LOWER QUANTIZATION COEFFICIENT AND THE F-CONFORMAL MEASURE

BY
MRINAL KANTI ROYCHOWDHURY (Edinburg, TX)

Abstract

Let $F=\left\{f^{(i)}: 1 \leq i \leq N\right\}$ be a family of Hölder continuous functions and let $\left\{\varphi_{i}: 1 \leq i \leq N\right\}$ be a conformal iterated function system. Lindsay and Mauldin's paper [Nonlinearity 15 (2002)] left an open question whether the lower quantization coefficient for the F-conformal measure on a conformal iterated funcion system satisfying the open set condition is positive. This question was positively answered by Zhu. The goal of this paper is to present a different proof of this result.

1. Introduction. The term 'quantization' in this paper refers to the idea of estimating a given probability on \mathbb{R}^{d} with a discrete probability, that is, a 'quantized' version of the probability supported on a finite set. Following the work of Graf and Luschgy (cf. GL1, GL2]), we define the quantization dimension (or perhaps better, the quantization dimension function) as follows. Given a Borel probability measure μ on \mathbb{R}^{d}, a number $r \in(0,+\infty)$ and a natural number $n \in \mathbb{N}$, the nth quantization error of order r for μ is defined by

$$
e_{n, r}=\inf \left\{\left(\int d(x, \alpha)^{r} d \mu(x)\right)^{1 / r}: \alpha \subset \mathbb{R}^{d}, \operatorname{card}(\alpha) \leq n\right\}
$$

where $d(x, \alpha)$ denotes the distance from the point x to the set α with respect to a given norm $\|\cdot\|$ on \mathbb{R}^{d}. We note that if $\int\|x\|^{r} d \mu(x)<\infty$ then there is some set α for which the infimum is achieved (cf. [GL1]). The upper and lower quantization dimensions for μ of order r are defined by

$$
\bar{D}_{r}(\mu):=\limsup _{n \rightarrow \infty} \frac{\log n}{-\log e_{n, r}}, \quad \underline{D}_{r}(\mu):=\liminf _{n \rightarrow \infty} \frac{\log n}{-\log e_{n, r}}
$$

If $\bar{D}_{r}(\mu)$ and $\underline{D}_{r}(\mu)$ coincide, we call their common value the quantization dimension of μ of order r and we denote it by $D_{r}(\mu)$. For $s>0$, we define the s-dimensional upper and lower quantization coefficients of μ of order r by $\lim \sup _{n \rightarrow \infty} n e_{n, r}^{s}(\mu)$ and $\liminf _{n \rightarrow \infty} n e_{n, r}^{s}(\mu)$ respectively.

Under the open set condition Graf and Luschgy determined the quantization dimension $D_{r}:=D_{r}(\mu)$ for an arbitrary self-similar measure μ,
and proved that the D_{r}-dimensional upper and lower quantization coefficients of μ are both positive and finite (cf. [GL1, GL2]). These results were extended later by Lindsay and Mauldin (cf. [LM]) to the F-conformal measure m associated with a conformal iterated function system determined by finitely many conformal mappings. They established a relationship between the quantization dimension and the multifractal spectrum of m. They also proved that the upper quantization coefficient of m is finite; however, they left it open whether the lower quantization coefficient is positive. Zhu gave an affirmative answer to this question (cf. [Z]). He did not use Hölder's inequality which appears both in Graf-Luschgy's (cf. [GL1, GL2]) and LindsayMauldin's work (cf. [LM]), instead in the proof he mainly applied a class of finite maximal antichains.

From our work, it can be seen that the asymptotic behavior of $\sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|\right)^{\kappa_{r} /\left(r+\kappa_{r}\right)}$, which occurs in Lindsay and Mauldin's paper, is not a hurdle in analyzing the κ_{r}-dimensional lower quantization coefficient. We first introduce some lemmas (Lemmas 3.5 and 3.7), and then following the techniques of Lindsay and Mauldin, using Hölder's inequality we give a different proof that the lower quantization coefficient of the F-conformal measure is positive. The method of this paper can be used in analyzing the lower quantization coefficients for many other probability measures (for example: ergodic measure with bounded distortion, Moran measure, ergodic Markov measure associated with a recurrent self-similar set, probability measure generated by a set of bi-Lipschitz mappings, Gibbs measure).
2. Basic definitions and lemmas. Let $V \subset \mathbb{R}^{d}$. Recall that a map $\varphi: V \rightarrow V$ is called contracting if there exists $0<\gamma(\varphi)<1$ such that $|\varphi(x)-\varphi(y)| \leq \gamma(\varphi)|x-y|$. Let $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ be a collection of contracting maps of an open set $V \subset \mathbb{R}^{d}$ such that $\varphi_{i}(X) \subset X$ for all $1 \leq i \leq N$, where $X \subset V$ is a compact set such that $X=\operatorname{cl}(\operatorname{int} X)$ and $N \geq 2$. Any such collection is called an iterated function system. By [H], there is a unique nonempty compact set J, called the limit set for the iterated function system, such that

$$
\begin{equation*}
J=\bigcup_{j=1}^{N} \varphi_{j}(J) \tag{1}
\end{equation*}
$$

The iterated function system is said to satisfy the open set condition (OSC) if there exists a nonempty open set $U \subset X$ (in the topology of X) such that $\varphi_{i}(U) \subset U$ for all $1 \leq i \leq N$ and $\varphi_{i}(U) \cap \varphi_{j}(U)=\emptyset$ for every pair $i, j \in\{1, \ldots, N\}, i \neq j$.

A \mathcal{C}^{1} map $\varphi: V \rightarrow \mathbb{R}^{d}$ is conformal if the differential $\varphi^{\prime}(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ satisfies $\left|\varphi^{\prime}(x) y\right|=\left|\varphi^{\prime}(x)\right| \cdot|y| \neq 0$ for all $x \in V$ and $y \in \mathbb{R}^{d}, y \neq 0$, where
$\left|\varphi^{\prime}(x)\right|$ represents the norm of the derivative at $x \in \mathbb{R}^{d}$. An iterated function system $\left\{\varphi_{i}: X \rightarrow X\right\}_{1 \leq i \leq N}$ satisfying the open set condition on a compact set $X \subset \mathbb{R}^{d}$ with $X=\operatorname{cl}(\operatorname{int} X)$ is said to be a conformal iterated function system (cIFS) if each φ_{i} extends to an injective conformal map $\varphi_{i}: V \rightarrow V$ on an open connected set $V \supset X$ such that $\varphi_{i}: V \rightarrow \varphi_{i}(V) \subset V$ is a conformal $\mathcal{C}^{1+\gamma}$ diffeomorphism with $0<\gamma<1$ and $\left\|\varphi_{i}^{\prime}\right\|=\sup \left\{\left|\varphi_{i}^{\prime}(x)\right|\right.$: $x \in V\}<1$. In this case the unique nonempty compact set $J \subset X$ satisfying (1) is called a self-conformal set. Since $\left\{\varphi_{i}: 1 \leq i \leq N\right\}$ is a finite system of conformal maps, by [PRSS] the open set condition is equivalent to the strong open set condition (SOSC), i.e., the open set U can be chosen so that $U \cap J \neq \emptyset$.

Let $I:=\{1, \ldots, N\}$ be a finite index set, $I^{*}:=\bigcup_{n \geq 0} I^{n}$ be the set of all finite words including the empty word \emptyset, and $I^{\infty}:=\prod_{n=1}^{\infty} I$ be the set of all infinite words over I. Let σ be the left shift on I^{∞}, i.e., for $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$ $\in I^{\infty}$ we have $\sigma(\omega)=\left(\omega_{2}, \omega_{3}, \ldots\right)$. For $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right) \in I^{n}$ we write $|\omega|=n$ for the length of ω, and set $\sigma(\omega)=\left(\omega_{2}, \omega_{3}, \ldots, \omega_{n}\right)$; moreover, $\left.\omega\right|_{k}=$ $\left(\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right), k \leq n$, denotes the truncation of ω to length k. The length of the empty word is zero. We write $\omega \tau=\omega * \tau=\left(\omega_{1}, \ldots, \omega_{|\omega|}, \tau_{1}, \tau_{2}, \ldots\right)$ to denote the juxtaposition of $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{|\omega|}\right) \in I^{*}$ and $\tau=\left(\tau_{1}, \tau_{2}, \ldots\right) \in$ $I^{*} \cup I^{\infty}$. For $\omega \in I^{*}$ and $\tau \in I^{*} \cup I^{\infty}$ we say that τ is an extension of ω if $\left.\tau\right|_{|\omega|}=\omega$. For $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{|\omega|}\right) \in I^{*}$, let us write

$$
\varphi_{\omega}= \begin{cases}\operatorname{Id}_{\mathbb{R}^{d}}, & \omega=\emptyset \\ \varphi_{\omega_{1}} \circ \varphi_{\omega_{2}} \circ \cdots \circ \varphi_{\omega_{|\omega|}}, & |\omega| \geq 1\end{cases}
$$

We call $\Gamma \subset I^{*}$ a finite maximal antichain if Γ is a finite set of words such that every element in I^{∞} is an extension of some word in Γ, but no word of Γ is an extension of another word in Γ. Of course, this requires that the index set I is finite. We will make this assumption in the remainder of the paper. We denote by $|\Gamma|$ the cardinality of Γ.

Let us now state the following two well-known lemmas for conformal iterated function systems (for details of the proof see $[\mathrm{P}]$).

Lemma 2.1. There exists a constant $K \geq 1$ such that $\left|\varphi_{\omega}^{\prime}(x)\right| \leq K\left|\varphi_{\omega}^{\prime}(y)\right|$ for all $x, y \in V$ and all $\omega \in I^{*}$.

Lemma 2.2. There exists a constant $\tilde{K} \geq K$ such that

$$
\tilde{K}^{-1}\left\|\varphi_{\omega}^{\prime}\right\| d(x, y) \leq d\left(\varphi_{\omega}(x), \varphi_{\omega}(y)\right) \leq \tilde{K}\left\|\varphi_{\omega}^{\prime}\right\| d(x, y)
$$

for every $\omega \in I^{*}$ and every pair of points $x, y \in V$, where d is the metric on X.

From Lemma 2.1, the following lemma easily follows.

Lemma 2.3 (cf. $[\mathrm{R}]$). Let $K \geq 1$ be as in Lemma 2.1. Then for all $\omega, \tau \in I^{*}$,

$$
K^{-1}\left\|\varphi_{\omega}^{\prime}\right\|\left\|\varphi_{\tau}^{\prime}\right\| \leq\left\|\varphi_{\omega \tau}^{\prime}\right\| \leq K\left\|\varphi_{\omega}^{\prime}\right\|\left\|\varphi_{\tau}^{\prime}\right\|
$$

Let $F=\left\{f^{(i)}: X \rightarrow \mathbb{R}\right\}_{i \in I}$ be a family of Hölder continuous functions (cf. MU]), i.e., for some $\beta>0$ we have $V_{\beta}(F)=\sup _{n \geq 1} V_{n}(F)<\infty$, where for each $n \geq 1$,

$$
V_{n}(F)=\sup _{\omega \in I^{n}} \sup _{x, y \in X}\left|f^{\left(\omega_{1}\right)}\left(\varphi_{\sigma(\omega)}(x)\right)-f^{\left(\omega_{1}\right)}\left(\varphi_{\sigma(\omega)}(y)\right)\right| e^{\beta(n-1)}
$$

and also $\sum_{i \in I}\left\|e^{f^{(i)}}\right\|<\infty$, where $\|\cdot\|$ denotes the supremum norm taken over X.

For $n \geq 1$ and $\omega \in I^{n}$, set $S_{\omega}(F):=\sum_{j=1}^{n} f^{\left(\omega_{j}\right)} \circ \varphi_{\sigma^{j}(\omega)}$. Then the topological pressure of F is defined by

$$
P(F):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{|\omega|=n}\left\|\exp \left(S_{\omega}(F)\right)\right\|
$$

As in [LM], we may assume $P(F)=0$. By [MU], there exists a probability measure m (the F-conformal measure) supported on J such that for any continuous function $g: X \rightarrow \mathbb{R}$ and $n \geq 1$,

$$
\begin{equation*}
\int g d m=\sum_{|\omega|=n} \int \exp \left(S_{\omega}(F)\right) \cdot\left(g \circ \varphi_{\omega}\right) d m \tag{2}
\end{equation*}
$$

Let $\beta(q)$ be the temperature function for $G_{q, \beta}:=\left\{\beta \log \left|\varphi_{i}^{\prime}\right|+q f^{(i)}\right\}_{i \in I}$, i.e., $P\left(G_{q, \beta(q)}\right)=0$. Below, we write $P\left(G_{q, \beta(q)}\right)$ as $P(q, \beta(q))$. As in [LM], for each $r \in(0,+\infty)$ there exists a unique $\kappa_{r} \in(0,+\infty)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|\right)^{\frac{\kappa r}{r+\kappa_{r}}}=0 \tag{3}
\end{equation*}
$$

which implies $P\left(q_{r}, r q_{r}\right)=0$, i.e., $\beta\left(q_{r}\right)=r q_{r}$ where $q_{r}=\kappa_{r} /\left(r+\kappa_{r}\right)$. Let us now write

$$
\begin{aligned}
& V_{n, r}(m)=\inf \left\{\int d(x, \alpha)^{r} d m(x): \alpha \subset \mathbb{R}^{d}, \operatorname{card}(\alpha) \leq n\right\} \\
& u_{n, r}(m)=\inf \left\{\int d\left(x, \alpha \cup U^{c}\right)^{r} d m(x): \alpha \subset \mathbb{R}^{d}, \operatorname{card}(\alpha) \leq n\right\}
\end{aligned}
$$

where U is the set from the strong open set condition and U^{c} denotes the complement of U. We see that

$$
u_{n, r}^{1 / r} \leq V_{n, r}^{1 / r}=e_{n, r}
$$

We call sets $\alpha_{n} \subset \mathbb{R}^{d}$ for which the above infima are achieved n-optimal sets for $e_{n, r}, V_{n, r}$ or $u_{n, r}$ respectively. As stated before, Graf and Luschgy have shown that n-optimal sets exist when $\int\|x\|^{r} d m(x)<\infty$.

It is proved in LM that the quantization dimension $D_{r}:=D_{r}(m)$ of order r for the probability measure m exists and equals $\beta\left(q_{r}\right) /\left(1-q_{r}\right)=\kappa_{r}$; furthermore, the κ_{r}-dimensional upper quantization coefficient is finite.
3. Main result. In this section we prove our main result given by the following theorem.

Theorem 3.1. Let m be the F-conformal measure associated with the family of strongly Hölder continuous functions $\left\{f^{(i)}: X \rightarrow X\right\}_{i \in I}$ and the conformal iterated function system $\left\{\varphi_{i}: X \rightarrow X\right\}_{i \in I}$. Let κ_{r} be the quantization dimension for the probability measure m. Then $\lim \inf n e_{n, r}^{\kappa_{r}}(m)>0$.

To prove the above theorem we need the following lemmas and corollary.
Lemma 3.2 ([पM, Lemma 2]). There exists a constant $C \geq 1$ such that for any $x, y \in X$ and $\omega \in I^{*}$,

$$
\frac{\exp \left(S_{\omega}(F)(x)\right)}{\exp \left(S_{\omega}(F)(y)\right)} \leq C
$$

In particular, for any $x \in X$ and $\omega \in I^{*}, \exp \left(S_{\omega}(F)(x)\right) \geq C^{-1}\left\|\exp \left(S_{\omega}(F)\right)\right\|$.
Using Lemma 3.2, we can deduce the following lemma.
Lemma 3.3. Let $C \geq 1$ be as in Lemma 3.2. Then for $\omega, \tau \in I^{*}$, and $x, y \in X$,

$$
C^{-2} \leq \frac{\exp \left(S_{\omega \tau}(F)(x)\right)}{\left\|\exp \left(S_{\omega}(F)\right)\right\|\left\|\exp \left(S_{\tau}(F)\right)\right\|} \leq C^{2}
$$

Proof. For $x \in X$ and $\omega, \tau \in I^{*}$, we have

$$
\begin{aligned}
\exp \left(S_{\omega \tau}(F)(x)\right) & =\exp \left(\sum_{j=1}^{|\omega|} f^{\left(\omega_{j}\right)} \circ \varphi_{\sigma^{j}(\omega)}\left(\varphi_{\tau}(x)\right)+\sum_{j=1}^{|\tau|} f^{\left(\tau_{j}\right)} \circ \varphi_{\sigma^{j}(\tau)}(x)\right) \\
& \geq C^{-2}\left\|\exp \left(S_{\omega}(F)\right)\right\|\left\|\exp \left(S_{\tau}(F)\right)\right\| .
\end{aligned}
$$

The remaining inequality easily follows from the calculation

$$
\begin{aligned}
\exp \left(S_{\omega \tau}(F)(x)\right) & \leq\left\|\exp \left(S_{\omega}(F)\right)\right\|\left\|\exp \left(S_{\tau}(F)\right)\right\| \\
& \leq C^{2}\left\|\exp \left(S_{\omega}(F)\right)\right\|\left\|\exp \left(S_{\tau}(F)\right)\right\|
\end{aligned}
$$

Let us now give the following lemma.
Lemma 3.4. Let $C \geq 1$ be as in Lemma3.2. Then for $\tau \in I^{*}$,

$$
\left\|\exp \left(S_{\tau}(F)\right)\right\| \leq C
$$

Proof. By (2), for any Borel subset A of X and any $\tau \in I^{n}(n \geq 1)$, we have

$$
\begin{aligned}
m\left(\varphi_{\tau}(A)\right) & =\sum_{|\omega|=n} \int \exp \left(S_{\omega}(F)(x)\right) \cdot\left(1_{\varphi_{\tau}(A)} \circ \varphi_{\omega}(x)\right) d m(x) \\
& =\int^{\exp \left(S_{\tau}(F)(x)\right) \cdot\left(1_{\varphi_{\tau}(A)} \circ \varphi_{\tau}(x)\right) d m(x)} \\
& =\int_{A} \exp \left(S_{\tau}(F)(x)\right) d m(x) \geq C^{-1}\left\|\exp \left(S_{\tau}(F)\right)\right\| m(A) .
\end{aligned}
$$

Thus

$$
\left\|\exp \left(S_{\tau}(F)\right)\right\| \leq C \cdot \frac{m\left(\varphi_{\tau}(A)\right)}{m(A)} \leq C
$$

Lemma 3.5. Let $0<r<+\infty$ and κ_{r} be as in (3). Then for any $n \geq 1$,

$$
\left(K^{r} C\right)^{-\frac{k_{r}}{r+\kappa_{r}}} \leq \sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|\right)^{\frac{k_{r}}{r+\kappa_{r}}} \leq\left(K^{r} C\right)^{\frac{k_{r}}{r+\kappa_{r}}} .
$$

Proof. For $\omega \in I^{*}$, let $s_{\omega}=\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|$. Then for $\omega, \tau \in I^{*}$ with $|\omega|=n$ and $|\tau|=p(n, p \geq 1)$, by Lemmas 2.3 and 3.3 , we obtain $\left(K^{r} C\right)^{-2} s_{\omega} s_{\tau} \leq s_{\omega \tau} \leq\left(K^{r} C\right)^{2} s_{\omega} s_{\tau}$. Hence by the standard theory of subadditive sequences, $\lim _{n \rightarrow \infty} n^{-1} \log \sum_{|\omega|=n} s_{\omega}^{t}$ exists for any $t \in \mathbb{R}$. Let us denote this limit by $h(t)$. Then for $t \geq 0$, we have

$$
h(t)=\lim _{p \rightarrow \infty} \frac{1}{n p} \log \sum_{|\omega|=n p} s_{\omega}^{t},
$$

and so

$$
\lim _{p \rightarrow \infty} \frac{1}{n p} \log \left(\sum_{|\omega|=n} s_{\omega}^{t}\left(K^{r} C\right)^{-t}\right)^{p} \leq h(t) \leq \lim _{p \rightarrow \infty} \frac{1}{n p} \log \left(\sum_{|\omega|=n} s_{\omega}^{t}\left(K^{r} C\right)^{t}\right)^{p}
$$

which implies

$$
\frac{1}{n} \log \sum_{|\omega|=n} s_{\omega}^{t}\left(K^{r} C\right)^{-t} \leq h(t) \leq \frac{1}{n} \log \sum_{|\omega|=n} s_{\omega}^{t}\left(K^{r} C\right)^{t},
$$

and therefore

$$
e^{n h(t)}\left(K^{r} C\right)^{-t} \leq \sum_{|\omega|=n} s_{\omega}^{t} \leq e^{n h(t)}\left(K^{r} C\right)^{t} .
$$

Now substitute $t=\frac{\kappa_{r}}{r+\kappa_{r}}$; then by (3) we have $h(t)=0$, which yields

$$
\left(K^{r} C\right)^{-\frac{\kappa_{r}}{r+\kappa_{r}}} \leq \sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|\right)^{\frac{k_{r}}{r^{+}+\kappa_{r}}} \leq\left(K^{r} C\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}}
$$

for any $n \geq 1$, ending the proof.
Corollary 3.6. Let m be an F-conformal measure, $0<r<+\infty$ and κ_{r} be as in (3). Then for any $\omega \in I^{n}$ with $n \geq 1$,

$$
\left(K^{r} C\right)^{-\frac{2 \kappa_{r}}{r+\kappa_{r}}} \leq \sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right)\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \leq\left(K^{r} C\right)^{\frac{2 \kappa_{r}}{r+\kappa_{r}}} .
$$

Proof. We know, for any $\omega \in I^{*}$, that

$$
m\left(\varphi_{\omega}(X)\right)=\int \exp \left(S_{\omega}(F)(x)\right) d m(x)
$$

and so

$$
m\left(\varphi_{\omega}(X)\right) \leq\left\|\exp \left(S_{\omega}(F)\right)\right\| \quad \text { and } \quad m\left(\varphi_{\omega}(X)\right) \geq C^{-1}\left\|\exp \left(S_{\omega}(F)\right)\right\| .
$$

Hence, we have

$$
\begin{aligned}
C^{-1}\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right) & \leq\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right) \leq\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(X)\right)\right\| \\
& \leq C\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
C^{-\frac{k_{r}}{r+\kappa_{r}}} \sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right)\right)^{\frac{k_{r}}{r+\kappa_{r}}} & \leq \sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(X)\right)\right\|\right)^{\frac{k_{r}}{r+\kappa_{r}}} \\
& \leq C^{\frac{k_{r}}{r+\kappa_{r}}} \sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right)\right)^{\frac{k_{r}}{r+\kappa_{r}}}
\end{aligned}
$$

from which, by Lemma 3.5, it follows that

$$
\begin{aligned}
\sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right)\right)^{\frac{k_{r}}{r+\kappa_{r}}} & \leq C^{\frac{k_{r}}{r+\kappa_{r}}} \sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(X)\right)\right\|\right)^{\frac{k_{r}}{r+\kappa_{r}}} \\
& \leq\left(K^{r} C\right)^{\frac{2 \kappa_{r}}{r+\kappa_{r}}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{|\omega|=n}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right)\right)^{\frac{k_{r}}{r+\kappa_{r}}} & \geq C^{-\frac{k_{r}}{r+\kappa_{r}}} \sum_{|\omega|=n}^{\mid}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(X)\right)\right\|\right)^{\frac{k_{r}}{r+\kappa_{r}}} \\
& \geq\left(K^{r} C\right)^{-\frac{2 \kappa_{r}}{r+\kappa_{r}}},
\end{aligned}
$$

and thus the corollary is obtained.
The following lemma plays a crucial role in this paper.
Lemma 3.7. Let $0<r<+\infty$ and κ_{r} be as in (3). Let Γ be a finite maximal antichain. Then

$$
\sum_{\omega \in \Gamma}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \geq\left(K^{r} C\right)^{-\frac{6 \kappa_{r}}{r+\kappa_{r}}} .
$$

Proof. As Γ is a finite maximal antichain, there exists a finite sequence of positive integers $n_{1}<\cdots<n_{k}$ such that

$$
\Gamma=\Gamma_{n_{1}} \cup \cdots \cup \Gamma_{n_{k}},
$$

where $\Gamma_{n_{j}}=\left\{\omega \in \Gamma:|\omega|=n_{j}\right\}$ for $1 \leq j \leq k$. Let M be a positive integer and $M \geq n_{k}$. We know that if m is an F-conformal measure, then for any $\omega, \tau \in I^{*}$ it follows that

$$
\begin{aligned}
m\left(\varphi_{\omega \tau}(X)\right) & \leq\left\|\exp \left(S_{\omega \tau}(F)\right)\right\| \leq\left\|\exp \left(S_{\omega}(F)\right)\right\|\left\|\exp \left(S_{\tau}(F)\right)\right\| \\
& \leq C^{2} m\left(\varphi_{\omega}(X)\right) m\left(\varphi_{\tau}(X)\right) .
\end{aligned}
$$

Then, using Corollary 3.6, we have

$$
\begin{aligned}
& \sum_{\omega \in \Gamma}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \geq \sum_{\omega \in \Gamma}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right)\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \\
& =\sum_{j=1}^{k} \sum_{\omega \in \Gamma_{n_{j}}}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right)\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \\
& \geq\left(K^{r} C\right)^{-\frac{2 \kappa_{r}}{r+\kappa_{r}}} \sum_{j=1}^{k} \sum_{\omega \in \Gamma_{n_{j}}}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right)\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \\
& \times \sum_{|\tau|=M-n_{j}}\left(\left\|\varphi_{\tau}^{\prime}\right\|^{r} m\left(\varphi_{\tau}(X)\right)\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \\
& =\left(K^{r} C\right)^{-\frac{2 \kappa_{r}}{r+\kappa_{r}}} \sum_{j=1}^{k} \sum_{\omega \in \Gamma_{n_{j}}} \sum_{|\tau|=M-n_{j}}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\varphi_{\tau}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right) m\left(\varphi_{\tau}(X)\right)\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \\
& \geq\left(K^{r} C\right)^{-\frac{2 \kappa_{r}}{r+\kappa_{r}}} \sum_{j=1}^{k} \sum_{\omega \in \Gamma_{n_{j}}} \sum_{|\tau|=M-n_{j}}\left(K^{-r}\left\|\varphi_{\omega \tau}^{\prime}\right\|^{r} C^{-2} m\left(\varphi_{\omega \tau}(X)\right)\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \\
& \geq\left(K^{r} C\right)^{-\frac{4 \kappa_{r}}{r+\kappa_{r}}} \sum_{|\omega|=M}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r} m\left(\varphi_{\omega}(X)\right)^{\frac{\kappa_{r}}{r+\kappa_{r}}} \geq\left(K^{r} C\right)^{-\frac{6 \kappa_{r}}{r+\kappa_{r}}} .\right. \text { ■ }
\end{aligned}
$$

Let us now state the following well-known lemma.
LEMMA 3.8 (cf. LLM, Lemma 3]). Let $\Gamma \subseteq I^{*}$ be a finite maximal antichain. Then there exists $n_{0}=n_{0}(\Gamma)$ such that for every $n \geq n_{0}$, there exists a set $\left\{n_{\omega}:=n_{\omega}(n)\right\}_{\omega \in \Gamma}$ of positive integers such that $\sum_{\omega \in \Gamma} n_{\omega} \leq n$ and

$$
u_{n, r} \geq\left(\tilde{K}^{r} C\right)^{-1} \sum_{\omega \in \Gamma}\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\| u_{n_{\omega}, r}
$$

Proof of Theorem 3.1. Let $\Gamma \subseteq I^{*}$ be a finite maximal antichain. By Lemma 3.8, we have n_{0} and for $n \geq n_{0}$ the numbers $\left\{n_{\omega}:=n_{\omega}(n)\right\}_{\omega \in \Gamma}$ which satisfy the conclusion of that lemma. Set $c=\min \left\{n^{r / \kappa_{r}} u_{n, r}: n \leq n_{0}\right\}$. Clearly each $u_{n, r}>0$ and hence $c>0$. Suppose $n \geq n_{0}$ and $k^{r / \kappa_{r}} u_{k, r} \geq c$ for all $k<n$. Hence using Lemma 3.8, we have

$$
\begin{aligned}
& n^{r / \kappa_{r}} u_{n, r} \geq n^{r / \kappa_{r}}\left(\tilde{K}^{r} C\right)^{-1} \sum_{\omega \in \Gamma}\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\| u_{n_{\omega}, r} \\
& \quad=n^{r / \kappa_{r}}\left(\tilde{K}^{r} C\right)^{-1} \sum_{\omega \in \Gamma}\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|\left(n_{\omega}(n)\right)^{-r / \kappa_{r}}\left(n_{\omega}(n)\right)^{r / \kappa_{r}} u_{n_{\omega}, r} \\
& \quad \geq c\left(\tilde{K}^{r} C\right)^{-1} \sum_{\omega \in \Gamma}\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|\left(\frac{n_{\omega}(n)}{n}\right)^{-r / \kappa_{r}}
\end{aligned}
$$

Using Hölder's inequality (with exponents less than 1), we have

$$
\begin{aligned}
n^{r / \kappa_{r}} u_{n, r} \geq & c\left(\tilde{K}^{r} C\right)^{-1}\left(\sum_{\omega \in \Gamma}\left(\left\|\varphi_{\omega}^{\prime}\right\|^{r}\left\|\exp \left(S_{\omega}(F)\right)\right\|\right)^{\kappa_{r} /\left(r+\kappa_{r}\right)}\right)^{\left(r+\kappa_{r}\right) / \kappa_{r}} \\
& \times\left(\sum_{\omega \in \Gamma}\left(\frac{n_{\omega}(n)}{n}\right)^{\left(-r / \kappa_{r}\right)\left(-\kappa_{r} / r\right)}\right)^{-r / \kappa_{r}}
\end{aligned}
$$

By Lemma 3.7 and the fact that $\sum_{\omega \in \Gamma} n_{\omega}(n) \leq n$, we see that

$$
n^{r / \kappa_{r}} u_{n, r} \geq c\left(\tilde{K}^{r} C\right)^{-1}\left(K^{r} C\right)^{-6} .
$$

Therefore, by induction,

$$
\liminf _{n \rightarrow \infty} n u_{n, r}^{\kappa_{r} / r} \geq\left(c\left(\tilde{K}^{r} C\right)^{-1}\left(K^{r} C\right)^{-6}\right)^{\kappa_{r} / r}>0 \text {, i.e., } \quad \lim \inf n e_{n, r}^{\kappa_{r}}>0
$$

Hence the proof of the theorem is complete.

REFERENCES

[GL1] S. Graf and H. Luschgy, The quantization dimension of self-similar probabilities, Math. Nachr. 241 (2002), 103-109.
[GL2] —, 一, Asymptotics of the quantization errors for self-similar probabilities, Real Anal. Exchange 26 (2001), 795-810.
[H] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
[LM] L. J. Lindsay and R. D. Mauldin, Quantization dimension for conformal iterated function systems, Nonlinearity 15 (2002), 189-199.
[MU] R. D. Mauldin and M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Univ. Press, 2003.
[P] N. Patzschke, Self-conformal multifractal measures, Adv. Appl. Math. 19 (1997), 486-513.
[PRSS] Y. Peres, M. Rams, K. Simon and B. Solomyak, Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets, Proc. Amer. Math. Soc. 129 (2001), 2689-2699.
[R] M. K. Roychowdhury, Quantization dimension function and ergodic measure with bounded distortion, Bull. Polish Acad. Sci. Math. 57 (2009), 251-262.
[Z] S. Zhu, The lower quantization coefficient of the F-conformal measure is positive, Nonlinear Anal. 69 (2008), 448-455.

Mrinal Kanti Roychowdhury
Department of Mathematics
The University of Texas-Pan American
1201 West University Drive
Edinburg, TX 78539-2999, U.S.A.
E-mail: roychowdhurymk@utpa.edu

