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LOWER QUANTIZATION COEFFICIENT AND
THE F-CONFORMAL MEASURE

BY

MRINAL KANTI ROYCHOWDHURY (Edinburg, TX)

Abstract. Let F = {f® : 1 < i < N} be a family of Holder continuous functions and
let {¢; : 1 <4 < N} be a conformal iterated function system. Lindsay and Mauldin’s paper
[Nonlinearity 15 (2002)] left an open question whether the lower quantization coefficient
for the F-conformal measure on a conformal iterated funcion system satisfying the open
set condition is positive. This question was positively answered by Zhu. The goal of this
paper is to present a different proof of this result.

1. Introduction. The term ‘quantization’ in this paper refers to the
idea of estimating a given probability on R? with a discrete probability, that
is, a ‘quantized’ version of the probability supported on a finite set. Following
the work of Graf and Luschgy (cf. [GL1, [GL2]), we define the quantization
dimension (or perhaps better, the quantization dimension function) as fol-
lows. Given a Borel probability measure p on R, a number 7 € (0, 4+00)
and a natural number n € N, the nth quantization error of order r for u is

defined by
én,r = inf { (Sd(w,a)T d,u(:v)) v ca C RY, card(a) < n},

where d(z, a) denotes the distance from the point  to the set o with respect
to a given norm || - || on R% We note that if {||z||” du(z) < oo then there
is some set « for which the infimum is achieved (cf. [GLI]). The upper and
lower quantization dimensions for p of order r are defined by

logn logn

D, (p) := liminf

9 =r N—00 _log enm.

D, (p) == limsup ————

n—oo —log €n,r

If D,(u) and D, (1) coincide, we call their common value the quantization

dimension of 1 of order r and we denote it by D, (). For s > 0, we define

the s-dimensional upper and lower quantization coefficients of p of order r
by lim sup,,_,, ne;, (1) and liminf,, . ne;, (1) respectively.

Under the open set condition Graf and Luschgy determined the quan-

tization dimension D, := D,(u) for an arbitrary self-similar measure g,
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and proved that the D,-dimensional upper and lower quantization coefhi-
cients of p are both positive and finite (cf. [GL1, [GL2]). These results were
extended later by Lindsay and Mauldin (cf. [LM]) to the F-conformal mea-
sure m associated with a conformal iterated function system determined by
finitely many conformal mappings. They established a relationship between
the quantization dimension and the multifractal spectrum of m. They also
proved that the upper quantization coefficient of m is finite; however, they
left it open whether the lower quantization coefficient is positive. Zhu gave an
affirmative answer to this question (cf. |Z]). He did not use Holder’s inequal-
ity which appears both in Graf-Luschgy’s (cf. [GL1) IGL2]) and Lindsay—
Mauldin’s work (cf. [LM]), instead in the proof he mainly applied a class of
finite maximal antichains.

From our work, it can be seen that the asymptotic behavior of
Z|w|:n(]|gpfd||’"||exp(Sw(F))H)"T/(T“‘“T), which occurs in Lindsay and Maul-
din’s paper, is not a hurdle in analyzing the k,-dimensional lower quanti-
zation coefficient. We first introduce some lemmas (Lemmas and [3.7)),
and then following the techniques of Lindsay and Mauldin, using Hélder’s
inequality we give a different proof that the lower quantization coefficient of
the F-conformal measure is positive. The method of this paper can be used
in analyzing the lower quantization coefficients for many other probability
measures (for example: ergodic measure with bounded distortion, Moran
measure, ergodic Markov measure associated with a recurrent self-similar
set, probability measure generated by a set of bi-Lipschitz mappings, Gibbs
measure).

2. Basic definitions and lemmas. Let V C R% Recall that a map
¢ : V. — V is called contracting if there exists 0 < v(¢) < 1 such that
lo(z) — e(y)| < v(p)|z—y|. Let {p1,...,on} be a collection of contracting
maps of an open set V' C R? such that ¢;(X) C X for all 1 <i < N, where
X C V is a compact set such that X = cl(intX) and N > 2. Any such collec-
tion is called an iterated function system. By [HI, there is a unique nonempty
compact set J, called the limit set for the iterated function system, such that

N
(1) J=Jwi().
j=1

The iterated function system is said to satisfy the open set condition (OSC)
if there exists a nonempty open set U C X (in the topology of X) such
that ¢;(U) C U for all 1 < i < N and ¢;(U) N ¢;(U) = O for every pair
i,je{l,...,N},i# 3.

A C' map ¢ : V — R?is conformal if the differential ¢/(x) : R — R?
satisfies |/ (x)y| = |¢'(2)| - |y| # 0 for all z € V and y € R%, y # 0, where
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|¢' ()| represents the norm of the derivative at 2 € R%. An iterated function
system {¢; : X — X }1<;<n satisfying the open set condition on a compact
set X C R? with X = cl(intX) is said to be a conformal iterated function
system (cIFS) if each ¢; extends to an injective conformal map ¢; : V — V
on an open connected set V' O X such that ¢; : V — ¢;(V) C V is a
conformal C1*7 diffeomorphism with 0 < v < 1 and ||¢}| = sup{|¢}(z)] :
x € V} < 1. In this case the unique nonempty compact set J C X satisfying
is called a self-conformal set. Since {p; : 1 < i < N} is a finite system
of conformal maps, by [PRSS| the open set condition is equivalent to the
strong open set condition (SOSC), i.e., the open set U can be chosen so that
und #10.

Let I :={1,..., N} be a finite index set, I* := J,,~, I" be the set of all
finite words including the empty word (), and I := [[>2, T be the set of all
infinite words over I. Let o be the left shift on I, i.e., for w = (w1, ws,...)

€ I*° we have o(w) = (we,ws,...). For w = (wi,ws,...,w,) € I"™ we write
|w| = n for the length of w, and set o(w) = (w2, ws, .. .,w,); moreover, w|; =
(wi,ws,...,wg), k < n, denotes the truncation of w to length k. The length
of the empty word is zero. We write wr = w7 = (w1,...,W|; T1,T2,-..) tO
denote the juxtaposition of w = (w1, wa, ..., w),|) € [* and 7 = (71, Ty, ...) €
I*UI®. For w e I* and 7 € " UI*® we say that 7 is an extension of w if
||| = w- For w = (w1,ws, ..., w)y,) € I*, let us write

Ide, w = (D,
(p =
¢ SOwloSOWQO"'Ocpww“ |w’21

We call I' C I* a finite mazimal antichain if I' is a finite set of words
such that every element in [I°° is an extension of some word in I', but no
word of I" is an extension of another word in I'. Of course, this requires that
the index set [ is finite. We will make this assumption in the remainder of
the paper. We denote by |I'| the cardinality of I

Let us now state the following two well-known lemmas for conformal
iterated function systems (for details of the proof see [P]).

LEMMA 2.1. There exists a constant K >1 such that |¢.,(z)| < K|¢l,(y)]
forallz,y €V and all w € IT*.

LEMMA 2.2. There exists a constant K > K such that

K@ lld(z, y) < d(pw(), 0u(y) < K@, lld(, y)

for every w € I* and every pair of points x,y € V, where d is the metric
on X.

From Lemma the following lemma easily follows.



258 M. K. ROYCHOWDHURY

LEMMA 2.3 (cf. [R]). Let K > 1 be as in Lemma [2.1] Then for all
w,T € I*,
KLl el < el Il < Kl e -
Let F = {f® : X — R}es be a family of Holder continuous functions

cf. , i.e., for some § > 0 we have = sup,,>1 Vn < 00, where
f. [MU]), i.e., f B > 0 we have Vg(F n>1 Vo (F h
for each n > 1,

Va(F) = sup. sup |10 (@000) (@) = £ (e () e,
wel™ z,yecX

and also Y., [lef ® || < oo, where || - || denotes the supremum norm taken
over X.
For n > 1 and w € I", set S,(F) == >0, f@i) o Poi(w)- Then the
topological pressure of F' is defined by
1
P(F) = Tim log 3 flexp(Su(F))||.

n—oo M
|w|=n

As in [LM], we may assume P(F') = 0. By [MU], there exists a probability
measure m (the F-conformal measure) supported on J such that for any
continuous function g : X — Rand n > 1,

2 fgdm= " Jexp(Su(F)) - (g0 pu) dm.
|w|=n

Let 3(g) be the temperature function for G, 5 := {Blog |} +qf D }icr, i.e.,
P(Gyp(q) = 0. Below, we write P(Gg(5) as P(q,0(q)). As in [LM], for
each r € (0,400) there exists a unique x, € (0,+00) such that

.1 . e
(3) Jim —log Y (LIl llexp(SL(F))[) 7 =0,

|w|=n
which implies P(q,,rq,) = 0, i.e., 8(¢r) = rq, where ¢, = K, /(r + k). Let

us now write

Vo r(m) = inf {Sd(:c, Q)" dm(z) : o C RY, card(a) < n},
Up,r(m) = inf { Sd(:):, aUU®)" dm(z) : o € RY, card(a) < n},

where U is the set from the strong open set condition and U¢ denotes the
complement of U. We see that

ul/m < Vn{{f =eny.

n,r —

We call sets o, C R? for which the above infima are achieved n-optimal sets
for ey, Viur or uy - respectively. As stated before, Graf and Luschgy have
shown that n-optimal sets exist when {||z||" dm(z) < co.
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It is proved in [LM] that the quantization dimension D, := D,(m) of
order r for the probability measure m exists and equals 5(q,)/(1 — q) = kr;
furthermore, the x,-dimensional upper quantization coefficient is finite.

3. Main result. In this section we prove our main result given by the
following theorem.

THEOREM 3.1. Let m be the F-conformal measure associated with the
family of strongly Holder continuous functions {f(") : X — X}ier and the
conformal iterated function system {p; : X — X}iey. Let k, be the quanti-
zation dimension for the probability measure m. Then liminf ne;,.(m) > 0.

To prove the above theorem we need the following lemmas and corollary.

LeEMMA 3.2 ([LM| Lemma 2]). There exists a constant C > 1 such that
for any x,y € X and w € I*,

exp(Sy (F)(x))
exp(Su(F)(y))

In particular, for any x€X and w€I*, exp(S,(F)(x)) >C~exp(S.(F))]|-

<C.

Using Lemma [3.2] we can deduce the following lemma.
LEMMA 3.3. Let C > 1 be as in Lemma [3.2l Then for w,7 € I*, and
z,y € X,
I )
= llexp(Sw (F)) || llexp(S-(F))
Proof. For x € X and w, 7 € I'*, we have

T

|| I7|

exp(Sur(F)(@)) = exp (3 £ 0 0y (0(2)) + 3 £ 0 710y ()
j=1

> C7%||exp(Su(F))|| [lexp(Sr (F)]|-
The remaining inequality easily follows from the calculation

exp(Sur (F)(2)) < lexp(Su (F))] [lexp(S7(F))]|
< C?Jlexp(Su(F)) |l lexp(S-(F))||.

Let us now give the following lemma.
LEMMA 3.4. Let C > 1 be as in Lemma[3.2] Then for T € I*,
lexp(S-(F))]| < C.

Proof. By , for any Borel subset A of X and any 7 € I" (n > 1), we
have
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m(er(4)) = Z Jexp(Su(F)(@)) - (Lp, () © pu(w)) dm(z)

_TL

SeXp ) (1p,(a) © pr(x)) dm(x)
= | exp z)) dm(z) > C~||exp(S,(F))[|m(A).
A
Thus
m(er(A))
lexp(S-(F))[| < W <C.

LEMMA 3.5. Let 0 <7 < +00 and Kk, be as in . Then for any n > 1,
(K7C) 75 < 37 (Il lexp(Su (F)]) 7 < (K7C)7r

|w|=n
Proof. For w € I*, let s, = [|¢L||"llexp(Sw(F))|. Then for w,7 € I*
with ]w| = n and |7'| = p (n,p > 1), by Lemmas and we obtain
(K"C)2s,5: < 847 < (K"C)?s,5,. Hence by the standard theory of sub-
additive sequences, lim,, .., n~!log Z|w|=n st exists for any t € R. Let us
denote this limit by h(t). Then for ¢t > 0, we have

|w|=np
and so
1 P 1 P
lim —1 F(KTC)™Y) < h(t) < lim —1 L(KTOYY
pgrolo np Og(%ﬂ%,( ) ) < )_pggo np Og(|u;ns“’( ))
which implies
1
log Z t<h(t) < Elog Z st (KT0),
|lw|=n lw|=n

and therefore
enh(t)(KrC>ft < Z Sf.) < 6nh(t)(KTC)t.
IWI

Now substitute ¢t = then by (3) we have h(t) = 0, which yields

7‘+/{ )

(K7C) "7 < 3 (el lexp(Su(F))) 7+ < (K7C)7
|w|=n

for any n > 1, ending the proof. =

COROLLARY 3.6. Let m be an F-conformal measure, 0 < r < 400 and
Ky be as in (3)). Then for any w € I"™ with n > 1,

(K7C) " < 37 (I mlpn (X)) 7 < (K7C)7 s

|w[=n
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Proof. We know, for any w € I*, that
m(pu(X)) = {exp(S,(F)(z)) dm(x),

and so

m(pu(X)) < [lexp(Su(F))[| and  m(pu(X)) > Cexp(Su(F))]-
Hence, we have

CHIL I m(pu(X)) < el I m(u(X)) < [@LI" lexp(Su(X))]
< Ol I m(pu(X)).
Then ‘
TR S (bl m(ew (X)) 7 < ST (Ll lexp(Sw (X)) 7+

|w|=n jw|=n
<O 3 (el lmrmipn (X)) 7,
|w]=n

from which, by Lemma it follows that
D (lebllrmlpu(X)) e < e Y ([l lexp(Sw (X)) ) 7

|wl=n |wl=n

2K

< (K'C)rtsr,

and
2 (Ll m(eu(X)) ™ 2 775 37 (el lexp(Su(X0)I)
e jwl=n

2K
> (K"C) rer,
and thus the corollary is obtained. m
The following lemma plays a crucial role in this paper.

LEMMA 3.7. Let 0 < r < +00 and Kk, be as in . Let I' be a finite
maximal antichain. Then
6K

D (LI lexp(Su(EN) 7 > (K7C) ™ e
wel’
Proof. As I' is a finite maximal antichain, there exists a finite sequence
of positive integers n; < --- < ny such that
I'=1I, U---Ul,,
where I',, = {w € I' : |w| = n;} for 1 < j < k. Let M be a positive integer
and M > ng. We know that if m is an F-conformal measure, then for any
w,T € I* it follows that
m(wr(X)) < [lexp(Sur (F))| < llexp(Su (F))]] llexp(Sr(F))]l
< C%m(pu(X))m(p-(X)).
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Then, using Corollary [3.6] we have

> (Ll lexp(SuENI T = 3 (el mlpu(X))

werl werl

k .
Z ST (Ll mpu(X))) 7

j=1 GI_'n

(K"C TWZ > (Ll m(pu (X ))) T

7=1 wan

Y ()
|7|=M—n;
K
22
j=1wely,
K
r+nr Z Z
i=1wely,
5l .

S (LI I mpn (X)) m(pr (X)) 7
M—

nj

2K
T‘+l<:1r-

1=

S (KL C 2 m (X)) T
M—

L]

1=

(Ll m(pu (X)) 75 > (K7C) 7. m

> 7“+nr

Let us now state the following well-known lemma.

LEMMA 3.8 (cf. [LM|, Lemma 3]). Let I' C I* be a finite mazimal an-
tichain. Then there exists ng = no(l") such that for every n > ng, there
exists a set {n, := ny(n)}lwer of positive integers such that Y pne, < n
and

tng = (K"C)™HY el llexp(Su(F)) [ty -

wel’
Proof of Theorem [3.1 Let I' C I* be a finite maximal antichain. By
Lemma we have ng and for n > ng the numbers {n, = ny,(n)}uer

which satisfy the conclusion of that lemma. Set ¢ = min{nT/ Uy i < Mgt
Clearly each u,, > 0 and hence ¢ > 0. Suppose n > ng and kT/“Tuk,r >c
for all k£ < n. Hence using Lemma we have

B e > 0 (RTC) S [ lexp( S (F)) fm v
wel’

= /" (KTC Zuwwn lexp (S (F)) () /% (s (1))t

wel’

Neyln —r/K,
_12HSDLJHTHGXP(SM(F))H( o >> |

wel’
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Using Holder’s inequality (with exponents less than 1), we have

~ B . for | (T4t (r+kr)/kr
W > (KO (S (Ll lexp(Su(F)I) ™)
wel’
() \ /RN
(X0 )

wel’
By Lemma [3.7| and the fact that ), nu(n) < n, we see that

0"y > o(KTC)THKTC) S
Therefore, by induction,

liminfnu’fl:"r/r > (C(KTC)_l(KTC)_(i)HT/T >0, ie., liminfney, > 0.

n—oo
Hence the proof of the theorem is complete.
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