,_pm for any v € (Z>0)?
and n > 0.
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LEMMA 3.4. For any v € (Z>0)4, there exists a positive integer M such
that

M
AP N A, = (ker(Dsly) = () ker(Dil,)
i>1 i>1
Proof. Since A, is a finite-dimensional k-vector space, there exists a pos-
itive integer M such that D;|, = 0 for any j > M. Then

M
() ker(Dils) = (] ker(Dil,)
i>1 i>1
We now prove the first equality in the statement. If G € AP N A, then
G € Ay and D;|,(G) = D;(G) = 0 for any i > 1. Hence G € [);5 ker(D;ly).
Conversely, if G € ,»; ker(D;l,), then G € A, and D;(G) = D;|,(G) =0
for any i > 1. Hence, G € AP N A,. =

LEMMA 3.5. Let v € (Z>0)!. Assume that we have finite sets F, C Ay
for all w < v such that, for any u < v, |J Fuw 15 a good set for u. Then

Uw<v Fw s good for v™.
Proof. Set F :=Jycp Fu

(i) k[FIn B, = APNn B, .
(ii) If F; € F, then F; & k[ i], where F; = F \ {F;} (cf. Definition 3.3).

We first prove (i). By the hypothesis, for any u < v, we have k[F]|N B, =
APNB, c APNB; . So, k|FINB, C APNB, . Conversely, let G € APNB, .
Split G into homogeneous parts G = ), Gj. For any positive integer i,
0= Dl(G) = Dl(Zh Gh) = Zh Dl(Gh) Since Dl(Gh) € Ap_im, we have
D;(Gp,) = 0 for any i > 0. So, G}, € AP for any h. Since grad(G}) = h (< v),
we have G}, € k[F] for any h. Thus, G = )", G, € k[F]. Hence, k[F]NB, 2
AP N B, .

We now prove (ii). Let F; € F. Then F; is homogeneous and grad(F;) < v.
Set u := grad(F;) and F := Uw<u Fw- Then F; € FN B, = F. Suppose that

F; € k[F;]. Since F; € B, we have F; € k[F;] N By,. Then F; € k[F \ {Fi}],
which is a contradiction because F is a good set for u. m

w<y

. It suffices to prove the following:

LEMMA 3.6. The empty set is good for v=(0,...,0). Namely, A, o=k

Proof. 1t is clear that k C A( ,0)- Assume that there exists an element

a € Ag,. 0 \ k- Then {a, a?,a’ } is a k-linearly independent subset of
Ao,...0 ) “This is a Contradlctlon because A,...,0) is finite-dimensional. m

LEMMA 3.7. Let v € (Z>0)?. Suppose that we have finite sets F, C Ay
for all w < v such that |, Fuw is a good set for v=. Then we can construct
a finite set F, C Ay such that | J,, <, Fw is a good set for v.
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Proof. Set F := U,y Fuw- Since dimy A, < oo, k[F] N A, is a finite-
dimensional k-vector space. Set s := #F and I := {a = («a1,...,a5) €
(Z>0)® | F* := F™* .- F% € A,}, where we write F as F = {F,..., Fs}.
Then

KFINA, =Y kF,
acl
so {F*}aer is a generating set of k[F] N A,. As [ is a finite set, we can take
(and calculate) a subset J of I such that {F,}aes is a k-basis of k[F] N A,.
Then dimy(k[F] N A,) = #J. Now we compute (-, ker(D;|,), which is a
k-subspace of A, because every D;l, is a k-linear map from A, to A,_m.
Since k[F] N A, is a k-subspace of AP N A, = ;5 ker(Dilv), {F} acs
are independent elements in (), ker(D;|,). We can take a finite set F, =
{Gq,..., Gy} for which {F*} e UF, forms a k-basis of (,~ ker(D;|,). Then

(3.1) (M kex(Dil,) = (@ k]-"a> @ (é k:Gl-> .
i>1 acJ =1

Here we note that t = #F, = dimy((),>, ker(D;|,)) — dimy(k[F] N A,) and
Fy C Ay. Now, for i (1 < i < t), we set Fp; = F, \ {Gi}. We prove the
following claim.

CrLAIM. The set FUF, =J

w<w Fw is good for v, namely:

(1) AP N B, =k[FUZF,|NB,.

(2) (a) Gi & KIFUF, ] for any i (1< i <1) and (b) Fi & k[F;UF] for

any i (1 <i<s).

Proof. (1) The “2” part is clear since k[F U F,] C AP. To prove “C”,
let H € AP N B,. We decompose H into homogeneous components and set
H := Hy + Ho, where Hy € B, and Hy € A,. Forany i > 1,0 = D;(H) =
D;(Hy) + D;(H3). Since D;(Hy) € Ay—im and D;(Hz) € B, ., we have
D;(H,) = D;(Hz) = 0. As F is good for v—, Hy € k[F|NB, C k[FUF,|NB,.
We infer from (3.1) that

Hy € AP N4, (: N ker(Di|v))

i>1

- (@] kf"‘) @ (Q? k‘Gi)
= (k[]:] mAfu) S (k[fv] mAv)
— k[FUF)N A,
C k[FUF,] N By.

Therefore, H = Hy + Hy € k[F U F,] N By,.
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(2) We prove (a). From the proof of (1), we have

KFUF,]NA, = (@ W) ® (é kG)
acd =1

Since {F*}aes UF, is a k-basis of (), ker(D;l,) = k[FUF,|NA,, we have
Gi & (Docs kF7*) & (D). kG)). Hence, for any i (1 <i <t),

G ¢ (@ k:fo‘) ® (@ ij)

acJ
= k[F] N Ay @ k[Fp il N Ay = k[F U Fpi] N Ay

Since G; € A,, we have G; € k[F U F, ;].

To prove (b), suppose to the contrary that F; € k[F; U F,] for some 7
(1 < i < s). Then there exists a polynomial P of (s — 1) + ¢ variables over
k satisfying P(.FZ U fv) = P(Fl, NN ,F’,L',l, Fi+1, NN ,FS, Gl, PN ,Gt) == Fz
Set w := grad(F;). Then w < v. Comparing degrees in the equation F; =
P(F; U F,) shows that P is a polynomial in the F; because grad(G;) > w
for any j, 1 < j <t. Then F; € k[F;], which is a contradiction. m

The proof of Lemma 3.7 is thus completed. =

By the above lemmas, we obtain the following algorithm for computing
generators of the kernel of a homogeneous Ifthd up to a certain degree.

HOMOGENEOUS KERNEL ALGORITHM

Input:

e {x1,...,2,} : the generators of the polynomial ring A in n variables
over k.

o A:= @UG(Z>O)Q A, a combined grading of A denoted by grad, which
satisfies the above assumptions.

e D: a homogeneous Ifthd on A of degree 7 with respect to the grading.
o b€ (Z>0)?: the degree indicating where to stop calculating.

Output: generators Fy, ..., Fy € By such that {F,..., Fs} is a good set
for b.

By using the same argument as in the proof of [5, Theorem 8.1], we obtain
the following result.

PROPOSITION 3.8. Assume that the preceding algorithm produces the set
F ={Fy,...,F} which is good for b and that AP = k[F]. If AP is expressed
as AP = k[Gy,..., Gy for some G;, then s < t.

We give an example.



28 Y. ITO AND H. KOJIMA

EXAMPLE 3.9. Let k be a field of characteristic p # 2 and A = k[, y, z].
Let ¢ : A — A[t] be the k-algebra homomorphism given by

yA
p(z) =z +yt + §t27 ely) =y +zt, ¢(2) ==

By Lemma 2.2, we have an Ithd D = {D,, },,>¢ such that ¢p = ¢. The Ithd D
is homogeneous of degree 0 with respect to the usual grading. Now we find a
good set for b = 2. We use the same notation as above. We can easily see that
Fo=0, F1 = {2} and AyN AP = span, {22, zy, vz, 4>, yz, 22} N ﬂ?:1 ker D;.
Since D; can be expressed as
0 0

Dy =y— —
it is easy to see that As Nker D; = spank{xz — %yQ, z2}. Since xz — %yQ, 22 e
AP we have Ay N AP = spank{xz — %yQ,ZQ}. Then Fo = {:cz — %y2} and
SO {z,:cz — %yQ} is a good set for b = 2.

4. Algorithm for a non-homogeneous Ifthd. In this section, we de-
scribe an algorithm to find generators of the kernel of a non-homogeneous
Ifhd by making it homogeneous. The outline of this algorithm is almost the
same as Maubach’s algorithm in [B, Section 6].

Let k be a field and A = k[z1,...,2,]. On A, we consider the usual
grading deg defined by deg(z{* -+ 2% ) = a1 + -+ + an. Let D = {Dy}n>0
be an 1fhd on A and let ¢p : A — AJt] be the homomorphism associated to D
(cf. Lemma 2.2). Then there exists a positive integer M such that D;(x;) = 0
for any i (1 <i <n)and j > M. Then we define integers {N;};>1 satisfying
the following conditions:

N1 > max § max -
1<;<M | 1<i<n j
Nj=jNM-0U-1)=jM-1)+1 (G>1).
We introduce one new variable z. Let ¢ : A — A[z, z~!] be the homogeneiza-
tion map defined by

V(f(x1,. .., zn) = f(z1/2,. . 20 /2)
for f(z1,...,z,) € A. We denote by 7 the substitution homomorphism
Alz] — A sending z to 1.
Let ¢p @ Alz] — A[z][t] be the k-algebra homomorphism defined by

{ ®QDA%D+j—1}

M
pp(@i) =i+ > NpDiE)t (i=1,...,n),
j=1

op(z) = 2.
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It is then clear that ¢5(f)[i=0 = f for any f € A[z]. By Lemma 2.2, ¢
defines an 1fhd D = {D;, }n>0 on A[2] such that ¢5(f) = 3°,~0 Dn(f)t" for
any f € Alz].

LEMMA 4.1. On Alz] = klz1,..., %y, 2], consider the usual grading deg
defined by deg(z{* - -- 2% 2%) = a3+ - - +a, +b. Then the Ifhd D= {Dn}nzo
defined as above is homogeneous of degree —(Ny — 1) with respect to deg.

Proof. For any 1<i¢<mnand j>1, ﬁ](xl) is either the zero polynomial or
a homogeneous polynomial of degree N; = j(N; — 1)+ 1. So, for any homo-
geneous polynomial f € A[z] and for any integer j > 0, ]_~)J( f) is either the
zero polynomial or a homogeneous polynomial of degree deg f+j(N1—1). m

We call the Ifhd D the homogeneization of D.

LEMMA 4.2 (cf. |5, Lemma 6.1]). Let A[Z]D be the kernel of the Ifhd D
on Alz]. Then ]
m(A[2]P) = AP.
Proof. Naturally, we can extend the morphism 7 : A[z] — A to a k-
algebra homomorphism 7’ : A[z][t] — A[t] by setting 7'(t) = ¢. Then we
have

w(pplen)) = (wi+ 3 b (D (@) ')—mZD z)t! = op(n(zi))

forany i =1,...,n and 7' (pp(2)) =7'(z) =1 = cpp(ﬂ( )). Hence, 7’ 0
= ppom as a homomorphlsm from Alz] to A[t]. Let h € A[z]D. Then
©p(h) = h € Alz] and so w(h) = 7'(pp(h)) = ¢p(n(h)). Since w(h) € A,
we conclude that 7(h) € AP. Hence, (A[Z]D) C AP,
Conversely, let ¢ € AP. Then @D(g) =g € A. Since g = ¢p(g) =
)

pp(m(2989%(g))) = 7(pp(22%9%(g))) € A and since Dj(21®94(g)) is
homogeneous for any j > 0, we know that gof)(zdeggl/)(g)) € Alz]. Then

zdeggwgg) € Alz]P and so g = 7(29%89y(g)) € m(A[z]P). Hence, AP C
7(A[2]P). =

By Lemma 4.1, D satisfies the requirements of the algorithm of Section 3,
with the usual grading deg on A[z] as the combined grading. By Lemma 4.2,
we can find generators for AP by calculating those for A[z]P

EXAMPLE 4.3. Let k be a field of characteristic p # 2 and A = k[z, y].
Let D be an 1fhd on A such that ¢p(z) =z + yt + 512 and ¢p(y) = y + ¢,
where ¢p : A — AJt] is the homomorphism associated to D. With the same
notation as above, we may set N; = 1 for any integer j > 1. Then the
homogeneization D of D satisfies

z
op(x) = +yt + 5152, epy) =y+zt, @(z) ==z
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That is, D is the same as the lhfd D in Example 3.9. By Example 3.9, we
know that {z,zz — $y?} is a good set fo b = 2 (cf. Definition 3.3). Let
A= ®UEZ>0 A, be the usual grading of A. From the proof of Lemma 4.2,
we get -

kln(2),n(xz —y*/2)] N @AU =k[z —y*/2] N @AU = APn @AU.

v<2 v<2 v<2

5. Appendix—Kernel-check algorithm. In [0, p. 32|, Maubach gives
an abbreviated version of van den Essen’s algorithm in [2]. He calls the algo-
rithm the kernel-check algorithm. Similarly, we have an abbreviated version
of Tanimoto’s algorithm in [II]. The algorithm stated below is a word-for-
word translation of the kernel-check algorithm.

Let R be a PID, let A = RJay,...,ay,| be a finitely generated R-algebra
and let D = {D,,},>0 be a non-trivial lfihd. Let o € A satisfy:

(1) o g AP.

(2) deg, pp(o) = min{deg,(pp(f)) | f € A\ AP}
Then o is called a local slice of D (cf. [11], p. 2285]). Let ¢ be the leading
coefficient of pp (o) as a polynomial in one variable ¢t. We note that ¢ € AP

(cf. [T, Section 1]). Suppose a finite set {f1,..., fm} C AP is given. Then
the algorithm proceeds in the following two steps.

STEP 1. Find generators P, ..., Ps for the ideal
J={PecR™ | P(f1,..., fn) € cA},

where RI™ denotes the polynomial ring in m variables over R. (We can
calculate generators of J by using for example the theory of Grébner bases.)

STeP 2. If ¢ 'P(f1,..., fm) € R[f1,.-., fm] for each i = 1,...,s, then
the output is yes; otherwise, it is no.

Acknowledgements. The authors would like to thank Professor Ryuji
Tanimoto for giving us the first version of his paper [11] and useful comments.
The authors would also like to thank the referee for useful suggestions to
improve the paper.

REFERENCES

[1] D. Daigle, Locally nilpotent derivations, Lecture Notes for the 26th Autumn School
of Algebraic Geometry, Lukecin, 2003.

[2]] A. van den Essen, An algorithm to compute the invariant ring of a Gq-action on an
affine variety, J. Symbolic Comput. 16 (1993), 551-555.

[3] —, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190,
Birkh&user, Basel, 2000.


http://dx.doi.org/10.1006/jsco.1993.1062

COMPUTING THE KERNEL OF A DERIVATION 31

[4] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia
Math. Sci. 136, Springer, 2006.
[5] S. Maubach, An algorithm to compute the kernel of a derivation up to a certain
degree, J. Symbolic Comput. 29 (2000), 959-970.
[6] —, Polynomial endomorphisms and kernels of derivations, Ph.D. thesis, Univ. Ni-
jmegen, 2003.
[7] M. Miyanishi, Lectures on Curves on Rational and Unirational Surfaces, Tata In-
stitute of Fundamental Research, Springer, Berlin, 1978.
[8] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet
Mikotaja Kopernika, Torun, 1994.
[9] A. Nowicki and M. Nagata, Rings of constants for k-derivations in k[z1,...,xx],
J. Math. Kyoto Univ. 28 (1988), 111-118.
[10] S. Okuda, Kernels of derivations in positive characteristic, Hiroshima Math. J. 34
(2004), 1-19.
[11]] R. Tanimoto, An algorithm for computing the kernel of a locally finite iterative
higher derivation, J. Pure Appl. Algebra 212 (2008), 2284-2297.
Yuki Ito Hideo Kojima
Graduate School of Science and Technology Department of Information Engineering
Niigata University Faculty of Engineering
Niigata 950-2181, Japan Niigata University

Niigata 950-2181, Japan
E-mail: kojima@ie.niigata-u.ac.jp

Received 7 November 2009;
revised 23 February 2010 (5296)


http://dx.doi.org/10.1006/jsco.1999.0334
http://dx.doi.org/10.1016/j.jpaa.2008.03.006




	Introduction
	Preliminary results
	Homogeneous kernel algorithm
	Algorithm for a non-homogeneous lfhd
	Appendix—Kernel-check algorithm

