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APPROXIMATION THEOREMS FOR COMPACTIFICATIONS

KOTARO MINE (Tsukuba)

Abstract. We shall show several approximation theorems for the Hausdorff com-
pactifications of metrizable spaces or locally compact Hausdorff spaces. It is shown that
every compactification of the Euclidean n-space R" is the supremum of some compactifi-
cations homeomorphic to a subspace of R"T!. Moreover, the following are equivalent for
any connected locally compact Hausdorff space X:

(i) X has no two-point compactifications,
(ii) every compactification of X is the supremum of some compactifications whose
remainder is homeomorphic to the unit closed interval or a singleton,
(iii) every compactification of X is the supremum of some singular compactifications.

We shall also give a necessary and sufficient condition for a compactification to be ap-
proximated by metrizable (or Smirnov) compactifications.

1. Introduction. Suppose that X is a non-compact completely regular
space and let KC(X) be the class of all Hausdorff compactifications of X. For
any two compactifications yX and §.X of X, we write yX < §X if there is a
continuous map f : §X — X such that f|x = idx. If such a map f can be
a homeomorphism (i.e., X < 06X and vX > §X), we say vX is equivalent
(~) to 6X. Identifying vX and 0.X with vX ~ 6 X, we may assume that the
quotient (IC(X)/~, <) has a partially ordered structure. Throughout this
paper, we identify (X)) with K(X)/~.

In this paper, we shall show the following theorem.

THEOREM 1.1. Ewery compactification of Euclidean n-space R™ is the
supremum of compactifications that are subspaces of R™H1.

There have been many studies about approximating the Stone-Cech
compactification 85X by simpler compactifications. For example, it is known
that X is the supremum of (a) all singular compactifications having the
remainder homeomorphic to a closed interval if X is locally compact non-
pseudocompact (Chandler and Faulkner [2]), (b) all singular compactifi-
cations if X is locally compact 1-complemented, where a locally compact
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space X is said to be 1-complemented (or connected at infinity) provided
each compact set L1 C X is contained in a compact set Ly such that X \ Ly
is connected (cf. [2]), (c) all Smirnov compactifications for any metrizable
space X (Woods [8]) and (d) all Higson compactifications for any locally
compact separable metrizable space X (Kawamura and Tomoyasu [7]).

On the other hand, it was announced that any compactification of R™
(n > 2) is the supremum of compactifications having closed intervals as
remainders in [5]. In this paper, we shall give the following.

THEOREM 1.2. Suppose that X is a non-compact locally compact Haus-
dorff space. Then X has no two-point compactifications if and only if every
compactification of X is the supremum of a collection K C K(X) such that
each remainder of yX € K is homeomorphic to the unit closed interval or a
singleton. In this case, we can take for K a collection of singular compacti-
fications.

THEOREM 1.3. Suppose that X is a connected non-compact locally com-
pact Hausdorff space. Then the following are equivalent:

(i) X has no two-point compactifications,

(ii) every compactification of X is the supremum of a collection K C
K(X) such that each remainder of vX € K 1is homeomorphic to the
unit closed interval or a singleton,

(iii) every compactification of X is the supremum of singular compacti-
fications.

It is well known that every compactification of a locally compact separa-
ble metrizable space is the supremum of some metrizable compactifications.
Since any metrizable compactification is a Smirnov compactification (see
Fact , it also follows that every compactification of a locally compact
separable metrizable space is the supremum of some Smirnov compactifica-
tions. These results are generalized as follows.

THEOREM 1.4. Suppose that X is a non-compact metrizable space. Then
a compactification X of X can be realized as the supremum of some metriz-
able compactifications if and only if X has a metrizable compactification vX
such that vX < 6X.

THEOREM 1.5. Suppose that X is a non-compact metrizable space. Then
a compactification 0 X of X can be realized as the supremum of some Smirnov
compactifications if and only if X has a Smirnov compactification ugX for
an admissible metric d on X such that ugX < 6X.

In Section 4, we shall also give an upper bound x on the minimal car-
dinality of a collection K in Theorem (see Corollaries and . The
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paper [6] gave the minimal cardinality to approximate X by Smirnov com-
pactifications in the case of X =[0,1) or w.

2. Compactifications and subalgebras of C*(X). Throughout this
paper, X is a non-compact completely regular space. We denote by C*(X)
the unital Banach algebra consisting of all bounded continuous functions
from X to R with the supremum norm || f|| = sup,cx | f(x)]-

It is well known that the partially ordered set (K(X), <) is isomorphic
to the collection (A(X), C) consisting of all closed unital subalgebras A C
C*(X) which generate the topology of X, that is, the original topology of X
coincides with the weak topology with respect to A. Indeed, the following
function S : K(X) — A(X) (cf. [1]) is an isomorphism:

SO X) ={flx e C*(X) | f € C"(v X))}

Note that S(yX) is isomorphic to C*(yX) as a Banach algebra and co-
incides with all functions in C*(X) which can be extended over yX. For
any A € A(X), let eq : X — T4 be the embedding defined by e4(z) =
(f(@)/|| fll) fea, where I denotes the closed interval [—1,1]. Then the order
homomorphism T : A(X) — K(X) defined by T(A) = clja ea(X) is the
inverse of S (cf. Theorem 3.7 of [1]).

Since (A(X),C) is a complete upper semilattice, so is (I(X), <), that
is, every subset K C K(X) has a supremum sup K € K(X). In particu-
lar, sup K(X) = X is the Stone-Cech compactification of X. If X is lo-
cally compact, then K(X) has a complete lattice structure and the infimum
inf (X) = aX is the Aleksandrov one-point compactification of X.

For a subset D of any unital Banach algebra A, D denotes the closure of
D in A, and (D) is the smallest unital subalgebra of A containing D. The
following is a key lemma (cf. Theorem 2 of [5]).

LEMMA 2.1. Suppose that vX is a compactification of X and A =
S(yX). For any g € C*(X), the compactification 74X = T((A,g)) can
be embedded in I x vX.

Proof. Put A, = (A, g). Note that the map e : X — IAY9} defined
by e(x) = prayge 0ea, is an embedding, where praygy ¢ 14 — 1AY{9}
is the natural projection. From the definition of the operator T', v, X =
clpag €a,(X). Now, we show that the compactification vy X = clyavig) e(X)
is equivalent to v,X. It is clear that v,X > ’y;X via the quotient map
PrAU{g} g X VX — 7y X - On the other hand, since each map f € AU{g} has
an extension || f|| pry [, x over X, the closed subalgebra S(v4X) contains
AU {g}. This implies A, C S(7,X) and

Y9 X = T(Ag) < T(S(75X)) = 7, X.
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Hence, v4X is equivalent to V;X . Thus, we have the inclusion
(1) YgX ~ 7y X = clpaugey e(X) CIxcllaea(X) =Ix X u

In the following, we consider the one-point compactification for a locally
compact space X.

LEMMA 2.2. Suppose that X is non-compact locally compact having no
two-point compactifications. Let aX = X U{oo} be the one-point compacti-
fication and A = S(aX) a subalgebra of C*(X). Then the remainder of the
compactification agX = T((A, g)) is homeomorphic to I or a singleton for

each g € C*(X).

Proof. Without loss of generality, we may assume [|g|| = 1 because
(A, 9) = (A, g/lgll)- Put e(X) = {(g9(z),z) | z € X} C I x aX. Note that
equation (1) in the proof of Lemma implies ) X = clixax e(X) ~ agX.
Thus, it suffices to show that v.X = af X \ e(X) is homeomorphic to I or a
singleton. Since e(X) is closed in Ix X, we have vX = o) XN(Ix{oc}). Now,
we shall show if v X is disconnected then X has a two-point compactifica-
tion. Indeed, if ¥ X is disconnected, take ¢ € I such that (t,00) ¢ v X, vX N
((t,1]x{o0}) # 0 and vXN([—1,t) x {oo}) # 0. Then X is the disjoint union

X =g ([-1,)ug () Uy (1))

As (t,0) ¢ vX, g~ 1(t) is compact. On the other hand, the closures of V; =
g 1((t,1]) and V_ = g~ !([~1,t)) are both non-compact. Hence, we have a
two-point compactification yX = X U{+oco} with the topology generated by

{U | U open in X'}
U{{+ooc} U (Vi \ F),{—c0}U(V_\F)|F compact in X}.

Thus, vX is a compact connected subset of I x {oco} and it is homeomorphic
to I or a singleton.

3. Singular compactifications and Smirnov compactifications.
We call a continuous map f from X to a compact space L singular if
clx f~Y(U) is non-compact for every non-empty open set U in L. Then
the singular compactification of X induced by f, denoted by X Uy L, is a
topological space X U L whose topology is generated by the following col-
lection:

{U | U open in X}
U{VU(f ' (V)\ F) |V open in L, F compact in X}.
It is known that a compactfication vX is equivalent to some singular com-

pactification if and only if vX \ X is a retract of v X (cf. [4]). Then we have
the following lemma whose simple proof is left to the reader.
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LEMMA 3.1. In Lemma@ ay X is a singular compactification for any
geC* (X ) =

For a metrizable space X and an admissible metric d on X, let Uj;(X)
be the subalgebra of C*(X) consisting of all bounded uniformly continuous
functions with respect to d. The Smirnov (or Samuel) compactification ugX
is defined by u4qX = T(U;(X)), which is characterized by the following
theorem:

THEOREM 3.2 (Theorem 2.5 of [§]). Suppose that X = (X,d) is a metric
space. Then the following are equivalent:

(1) X ~ugX,
(ii) for any A,B C X, clyx ANclyx B # 0 if and only if d(A, B) = 0.

Note that it is well known that every compactification of a locally com-
pact separable metrizable space is the supremum of some metrizable com-
pactifications. The following fact implies that every compactification of a lo-
cally compact separable metrizable space is the supremum of some Smirnov
compactifications.

Fact 3.3. Every metrizable compactification is a Smirnov compactifica-
tion.

Proof. Let vX be a metrizable compactification. Take an admissible met-
ric p on 7X. Then d = p|x is an admissible metric on X. It is obvious that
clyx ANcl,x B # () if and only if d(A, B) = 0 for any A, B C X. By Theorem
we have ugX ~yX. =

The following is well known (see the proof of Theorem 3.5.5 of [3]).

THEOREM 3.4 (Taimanov). Suppose that X is a non-compact completely
reqular space. Let vX and 6 X be compactifications of X. Then the following
are equivalent:

(i) X < 6X,
(ii) if A and B are closed subsets in X with clyx ANclyx B =0 then
csx ANclsx B = 0.

The following lemma implies that X is realized as the supremum of
some Smirnov compactifications, which was shown by Woods [§].

LEMMA 3.5. Let X = (X,d) be a metric space. Then uyX is equivalent
to v X = T((U;j(X),g)) for any g € C*(X), where d' is the metric on X
defined by d'(z,y) = d(z,y) + |g9(x) — g(y)|-

Proof. Since g and each member of U (X) are uniformly continuous with
respect to the metric d', it is clear that Uj(X) C (U3(X), g) C Uj(X). This
implies ugX < vX < ugX. To see ugy X < vX, by Theorem 3.4 it suffices
to check that clyx ANcl,x B = () for any closed subsets A and B in X with
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cly, x ANcly,x B = (). Assume to the contrary that cly,x ANcly,x B= 0
and there is € cl,x ANclyx B. Then ¢ = d'(4, B) > 0 by Theorem
Let m = pry:(x)lyx @ 7X — uaX be the quotient map and N(z) the
open neighborhood system of x in vX. For every V' € N(x), m(x) is in
cly,x m(ANV)Necly,x 7(ANV) since z € clyx(ANV)Ncl,x(BNV). Note
that 7(ANV) =ANV and n(BNV) = BNV. Thus, n(z) € cl,,x(AN
V)Nnecly,x(BNV)and d(ANV,BNV) =0 by Theorem Hence, we can
take ay € ANV and by € BNV such that d(ay,by) < £/2. Then the nets
(av)ven(z) and (by)ven(s) converge to x in vX and we have

lim g(av)=_lim g]pry(av) =gl pry(z)

VeN(z) VEN(z)
ylm lgll pr,(by) yim g(by)

Hence, there is Vj € N(z) such that |g(ay,) — g(by,)| < £/2 and so
d/(aVoa byy) = d(avy, biy) + |9(av,) — g(bwy)| <e/2+¢e/2=¢= d/(A7 B).

This is a contradiction. m

4. Generators for Banach algebras. Recall that K(X) is the collec-
tion of all compactifications of X.

PROPOSITION 4.1. Let vX and § X be compactifications of a completely
reqular space X with X > vX. Then there exists a collection K C K(X)
such that sup K = 6X and each member of K can be embedded in I x vX.

Proof. Let A = S(yX) and B = S(0X) be subalgebras of C*(X). Take
any set D C B satisfying (D) = B. For any g € D\ S(vX), v,X =T((4,9))
can be embedded in I x yX by Lemma[2.1] Let K = {7,X | g € D\ S(vX)}
be a collection of compactifications. Since T is an isomorphism between

complete upper semilattices, we have

60X =T(B) =T(sup{(4,9) | g€ D\ S(vX)})

=sup{T'({4,9)) | g € D\ S(vX)}
=sup{, X |ge D\ S(vX)} =sup K. =
For a set D, card D denotes the cardinal of D. From the proof of Propo-
sition the following corollaries are derived.

COROLLARY 4.2. In Proposition we can take K C K(X) such that
each member of K is T((A,g)) for some g € C*(X), where A is the subal-
gebra of C*(X) defined by A = S(yX). m

COROLLARY 4.3. In Proposition the minimal cardinality of a col-
lection K C K(X) satisfying sup K = X has an upper bound

x = min{card(D \ S(vX)) | D C S(6X), (D) = S(6X)}. =
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For any unital Banach algebra A, gen(A) denotes the minimal cardinality
of a subset of A which generates A, that is,

gen(A) = min{card D | D C A, (D) = A}.

In Corollary it is obvious that x < gen(S(0X)) = gen(C*(0.X)). Let Y
be a completely regular space. We denote by emb(Y") th. mmlmal dimension
of Tikhonov cubes containing Y as a subspace:

emb(Y) = min{card D | 3¢ : Y — I” an embedding}.
Then the following proposition yields gen(S(0X)) = emb(5X).

PROPOSITION 4.4. If L is a compact Hausdorff space, then emb(L) =
gen(C*(L)).

Proof. To see emb(L) > gen(C*(L)), take an embedding e : L — Temb(L),
Let D = {pryoe € C*(L) | A € emb(L)}, where pry : I*?P(L) — T is the
projection to the Ath coordinate. Since e is an embedding, D separates the
points of L. Hence, (D) = C*(L) by the Stone-Weierstrass Theorem. This
implies gen(C*(L)) < card D = emb(L).

To see emb(L) < gen(C*(L)), let D be a subset of C*(L) with (D) =
C*(L). Then D separates the points of L. Hence, the map

e: L—17, e(x) = (f(@)/|f)sep,
is an embedding. This implies emb(L) < card D = gen(C*(L)). =
COROLLARY 4.5. In Corollary[4.3], k < emb(0X). m

We say that a unital Banach algebra A is countably (resp. finitely) gen-
erated if there exists a countable (resp. finite) subset D C A such that

(D) = A. The following is a direct consequence of the previous proposition.

COROLLARY 4.6. Suppose that L is a compact Hausdorff space. Then
L is separable (resp. finite-dimensional separable) metrizable if and only if
C*(L) is countably (resp. finitely) generated. m

THEOREM 4.7. Suppose that X is a completely reqular space. Then X is
separable (resp. finite-dimensional separable) metrizable if and only if there
exists a compactification vX of X such that C*(vX) is countably (resp.
finitely) generated.

Proof. To show the “if” part, suppose that C*(yX) is countably (resp.
finitely) generated. By Corollary ~vX is separable (resp. finite-dimen-
sional separable) metrizable, thus so is X.

To show the “only if” part, assume that X is separable (resp. finite-
dimensional separable) metrizable. Then X can be embedded in the Hilbert
cube IN (resp. the n-cube I" for some n € N). Let vX be the closure of
X in IV (resp. I"). Then C*(yX) is countably (resp. finitely) generated by

Corollary .
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In particular, if X is locally compact (finite-dimensional) separable metr-
izable, then so is a«X. Thus, we have the following corollary.

COROLLARY 4.8. Suppose that X is a locally compact Hausdorff space.
Then X is separable (resp. finite-dimensional separable) metrizable if and
only if C*(aX) is countably (resp. finitely) generated. m

5. The proof of approximation theorems. Now, we shall show the
statements in Section 1. The following is a direct consequence of Proposi-

tion [A.11

THEOREM 5.1. Suppose that X is a non-compact locally compact Haus-
dorff space. If I x aX is homeomorphic to a subspace of a topological space
Y, then every compactification of X is the supremum of compactifications
homeomorphic to a subspace of Y. m

In particular, if X = R™ then the one-point compactification aX is
homeomorphic to the n-dimensional sphere S™. Since I xS" can be embedded
in R"*!, Theorem follows from Theorem above.

Proof of Theorem [1.4. 1t is clear that the “only” if part follows from
Lemma [2.2] and Corollary £.2] On the other hand, it is obvious that no
two-point compactification of X can be the supremum of compactifications
having the remainder homeomorphic to I or one-point. This yields the “if”
part. The representability by singular compactifications is due to Lemma
We have completed the proof. =

Proof of Theorem[1.3 From Theorem[L.2] we have (i)« (ii) and (i)=>(iii).
Now we shall show (iii)=-(i). Assume to the contrary that X has a two-
point compactification yX. Since vX is the supremum of some singular
compactifications, we have a singular map f : X — L and the singular
compactification X Uy L < X whose remainder L is a two-point set. This
contradicts the connectedness of X. m

Proof of Theorems and . Let vX be a metrizable (resp. Smirnov)
compactification with ¥X < §X and A = S(yX) a subalgebra of C*(X). It
follows from Lemma(resp. Lemma that T'((A, g)) is also a metrizable
(resp. Smirnov) compactification for any g € C*(X). Thus, we have the
result from Corollary [1.2] u
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