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AN ALGORITHM FOR COMPUTING THE KERNEL OF A
LOCALLY FINITE HIGHER DERIVATION UP TO

A CERTAIN DEGREE

BY

YUKI ITO and HIDEO KOJIMA (Niigata)

Abstract. This paper gives an algorithm for computing the kernel of a locally finite
higher derivation on the polynomial ring k[x1, . . . , xn] up to a given bound.

1. Introduction. Derivations and their kernels play an important role in
mathematics. See [8], [3], [1], [4] for excellent accounts. To study the kernel of
a derivation, it is important to find generators of the kernel. There are several
techniques to compute them. We recall some results. Van den Essen [2] gave
an important algorithm which computes all generators of the kernel of a
locally nilpotent derivation on a finitely generated k-algebra provided k is a
field of characteristic zero and the kernel is finitely generated as a k-algebra.
Later on, Maubach [5] gave an algorithm which computes generators of the
kernel of a (not necessarily locally nilpotent) k-derivation on a polynomial
ring k[x1, . . . , xn] up to a certain degree provided k is a field of characteristic
zero. We note that, if k is a field of positive characteristic, then the kernel of
a k-derivation on a finitely generated k-algebra is finitely generated (cf. [9,
Proposition 4.1]). In this case, Okuda [10] gave an algorithm which computes
the kernel.

In positive characteristic, locally finite higher derivations and the study
of their kernels (for the definitions, see Section 2) play an important role.
For example, the additive group scheme action on an affine algebraic variety
X = Spec(A) defined over an algebraically closed field k can be interpreted
in terms of a locally finite iterative higher derivation on the coordinate ring
A ofX. Recently, the kernels of locally finite iterative higher derivations have
been studied by several authors. For example, Okuda [10] gave generators
for the kernel of a locally finite iterative higher derivation with a slice, where
a slice of a locally finite iterative higher derivation {Dn}n≥0 is an element
s ∈ A such that D1(s) = 1 and Di(s) = 0 for every i ≥ 2. Later on, by gen-
eralizing van den Essen’s algorithm in [2], Tanimoto [11] gave an algorithm
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for computing the kernel of a locally finite iterative higher derivation pro-
vided the kernel is finitely generated. The outline of Tanimoto’s algorithm is
almost the same as van den Essen’s, and heavily depends on Gröbner bases
computations.

In this paper, we give an algorithm for computing generators of the ker-
nel of a (not necessarily iterative) locally finite higher derivation up to a
certain degree. In Section 2, we recall some elementary results on locally fi-
nite higher derivations and their kernels. Moreover, for a locally finite higher
derivation D, we explain the concept of D-grading, which is a word-for-word
translation of that in [5, Section 3]. In Section 3, we give an algorithm com-
puting the kernel of a “w-homogeneous” locally finite higher derivation. In
Section 4, we show how to extend the algorithm of Section 3 to all locally
finite higher derivations. The outline of the algorithm mimics Maubach’s
algorithm in [5].

2. Preliminary results. Let k be a field of characteristic p ≥ 0 and let
A be a k-algebra.

Definition 2.1. A locally finite higher derivation (abbreviated as an
lfhd) on A is a set of k-linear endomorphisms D = {Dn}n≥0 of A satisfying
the following conditions:

(1) D0 is the identity map of A.
(2) For any a, b ∈ A and for any integer n ≥ 0,

Dn(ab) =
∑
i+j=n

Di(a)Dj(b).

(3) For any a ∈ A, there exists an integer n ≥ 0 such that Dm(a) = 0
for every integer m ≥ n.

An lfhd D = {Dn}n≥0 on A is said to be iterative if it satisfies the following
additional condition:

(4) For any i, j ≥ 0,

Di ◦Dj =
(
i+ j

i

)
Di+j .

A locally finite iterative higher derivation is abbreviated as an lfihd.

The following lemma is clear from the definition of locally finite higher
derivations (cf. [7, Lemma I.1.2 (p. 15)]).

Lemma 2.2. Let D = {Dn}n≥0 be a set of endomorphisms of A, where
D0 is the identity map. Then the following conditions are equivalent to each
other:

(1) D is an lfhd on A.
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(2) The mapping ϕD : A→ A[[t]], where A[[t]] is the formal power series
ring in one variable t over A, given by ϕD(a) =

∑
i≥0Di(a)ti, is

a homomorphism of k-algebras and ImϕD ⊂ A[t], where A[t] is the
polynomial ring in one variable t over A.

We call the mapping ϕD as in (2) the homomorphism associated to an lfhd D.

We now define the kernel of an lfhd. For an lfhd D = {Dn}n≥0 on A, we
define AD := {a ∈ A | Dn(a) = 0 for every n > 0}. It is clear that AD is a
k-subalgebra of A. We call it the kernel of D. We note that, for an element
a ∈ A, a ∈ AD if and only if ϕD(a) = a, where ϕD is the homomorphism
associated to D (cf. Lemma 2.2).

We shall give the concept of D-grading which is a word-for-word trans-
lation of that in [5, Section 3], where Maubach defines a D-grading for a
k-derivation D. From now on, we assume that A = k[x1, . . . , xn] is a polyno-
mial ring in n variables over k. We denote the set of all non-negative integers
by Z≥0. Let w ∈ (Z≥0)n be a non-zero vector. Then we can define a function
on monomials Xα := xα1

1 · · ·xαn
n on A by

deg(Xα) = 〈α,w〉,

where α = (α1, . . . , αn) is a vector of (Z≥0)n and 〈 , 〉 is the usual inner
product. By using the degree function deg, we define

Am := spank{Xα | deg(Xα) = m}.

Then A =
⊕

n≥0An is a well-defined grading. We can extend the degree
function deg on elements of An: if 0 6= F ∈ An, then we define deg(F ) = n.

Definition 2.3. Assume that A has a well-defined grading A =
⊕

nAn
given by a function deg coming from a w-grading. Let D = {Dn}n≥0 be an
lfhd on A. Then D is said to be homogeneous of degree m with respect to
the grading if, for all non-negative integers v, i and for all F ∈ Av, we have
Di(F ) ∈ Av−im. Conversely, if D is homogeneous of degree m with respect
to the grading, then the grading is said to be a D-homogeneous grading of
degree m.

We recall the notion of a combined grading given in [5, Section 3].

Definition 2.4. Let q be a positive integer and let w1, . . . , wq ∈ (Z≥0)n.
Then the associated (Z≥0)q-grading “grad” on A is defined by

grad(Xα) := (〈α,w1〉, . . . , 〈α,wq〉).

Such a grading is called a combined grading if each degwi
is aD-homogeneous

grading of degree mi. In this case, the lfhd D is said to be homogeneous of
degree m = (m1, . . . ,mq) with respect to grad.
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3. Homogeneous kernel algorithm. In this section, we describe an
algorithm computing a minimal set of generators of the kernel of a homo-
geneous lfhd. The outline of this algorithm mimics Maubach’s algorithm in
[5, Section 5]. In fact, all the definitions, assumptions and lemmas in this
section are word-for-word translations of those in [5, Section 5]. Moreover,
all the lemmas in this section can be proved by using the same arguments
as in [5, Section 5]. For the reader’s convenience, we reproduce the proofs.

Definition 3.1. Let q be a positive integer and let v = (v1, . . . , vq) and
w = (w1, . . . , wq) be elements of (Z≥0)q. We write w ≤ v if wi ≤ vi for any
i = 1, . . . , q. We also write w < v if w ≤ v and w 6= v.

Now, let k be a field of characteristic p ≥ 0, A = k[x1, . . . , xn] the
polynomial ring in n variables over k, and D = {Dn}n≥0 an lfhd on A.

Assumptions. In this section, we assume that the ring A has a grading
such that

A =
⊕

v∈(Z≥0)q

Av

and
dimk Av <∞

for any v ∈ (Z≥0)q and that D is homogeneous of degree m = (m1, . . . ,mq)
with respect to this grading.

Definition 3.2. For v ∈ (Z≥0)q, we set

Bv :=
⊕
w≤v

Aw and B−v :=
⊕
w<v

Aw.

Definition 3.3. We fix v∈(Z≥0)q. For a finite set F :={F1, . . . , Fs}⊂A,
we set k[F ] :=k[F1, . . . , Fs], the k-subalgebra of A generated by F1, . . . , Fs.
For each i = 1, . . . , s, we set Fi := F \ {Fi}.

(1) A finite set F = {F1, . . . , Fs} ⊂ Bv is called good for v ∈ (Z≥0)q if:
• each Fi belongs to Aw for some w ≤ v;
• k[F ] ∩Bv = AD ∩Bv;
• for any i (1 ≤ i ≤ s), Fi 6∈ k[Fi].

(2) A finite set F = {F1, . . . , Fs} ⊂ B−v is called good for v− if:
• each Fi belongs to Aw for some w < v;
• k[F ] ∩B−v = AD ∩B−v ;
• for any i (1 ≤ i ≤ s), Fi 6∈ k[Fi].

For any v ∈ (Z≥0)q and n ≥ 0, we denote the restriction of Dn to Av by
Dn|v. Note that Dn|v is a k-linear map from Av to Av−nm for any v ∈ (Z≥0)q

and n ≥ 0.
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Lemma 3.4. For any v ∈ (Z≥0)q, there exists a positive integer M such
that

AD ∩Av =
⋂
i≥1

ker(Di|v) =
M⋂
i≥1

ker(Di|v).

Proof. Since Av is a finite-dimensional k-vector space, there exists a pos-
itive integer M such that Dj |v = 0 for any j > M . Then⋂

i≥1

ker(Di|v) =
M⋂
i≥1

ker(Di|v).

We now prove the first equality in the statement. If G ∈ AD ∩ Av, then
G ∈ Av and Di|v(G) = Di(G) = 0 for any i ≥ 1. Hence G ∈

⋂
i≥1 ker(Di|v).

Conversely, if G ∈
⋂
i≥1 ker(Di|v), then G ∈ Av and Di(G) = Di|v(G) = 0

for any i ≥ 1. Hence, G ∈ AD ∩Av.
Lemma 3.5. Let v ∈ (Z≥0)q. Assume that we have finite sets Fw ⊂ Aw

for all w < v such that, for any u < v,
⋃
w≤uFw is a good set for u. Then⋃

w<v Fw is good for v−.

Proof. Set F :=
⋃
w<v Fw. It suffices to prove the following:

(i) k[F ] ∩B−v = AD ∩B−v .
(ii) If Fi ∈ F , then Fi 6∈ k[Fi], where Fi = F \ {Fi} (cf. Definition 3.3).

We first prove (i). By the hypothesis, for any u < v, we have k[F ]∩Bu =
AD∩Bu ⊂ AD∩B−v . So, k[F ]∩B−v ⊆ AD∩B−v . Conversely, let G ∈ AD∩B−v .
Split G into homogeneous parts G =

∑
hGh. For any positive integer i,

0 = Di(G) = Di(
∑

hGh) =
∑

hDi(Gh). Since Di(Gh) ∈ Ah−im, we have
Di(Gh) = 0 for any i > 0. So, Gh ∈ AD for any h. Since grad(Gh) = h (< v),
we have Gh ∈ k[F ] for any h. Thus, G =

∑
hGh ∈ k[F ]. Hence, k[F ]∩B−v ⊇

AD ∩B−v .
We now prove (ii). Let Fi ∈ F . Then Fi is homogeneous and grad(Fi) < v.

Set u := grad(Fi) and F̃ :=
⋃
w≤u Fw. Then Fi ∈ F ∩Bu = F̃ . Suppose that

Fi ∈ k[Fi]. Since Fi ∈ Bu, we have Fi ∈ k[Fi] ∩ Bu. Then Fi ∈ k[F̃ \ {Fi}],
which is a contradiction because F̃ is a good set for u.

Lemma 3.6. The empty set is good for v=(0, . . . , 0). Namely, A(0,...,0) =k.

Proof. It is clear that k ⊂ A(0,...,0). Assume that there exists an element
a ∈ A(0,...,0) \ k. Then {a, a2, a3, . . .} is a k-linearly independent subset of
A(0,...,0). This is a contradiction because A(0,...,0) is finite-dimensional.

Lemma 3.7. Let v ∈ (Z≥0)q. Suppose that we have finite sets Fw ⊂ Aw
for all w < v such that

⋃
w<v Fw is a good set for v−. Then we can construct

a finite set Fv ⊂ Av such that
⋃
w≤v Fw is a good set for v.
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Proof. Set F :=
⋃
w<v Fw. Since dimk Av < ∞, k[F ] ∩ Av is a finite-

dimensional k-vector space. Set s := #F and I := {α = (α1, . . . , αs) ∈
(Z≥0)s | Fα := Fα1

1 · · ·Fαs
s ∈ Av}, where we write F as F = {F1, . . . , Fs}.

Then
k[F ] ∩Av =

∑
α∈I

kFα,

so {Fα}α∈I is a generating set of k[F ]∩Av. As I is a finite set, we can take
(and calculate) a subset J of I such that {Fα}α∈J is a k-basis of k[F ]∩Av.
Then dimk(k[F ] ∩ Av) = #J . Now we compute

⋂
i≥1 ker(Di|v), which is a

k-subspace of Av because every Di|v is a k-linear map from Av to Av−im.
Since k[F ] ∩ Av is a k-subspace of AD ∩ Av =

⋂
i≥1 ker(Di|v), {Fα}α∈J

are independent elements in
⋂
i≥1 ker(Di|v). We can take a finite set Fv =

{G1, . . . , Gt} for which {Fα}α∈J∪Fv forms a k-basis of
⋂
i≥1 ker(Di|v). Then

(3.1)
⋂
i≥1

ker(Di|v) =
(⊕
α∈J

kFα
)
⊕
( t⊕
i=1

kGi

)
.

Here we note that t = #Fv = dimk(
⋂
i≥1 ker(Di|v))− dimk(k[F ] ∩ Av) and

Fv ⊂ Av. Now, for i (1 ≤ i ≤ t), we set Fv,i := Fv \ {Gi}. We prove the
following claim.

Claim. The set F ∪ Fv =
⋃
w≤v Fw is good for v, namely:

(1) AD ∩Bv = k[F ∪ Fv] ∩Bv.
(2) (a) Gi 6∈ k[F ∪Fv,i] for any i (1 ≤ i ≤ t) and (b) Fi 6∈ k[Fi ∪Fv] for

any i (1 ≤ i ≤ s).

Proof. (1) The “⊇” part is clear since k[F ∪ Fv] ⊂ AD. To prove “⊆”,
let H ∈ AD ∩ Bv. We decompose H into homogeneous components and set
H := H1 +H2, where H2 ∈ B−v and H1 ∈ Av. For any i ≥ 1, 0 = Di(H) =
Di(H1) + Di(H2). Since Di(H1) ∈ Av−im and Di(H2) ∈ B−v−im, we have
Di(H1) = Di(H2) = 0. As F is good for v−,H2 ∈ k[F ]∩B−v ⊂ k[F∪Fv]∩Bv.
We infer from (3.1) that

H1 ∈ AD ∩Av
(
=
⋂
i≥1

ker(Di|v)
)

=
(⊕
α∈J

kFα
)
⊕
( t⊕
i=1

kGi

)
= (k[F ] ∩Av)⊕ (k[Fv] ∩Av)
= k[F ∪ Fv] ∩Av
⊂ k[F ∪ Fv] ∩Bv.

Therefore, H = H1 +H2 ∈ k[F ∪ Fv] ∩Bv.
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(2) We prove (a). From the proof of (1), we have

k[F ∪ Fv] ∩Av =
(⊕
α∈J

kFα
)
⊕
( t⊕
i=1

kGi

)
.

Since {Fα}α∈J ∪Fv is a k-basis of
⋂
i≥1 ker(Di|v) = k[F ∪Fv]∩Av, we have

Gi 6∈ (
⊕

α∈J kFα)⊕ (
⊕

j 6=i kGj). Hence, for any i (1 ≤ i ≤ t),

Gi 6∈
(⊕
α∈J

kFα
)
⊕
(⊕
j 6=i

kGj

)
= k[F ] ∩Av ⊕ k[Fv,i] ∩Av = k[F ∪ Fv,i] ∩Av.

Since Gi ∈ Av, we have Gi 6∈ k[F ∪ Fv,i].
To prove (b), suppose to the contrary that Fi ∈ k[Fi ∪ Fv] for some i

(1 ≤ i ≤ s). Then there exists a polynomial P of (s − 1) + t variables over
k satisfying P (Fi ∪ Fv) = P (F1, . . . , Fi−1, Fi+1, . . . , Fs, G1, . . . , Gt) = Fi.
Set w := grad(Fi). Then w < v. Comparing degrees in the equation Fi =
P (Fi ∪ Fv) shows that P is a polynomial in the Fi because grad(Gj) > w
for any j, 1 ≤ j ≤ t. Then Fi ∈ k[Fi], which is a contradiction.

The proof of Lemma 3.7 is thus completed.

By the above lemmas, we obtain the following algorithm for computing
generators of the kernel of a homogeneous lfhd up to a certain degree.

Homogeneous Kernel Algorithm

Input :

• {x1, . . . , xn} : the generators of the polynomial ring A in n variables
over k.

• A :=
⊕

v∈(Z≥0)q Av: a combined grading of A denoted by grad, which
satisfies the above assumptions.

• D: a homogeneous lfhd on A of degree m with respect to the grading.
• b ∈ (Z≥0)q: the degree indicating where to stop calculating.

Output : generators F1, . . . , Fs ∈ Bb such that {F1, . . . , Fs} is a good set
for b.

By using the same argument as in the proof of [5, Theorem 8.1], we obtain
the following result.

Proposition 3.8. Assume that the preceding algorithm produces the set
F = {F1, . . . , Fs} which is good for b and that AD = k[F ]. If AD is expressed
as AD = k[G1, . . . , Gt] for some Gi, then s ≤ t.

We give an example.



28 Y. ITO AND H. KOJIMA

Example 3.9. Let k be a field of characteristic p 6= 2 and A = k[x, y, z].
Let ϕ : A→ A[t] be the k-algebra homomorphism given by

ϕ(x) = x+ yt+
z

2
t2, ϕ(y) = y + zt, ϕ(z) = z.

By Lemma 2.2, we have an lfhd D = {Dn}n≥0 such that ϕD = ϕ. The lfhd D
is homogeneous of degree 0 with respect to the usual grading. Now we find a
good set for b = 2. We use the same notation as above. We can easily see that
F0 = ∅, F1 = {z} and A2 ∩AD = spank{x2, xy, xz, y2, yz, z2} ∩

⋂4
i=1 kerDi.

Since D1 can be expressed as

D1 = y
∂

∂x
+ z

∂

∂y
,

it is easy to see that A2∩kerD1 = spank
{
xz− 1

2y
2, z2

}
. Since xz− 1

2y
2, z2 ∈

AD, we have A2 ∩ AD = spank
{
xz − 1

2y
2, z2

}
. Then F2 =

{
xz − 1

2y
2
}
and

so
{
z, xz − 1

2y
2
}
is a good set for b = 2.

4. Algorithm for a non-homogeneous lfhd. In this section, we de-
scribe an algorithm to find generators of the kernel of a non-homogeneous
lfhd by making it homogeneous. The outline of this algorithm is almost the
same as Maubach’s algorithm in [5, Section 6].

Let k be a field and A = k[x1, . . . , xn]. On A, we consider the usual
grading deg defined by deg(xa1

1 · · ·xan
n ) = a1 + · · · + an. Let D = {Dn}n≥0

be an lfhd on A and let ϕD : A→ A[t] be the homomorphism associated toD
(cf. Lemma 2.2). Then there exists a positive integerM such that Dj(xi) = 0
for any i (1 ≤ i ≤ n) and j > M . Then we define integers {Nj}j≥1 satisfying
the following conditions:

N1 ≥ max
1≤j≤M

{
max
1≤i≤n

deg(Dj(xi)) + j − 1
j

}
,

Nj = jN1 − (j − 1) = j(N1 − 1) + 1 (j > 1).

We introduce one new variable z. Let ψ : A→ A[z, z−1] be the homogeneiza-
tion map defined by

ψ(f(x1, . . . , xn)) = f(x1/z, . . . , xn/z)

for f(x1, . . . , xn) ∈ A. We denote by π the substitution homomorphism
A[z]→ A sending z to 1.

Let ϕD̃ : A[z]→ A[z][t] be the k-algebra homomorphism defined by

ϕD̃(xi) = xi +
M∑
j=1

zNjψ(Dj(xi))tj (i = 1, . . . , n),

ϕD̃(z) = z.
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It is then clear that ϕD̃(f)|t=0 = f for any f ∈ A[z]. By Lemma 2.2, ϕD̃
defines an lfhd D̃ = {D̃n}n≥0 on A[z] such that ϕD̃(f) =

∑
n≥0 D̃n(f)tn for

any f ∈ A[z].

Lemma 4.1. On A[z] = k[x1, . . . , xn, z], consider the usual grading deg
defined by deg(xa1

1 · · ·xan
n z

b) = a1 + · · ·+an+b. Then the lfhd D̃ = {D̃n}n≥0

defined as above is homogeneous of degree −(N1 − 1) with respect to deg.

Proof. For any 1≤ i≤n and j≥1, D̃j(xi) is either the zero polynomial or
a homogeneous polynomial of degree Nj = j(N1 − 1) + 1. So, for any homo-
geneous polynomial f ∈ A[z] and for any integer j ≥ 0, D̃j(f) is either the
zero polynomial or a homogeneous polynomial of degree deg f+j(N1−1).

We call the lfhd D̃ the homogeneization of D.

Lemma 4.2 (cf. [5, Lemma 6.1]). Let A[z]D̃ be the kernel of the lfhd D̃
on A[z]. Then

π(A[z]D̃) = AD.

Proof. Naturally, we can extend the morphism π : A[z] → A to a k-
algebra homomorphism π′ : A[z][t] → A[t] by setting π′(t) = t. Then we
have

π′(ϕD̃(xi)) = π′
(
xi +

∑
j=1

zNjψ(Dj(xi))tj
)

= xi +
∑
j=1

Dj(xi)tj = ϕD(π(xi))

for any i = 1, . . . , n and π′(ϕD̃(z)) = π′(z) = 1 = ϕD(π(z)). Hence, π′ ◦ ϕD̃
= ϕD ◦ π as a homomorphism from A[z] to A[t]. Let h ∈ A[z]D̃. Then
ϕD̃(h) = h ∈ A[z] and so π(h) = π′(ϕD̃(h)) = ϕD(π(h)). Since π(h) ∈ A,
we conclude that π(h) ∈ AD. Hence, π(A[z]D̃) ⊂ AD.

Conversely, let g ∈ AD. Then ϕD(g) = g ∈ A. Since g = ϕD(g) =
ϕD(π(zdeg gψ(g))) = π′(ϕD̃(zdeg gψ(g))) ∈ A and since D̃j(zdeg gψ(g)) is
homogeneous for any j ≥ 0, we know that ϕD̃(zdeg gψ(g)) ∈ A[z]. Then
zdeg gψ(g) ∈ A[z]D̃ and so g = π(zdeg gψ(g)) ∈ π(A[z]D̃). Hence, AD ⊂
π(A[z]D̃).

By Lemma 4.1, D̃ satisfies the requirements of the algorithm of Section 3,
with the usual grading deg on A[z] as the combined grading. By Lemma 4.2,
we can find generators for AD by calculating those for A[z]D̃.

Example 4.3. Let k be a field of characteristic p 6= 2 and A = k[x, y].
Let D be an lfhd on A such that ϕD(x) = x+ yt+ 1

2 t
2 and ϕD(y) = y + t,

where ϕD : A→ A[t] is the homomorphism associated to D. With the same
notation as above, we may set Nj = 1 for any integer j ≥ 1. Then the
homogeneization D̃ of D satisfies

ϕD̃(x) = x+ yt+
z

2
t2, ϕD̃(y) = y + zt, ϕD̃(z) = z.
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That is, D̃ is the same as the lhfd D in Example 3.9. By Example 3.9, we
know that {z, xz − 1

2y
2} is a good set fo b = 2 (cf. Definition 3.3). Let

A =
⊕

v∈Z≥0
Av be the usual grading of A. From the proof of Lemma 4.2,

we get

k[π(z), π(xz − y2/2)] ∩
⊕
v≤2

Av = k[x− y2/2] ∩
⊕
v≤2

Av = AD ∩
⊕
v≤2

Av.

5. Appendix—Kernel-check algorithm. In [6, p. 32], Maubach gives
an abbreviated version of van den Essen’s algorithm in [2]. He calls the algo-
rithm the kernel-check algorithm. Similarly, we have an abbreviated version
of Tanimoto’s algorithm in [11]. The algorithm stated below is a word-for-
word translation of the kernel-check algorithm.

Let R be a PID, let A = R[a1, . . . , an] be a finitely generated R-algebra
and let D = {Dn}n≥0 be a non-trivial lfihd. Let σ ∈ A satisfy:

(1) σ 6∈ AD.
(2) degt ϕD(σ) = min{degt(ϕD(f)) | f ∈ A \AD}.

Then σ is called a local slice of D (cf. [11, p. 2285]). Let c be the leading
coefficient of ϕD(σ) as a polynomial in one variable t. We note that c ∈ AD
(cf. [11, Section 1]). Suppose a finite set {f1, . . . , fm} ⊂ AD is given. Then
the algorithm proceeds in the following two steps.

Step 1. Find generators P1, . . . , Ps for the ideal

J = {P ∈ R[m] | P (f1, . . . , fm) ∈ cA},
where R[m] denotes the polynomial ring in m variables over R. (We can
calculate generators of J by using for example the theory of Gröbner bases.)

Step 2. If c−1Pi(f1, . . . , fm) ∈ R[f1, . . . , fm] for each i = 1, . . . , s, then
the output is yes; otherwise, it is no.

Acknowledgements. The authors would like to thank Professor Ryuji
Tanimoto for giving us the first version of his paper [11] and useful comments.
The authors would also like to thank the referee for useful suggestions to
improve the paper.

REFERENCES

[1] D. Daigle, Locally nilpotent derivations, Lecture Notes for the 26th Autumn School
of Algebraic Geometry, Łukęcin, 2003.

[2] A. van den Essen, An algorithm to compute the invariant ring of a Ga-action on an
affine variety, J. Symbolic Comput. 16 (1993), 551–555.

[3] —, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190,
Birkhäuser, Basel, 2000.

http://dx.doi.org/10.1006/jsco.1993.1062


COMPUTING THE KERNEL OF A DERIVATION 31

[4] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia
Math. Sci. 136, Springer, 2006.

[5] S. Maubach, An algorithm to compute the kernel of a derivation up to a certain
degree, J. Symbolic Comput. 29 (2000), 959–970.

[6] —, Polynomial endomorphisms and kernels of derivations, Ph.D. thesis, Univ. Ni-
jmegen, 2003.

[7] M. Miyanishi, Lectures on Curves on Rational and Unirational Surfaces, Tata In-
stitute of Fundamental Research, Springer, Berlin, 1978.

[8] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet
Mikołaja Kopernika, Toruń, 1994.

[9] A. Nowicki and M. Nagata, Rings of constants for k-derivations in k[x1, . . . , xn],
J. Math. Kyoto Univ. 28 (1988), 111–118.

[10] S. Okuda, Kernels of derivations in positive characteristic, Hiroshima Math. J. 34
(2004), 1–19.

[11] R. Tanimoto, An algorithm for computing the kernel of a locally finite iterative
higher derivation, J. Pure Appl. Algebra 212 (2008), 2284–2297.

Yuki Ito
Graduate School of Science and Technology
Niigata University
Niigata 950-2181, Japan

Hideo Kojima
Department of Information Engineering

Faculty of Engineering
Niigata University

Niigata 950-2181, Japan
E-mail: kojima@ie.niigata-u.ac.jp

Received 7 November 2009;
revised 23 February 2010 (5296)

http://dx.doi.org/10.1006/jsco.1999.0334
http://dx.doi.org/10.1016/j.jpaa.2008.03.006



	Introduction
	Preliminary results
	Homogeneous kernel algorithm
	Algorithm for a non-homogeneous lfhd
	Appendix—Kernel-check algorithm

