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ON PARTITIONS IN CYLINDERS OVER CONTINUA
AND A QUESTION OF KRASINKIEWICZ

BY

MIROSŁAWA REŃSKA (Warszawa)

Abstract. We show that a metrizable continuum X is locally connected if and only
if every partition in the cylinder over X between the bottom and the top of the cylinder
contains a connected partition between these sets.

J. Krasinkiewicz asked whether for every metrizable continuum X there exists a par-
titon L between the top and the bottom of the cylinder X×I such that L is a hereditarily
indecomposable continuum. We answer this question in the negative. We also present a
construction of such partitions for any continuum X which, for every ε > 0, admits a
confluent ε-mapping onto a locally connected continuum.

1. Introduction. Our terminology follows [Ku]. All spaces are meant to
be metrizable unless otherwise stated. All mappings are continuous. A closed
subset L ⊂ X is a partition in X between the sets A,B ⊂ X if there
exist open disjoint subsets U, V ⊂ X such that A ⊂ U , B ⊂ V and
X \ L = U ∪ V .

Theorem 1.1 ([Ku, Ch. VIII, §57, I, Theorem 9, and III, Theorem 1]). If
X is a locally connected continuum, then any partition in the cylinder over X
between the bottom and the top of the cylinder contains a connected partition
between these sets.

We shall show that the converse is also true, i.e., we will prove the fol-
lowing theorem.

Theorem 1.2. If X is a non-locally connected metrizable continuum,
then there exists a partition L in X × I between the top and the bottom of
the cylinder such that L does not contain any connected partition between
these sets.

Corollary 1.3. A metrizable continuum X is locally connected if and
only if every partition in the cylinder over X between the bottom and the top
of the cylinder contains a connected partition between these sets.
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Let us recall that a continuum is indecomposable if it is not the union
of two proper subcontinua. A continuum X is hereditarily indecomposable
if any subcontinuum of X is indecomposable. Bing [B] proved that for any
continuum X and any disjoint closed subsets A,B of X there is a partition L
between A and B such that every component of L is hereditarily indecom-
posable. Bing’s theorem combined with Theorem 1.1 yields the following
corollary.

Corollary 1.4. If X is a locally connected continuum, then there is a
partition L in X×I between the top and the bottom of the cylinder such that
L is a hereditarily indecomposable continuum.

Let us recall that a closed set F ⊂ X disjoint from A,B ⊂ X cuts X
between the sets A and B if F intersects any continuum K ⊂ X such that
K ∩A 6= ∅ 6= K ∩B. Every partition between A and B in X cuts X between
A and B, and the converse is true for locally connected continua.

For any continuum X, J. Krasinkiewicz [Kr] constructed an “arc of hered-
itarily indecomposable continua” which cut X × I between the top and the
bottom. More precisely, he constructed a continuum Y ⊂ X × I with a
monotone surjection s : Y → I such that every fiber s−1(t), t ∈ (0, 1), is a
hereditarily indecomposable continuum which cuts X × I between X × {0}
and X × {1}. He posed the following problem.

Problem 1.5 ([Kr, Problem 6.1]). Does there exist, for any continuum
X, a partition L in X × I between the top and the bottom of the cylinder
such that L is a hereditarily indecomposable continuum?

Let us denote by K the class of all continua X satisfying the condi-
tion described in Problem 1.5. In Section 4 we will give an example of a
continuum which does not belong to K and answers negatively the ques-
tion of Krasinkiewicz (see Example 4.2). This also implies a negative an-
swer to the first question of Problem 6.2 in [Kr] (see Section 5 for more
details).

Let us recall that a surjective mapping f : X → Y between compacta
is confluent if for any continuum K ⊂ Y and any component C of the set
f−1(K) we have f(C) = K. The confluent mappings between compacta,
defined by J. J. Charatonik in [JCh], form a class of mappings including the
classes of open mappings and of monotone mappings.

Let us recall that a continuum X is confluently LC-like if, for every ε > 0,
X admits a confluent ε-mapping onto a locally connected continuum. The
class of confluently LC-like continua was defined and investigated by L. G.
Oversteegen and J. R. Prajs in [O-P]. Non-locally connected examples of
confluently LC-like continua include Knaster type continua (i.e., the inverse



PARTITIONS IN CYLINDERS OVER CONTINUA 205

limits of arcs with open bonding mappings), solenoids, and fans that are
cones over compact zero-dimensional sets.

Slightly modifying an argument by Bing [B], we shall prove the following
theorem.

Theorem 1.6. Any confluently LC-like continuum X belongs to K. More-
over, there exists a partition L in X × I between the top and the bottom of
the cylinder such that

(i) L is a hereditarily indecomposable continuum,
(ii) (X × I) \ L = U ∪ V where U, V are disjoint open connected subsets

in X × I.

2. Proof of Theorem 1.2. Suppose that X is a continuum which is
not locally connected at x ∈ X. Then x has a closed neighbourhood Z such
that

(1) x 6∈ intZ C, where C is a component of Z and x ∈ Z.

Let E be the space of components of Z equipped with the quotient topology
and let q : Z → E be the quotient map. Since Z is a metrizable compact
space we have

(2) E is a metrizable compact zero-dimensional space.

By (1), (2) and the sequential continuity of q we can find a sequence xn of
points of intX Z converging to x and a sequence Cn 3 xn of pairwise different
components of Z such that the sequence q(Cn) converges to q(C) in E. Since
the sets S′ = {q(C2i) | i = 1, 2, . . .} and S′′ = {q(C2i−1) | i = 1, 2, . . .} are
closed subsets of the subspace E \ {q(C)}, there exists a pair of disjoint,
clopen subsets E′ and E′′ of E \ {q(C)} such that E \ {q(C)} = E′ ∪ E′′,
S′ ⊂ E′ and S′′ ⊂ E′′ by (2). Let us define Z ′ = q−1(E′), Z ′′ = q−1(E′′).

Obviously,

(3) Z ′ and Z ′′ are pairwise disjoint open subsets of Z and Z\C = Z ′∪Z ′′.

Observe that

(4) x is a limit point of both intX Z ′ and intX Z ′′.

By (2), the set E′′ is the union of clopen subsets of E and hence

(5) Z ′′ = q−1(E′′) is the union of clopen subsets Wj , j ∈ J , of Z.

Let Y be the partition in X × I between X × {0} and X × {1} defined by

(6) Y = bdX×I B where B = (X × [0, 1/4]) ∪ ((Z ′ ∪ C)× [1/4, 1/2]) ∪
(Z × [1/2, 3/4]).

Since the set B is compact, we have Y ⊂ B.
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By (5) we have Z ′′ × [1/2, 3/4] =
⋃

j∈JWj × [1/2, 3/4]. One can easily
check that the sets Wj × [1/2, 3/4] are clopen subsets of B and hence

(7) the set A = Z ′′ × [1/2, 3/4] is the union of clopen subsets of B.

Let us assume that Y contains a connected set L that is a partition in X× I
between X × {0} and X × {1}. Then by (7) we have

(8) L ⊂ B \A ⊂ (X × [0, 1/4]) ∪ ((Z ′ ∪ C)× [1/4, 3/4]) = D.

Let (X × I) \ L = U ∪ V , where U and V are non-empty open subsets of
X × I such that X × {0} ⊂ U and X × {1} ⊂ V . Observe that by (6) any
point of G = intX Z ′× [0, 3/4)∪X× [0, 1/4) can be connected with X×{0}
by a “vertical” interval contained in (X × I) \ L. Similarly, by (8) any point
of (X×I)\D can be connected with X×{1} by a vertical interval contained
in (X × I) \ L. Therefore we have

(9) G ⊂ U and (X × I) \D ⊂ V .

The definition of Y implies that the point z = (x, 5/8) does not belong to L.
By (3), (4) and (9), z ∈ clX×I U ∩ clX×I V , a contradiction.

Remark 2.1. The arguments in the proof of Theorem 1.2 extend to the
case of non-locally connected perfectly normal continua. Indeed, in this case
the space E defined as in the proof of Theorem 1.2 is a perfectly normal
(hence Fréchet) zero-dimensional compact space. One can easily check the
remaining details of the proof.

3. Proof of Theorem 1.6

Lemma 3.1 ([L-R, Corollaries 4.3 and 5.2]). If Y is a locally connected
continuum, then for any mapping f : X → Y the following conditions are
equivalent:

(i) f is confluent,
(ii) f is the composition g ◦ k of an open mapping g and a monotone

mapping k.

Corollary 3.2. If fi : Xi → Yi, for i = 1, 2, are confluent mappings
of continua onto locally connected continua, then the mapping f1 × f2 :
X1 ×X2 → Y1 × Y2 is also confluent.

In the proof of Theorem 1.6 we shall use the following well-known lemma,
the proof of which we recall for the reader’s convenience.

Lemma 3.3. If f : X → Y is a confluent mapping between continua and
K,L are continua in Y such that L ⊂ K and the set f−1(L) is connected,
then the set f−1(K) is also connected.
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Proof. Since f is confluent, any component of f−1(K) intersects the con-
tinuum f−1(L) ⊂ f−1(K) and hence the set f−1(K) is connected.

We shall prove Theorem 1.6 slightly modifying a proof of Bing from [B].
Let us recall that an embedding f : I → X is ε-crooked if there exist
0 < a < b < 1 with d(f(0), f(b)) < ε and d(f(1), f(a)) < ε. In our reasoning
we will need the following lemma proved in [B].

Lemma 3.4. For any disjoint continua K1,K2 in the Hilbert cube E and
any ε > 0 there exist disjoint closed subsets F1, F2 of E such that Ki ⊂ Fi

for i = 1, 2 and any embedding f : I → X \ (F1 ∪ F2) is ε-crooked.

We will say that a sequence (Ai, Bi), i = 0, 1, 2, . . . , of pairs of subcon-
tinua of a space Y is a Bing sequence if the following conditions are satisfied:

(1) Ai ∩Bi = ∅, intAi+1 ⊃ Ai and intBi+1 ⊃ Bi for i = 0, 1, . . . ,
(2) Y \(Ai∪Bi) is contained in an open subsetWi of a locally connected

continuum Z ⊃ Y such that any embedding f : I → Wi is (1/i)-
crooked for i = 1, 2, . . . .

Let us recall that a continuum X is unicoherent if for any continua A, B
in X such that X = A ∪ B the set A ∩ B is a continuum. Any contractible
continuum is unicoherent (cf. [Ku, §57, II, Theorem 2]).

Lemma 3.5. If X is a continuum such that there exists a Bing sequence
in X × I with A0 = X × {0} and B0 = X × {1}, then X belongs to K.
Moreover, there exists a partition L in X× I between the top and the bottom
of the cylinder such that

(i) L is a hereditarily indecomposable continuum,
(ii) (X × I) \ L = U ∪ V where U, V are disjoint open connected subsets

in X × I.
Proof. Let (Ai, Bi), i = 0, 1, . . . , be a Bing sequence in X × I such that

A0 = X × {0} and B0 = X × {1} and let Wi and Z be as in the definition
of a Bing sequence. Let U ′, V ′ be subsets of X × I defined by

(3) U ′ =
⋃∞

i=0Ai, V ′ =
⋃∞

i=0Bi

and let

(4) K = (X × I) \ (U ′ ∪ V ′) =
⋂∞

i=0[(X × I) \ (Ai ∪Bi)].

By the definition and (1),

(5) U ′ and V ′ are open connected disjoint subsets of X × I
and K is a closed subset of X × I. Slightly modifying a reasoning in [B], we
shall show that

(6) for any pair of intersecting continua M1,M2 in K, either M1 ⊂ M2

or M2 ⊂M1.
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Aiming at a contradiction, assume that there are continua M1,M2 in K
such that M1 ∩M2 6= ∅ and M1 \M2 6= ∅ 6= M2 \M1. Let x1 ∈ M2 \M1,
x2 ∈ M1 \M2 and let k be such that 1/k is less than the distance between
xj and Mj for j = 1, 2. By (2) and (4) we have M1,M2 ⊂ Wk. Let Vi ⊃Mi

be an open subset of Wk such that

(7) the distance between xi and Vi is greater than 1/k

for i = 1, 2, and let

(8) Ui ⊂ Vi ⊂Wk

be a component of Vi such thatMi ⊂ Ui. By condition (2) and the Mazurkie-
wicz–Moore Theorem, Ui is an open, arcwise connected subset of Z for
i = 1, 2. One can easily check that there is an embedding f : I → U1 ∪ U2

such that f(0) = x1, f(1) = x2, f([0, 1/2]) ⊂ U2 and f([1/2, 1]) ⊂ U1.
By (7) and (8), f is not (1/k)-crooked, a contradiction with (2) and (8).
This finishes the proof of (6).

From (6) it follows that K does not contain any non-trivial arc and hence
K is a boundary subset of the cylinder X × I. Thus

(9) X × I = clU ′ ∪ clV ′

by (4). The cone over X is unicoherent by Theorem 2 in [Ku, §57, II], and
hence the set

(10) L = clU ′ ∩ clV ′

is a connected partition in X × I contained in K by (4), (5) and (9). It
follows that

(11) L is a hereditarily indecomposable continuum

by (6). Moreover, from (9) and (10) we have

(12) (X × I) \ L = U ∪ V ,

where

(13) U = clU ′ \ L = (X × I) \ clV ′, V = clV ′ \ L = (X × I) \ clU ′.

Since U ′ ⊂ U ⊂ clU ′ and V ′ ⊂ V ⊂ clV ′ by (5) and (13), the sets U and V
are open connected disjoint subsets of X × I such that A0 = X × {0} ⊂ U
and B0 = X × {1} ⊂ V , by (3), (5) and (13). This completes the proof of
Lemma 3.5 by (11) and (12).

Lemma 3.6. If Z0, Z1, . . . , Zn, n ≥ 2, are non-empty pairwise disjoint
subcontinua of a locally connected continuum Y , then there is a pair K0,K1

of disjoint continua in Y such that Zi ⊂ Ki for i = 0, 1 and
⋃n

i=0 Zi ⊂
K0 ∪K1.

Proof. We proceed by induction on n. For n = 1 we can put Ki =
Zi for i = 0, 1. Let us suppose that the statement of Lemma 3.6 is valid
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for n = 1, . . . , k, k ≥ 1, and let Z0, Z1, . . . , Zk+1 be non-empty pairwise
disjoint subcontinua of a locally connected continuum Y . Since Y is arcwise
connected, there is an arc K in Y intersecting both Z0 and Zk+1. One can
easily check that there is a subarc K ′ of K intersecting Zk+1 and such that
K ′∩Zl 6= ∅ for some l ∈ {0, 1, . . . , k} andK∩Zi = ∅ for i ∈ {0, 1, . . . , k}\{l}.
Let us define

(14) Z ′l = Zl ∪K ′ ∪ Zk+1 and Z ′i = Zi for i ∈ {0, 1, . . . , k} \ {l}.

One can easily check that Z ′0, Z ′1, . . . , Z ′k are non-empty pairwise disjoint
subcontinua of Y . By the inductive hypothesis there is a pair K0,K1 of
disjoint continua such that Z ′i ⊂ Ki for i = 0, 1 and

⋃k
i=0Z

′
i ⊂ K0 ∪ K1.

It follows that Zi ⊂ Ki for i = 0, 1 and
⋃k+1

i=0 Zi ⊂ K0 ∪K1 by (14), which
finishes the proof of the inductive step and of Lemma 3.6.

Lemma 3.7. If Z is a locally connected continuum, then for any pair
C0, C1 of closed disjoint subsets of Z and any continua D0, D1 such that
Di ⊂ Ci for i = 0, 1, there is a pair of disjoint continua K0,K1 in Z such
that C0 ∪ C1 ⊂ K0 ∪K1 and Di ⊂ intKi for i = 0, 1.

Proof. Since the space Z is locally connected, there exists a finite cover A
of Z consisting of continua with diameter less than ε/3, where ε is less than
the distance between C0 and C1. Let us define Ai =

⋃
{A ∈ A | A∩Ci 6= ∅}

for i = 0, 1. One can easily check that

(15) A0 and A1 are disjoint closed sets having finitely many components

such that

(16) Ci ⊂ intAi for i = 0, 1.

Let Zi be a component of Ai containing Di for i = 0, 1, and let Z2, Z3, . . . , Zk

be the remaining components of A0 ∪A1. By (15) and (16) we have

(17) Di ⊂ intZi for i = 0, 1.

By Lemma 3.6 there is a pair K0,K1 of disjoint continua in Z such that

(18) Zi ⊂ Ki for i = 0, 1 and A0 ∪A1 =
⋃k

i=0Zi ⊂ K0 ∪K1.

By (16)–(18) we haveDi ⊂ intZi ⊂ intKi for i = 0, 1 and C0∪C1 ⊂ K0∪K1.
This finishes the proof of Lemma 3.7.

Proof of Theorem 1.6. Let X be any confluently LC-like continuum.
Without loss of generality we can assume that X × I equipped with the
product metric is a subset of the Hilbert cube E. By Lemma 3.5, to prove
Theorem 1.6 it suffices to define a Bing sequence (Ai, Bi) in X × I with
A0 = X ×{0}, B0 = X ×{1}. Let us suppose that we have defined elements
(A0, B0), . . . , (Ak, Bk) satisfying the conditions from the definition of a Bing



210 M. REŃSKA

sequence. By Lemma 3.4 there is a pair of disjoint closed subsets A,B in E
such that

(19) Ak ⊂ A, Bk ⊂ B
and

(20) any function f : I → U = E \ (A ∪B) is (1/(k + 1))-crooked.

Let ε > 0 be less than the distance between A and B and let g : X → Y be a
confluent ε-mapping onto a locally connected continuum. By Corollary 3.2,

(21) g × IdI is also a confluent ε-mapping.

One can easily check that the sets C0 = (g × IdI)(A ∩ (X × I)), C1 =
(g × IdI)(B ∩ (X × I)), D0 = (g × IdI)(Ak), D1 = (g × IdI)(Bk) satisfy the
assumption of Lemma 3.7 with Z = Y × I, hence there is a pair of disjoint
continua K0,K1 in Y × I with C0 ∪ C1 ⊂ K0 ∪K1 and

(22) Y × {i} ⊂ Di ⊂ intKi for i = 0, 1.

By Lemma 3.3, (21) and (22) the sets

Ak+1 = (g × IdI)−1(K0) ⊃ (g × IdI)−1(Y × {0}) = X × {0}
and

Bk+1 = (g × IdI)−1(K1) ⊃ (g × IdI)−1(Y × {1}) = X × {1}
are connected and hence, by (19) and (20), Ak+1, Bk+1 are disjoint continua
in X×I satisfying conditions (1) and (2) in the definition of a Bing sequence.
This finishes the proof of Theorem 1.6.

Remark 3.8. From the proof of Theorem 1.6 it follows that if X is a
continuum such that X × I satisfies the condition described in Lemma 3.7
with Di = X ×{i} for i = 0, 1, then X belongs to K. We do not know, how-
ever, whether such continua form a class larger than the class of confluently
LC-like continua.

Remark 3.9. Observe that if

(23) U, V ⊂ X × I are disjoint open sets
with

(24) clU ∪ clV = X × I,
then the set

(25) N = clU ∩ clV

is a partition in X×I between U and V . Indeed, by (23)–(25), (X×I)\N =
U ′ ∪ V ′, where the sets

(26) U ′ = clU \N = (X×I)\clV ⊃ U , V ′ = clV \N = (X×I)\clU ⊃ V
are disjoint open subsets of X × I with
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(27) clU ′ = U ′ ∪N = clU , clV ′ = V ′ ∪N = clV .

By (25)–(27) and the openness of U ′ and V ′,

(28) bdU ′ = clU ′ \ U ′ = clU ∩ clV = N , and similarly, bdV ′ = N .

If moreover U and V are connected, then the sets U ′, V ′ are also connected
by (26), (27), and the set N ⊂ (X × I) \ (U ∩ V ) is a continuum by (24),
(25) and the unicoherence of the cone over X.

It follows that the condition (ii) in Theorem 1.6 can be replaced by

(ii′) (X× I) \L = U ∪V where U, V are disjoint open connected subsets
in X × I such that bdU = bdV = L.

4. An example of a continuum not belonging to K. Let us recall
that a spaceX has the property of Kelley if for each x ∈ X, for each sequence
xn converging to x in X and for any continuum C 3 x in X there exists a
sequence Cn of continua in X converging to C with respect to the Hausdorff
metric and such that xn ∈ Cn for i = 1, 2, . . . .

Lemma 4.1 ([W, Theorem 3.1], [Ke] and [Ch-P, Theorem 2.2]). Each
hereditarily indecomposable continuum and each LC-like continuum has the
property of Kelley.

Example 4.2. Let X ⊂ R2 be a continuum defined by X = A∪
⋃∞

i=1Ai,
where A ⊂ R2 is a segment with endpoints (0, 0), (0, 2) and Ai, i = 1, 2, . . . ,
is a segment with endpoints (0, 0), (1/i, 1). We shall show that there is no
partition L in X × I between the top and the bottom of the cylinder such
that

(1) L is a hereditarily indecomposable continuum

and hence X does not belong to K.
On the contrary, let us assume that such a partition L exists. Let W,Z

be disjoint open subsets in X × I such that (X × I) \ L = W ∪ Z. By the
same argument as in Remark 3.9, we can prove that the set

(2) N = clW ∩ clZ ⊂ L
is a partition in X × I between the top and the bottom of the cylinder
satisfying the following condition:

(3) (X × I) \N = U ∪ V for some open disjoint subsets U, V of X × I
such that bdU = bdV = N .

Let J be the segment with endpoints (0, 1/2), (0, 3/2). By Theorem 1.1 there
is a continuum K in N ∩ (J × I) such that

(4) p(K) = J , where p stands for the projection of X × I onto the first
factor.
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Let x = (0, 3/4) ∈ J and let y ∈ K be such that p(y) = x. By the definition
of p we have y = (x, z) for some z ∈ I \ {0, 1}.

We shall show that

(5) there is a sequence yn in N \ (A× I) converging to y.

It suffices to prove that every closed neighbourhood G of y intersects
N \ (A× I). We can consider only neighbourhoods G of y in X × I of the
form G = (B ∪

⋃∞
i=kBi)× S, where B 3 x is a segment in A with endpoints

(0, a), (0, b), 1 > b > 3/4 > a > 0, Bi is a segment in Ai with endpoints
((1/i) · a, a), ((1/i) · b, b) for i = k, k + 1, . . . , and S is a segment in I.

Assume on the contrary that for some G as described above, we have
G ∩N ⊂ A× I. By (3) and the connectivity of the sets Bi × S we have

(6) Bi × S ⊂ U or Bi × S ⊂ V for i = k, k + 1, . . . .

From (3) it follows that

(7) for any neighbourhood M of y in G the sets M ∩ U , M ∩ V are
non-empty open subsets of G.

Since the set G \ (
⋃∞

i=kBi × S) = B × S 3 y is a boundary set in G, any
neighbourhood M of y in G intersects both U \ (B × S) = U ∩

⋃∞
i=kBi × S

and V \ (B × S) = V ∩
⋃∞

i=kBi × S by (7). Thus, by (6),

(8) both U and V contain infinitely many sets Bi × S.
One can easily check that (3) combined with (8) yields B × S ⊂ clU ∩ clV
= N , a contradiction with (1) and (2). This finishes the proof of (5).

By (1), (2), (5) and Lemma 4.1, there is a sequence yn in L \ (A × I)
converging to y and a sequence Ci 3 yi, i = 1, 2, . . . , of continua in L
converging to K 3 y with respect to the Hausdorff metric. Without loss
of generality we can assume that no element of Ci, i = 1, 2, . . . , intersects
{(0, 0)} × I. This combined with (4) implies that p(Ci), i = 1, 2, . . . , is
a sequence of continua in X converging to p(K) = J with respect to the
Hausdorff metric, such that (0, 0) 6∈ p(Ci) and p(yi) ∈ p(Ci) ∩ (X \ A) 6= ∅
for i = 1, 2, . . . , a contradiction.

Remark 4.3. The continuum X described in Example 4.2 is a well-
known example of a continuum without the property of Kelley. In fact, the
following theorem is true.

If X is a continuum such that there is a partition L in X × I between
the top and the bottom of the cylinder such that L is a continuum having
the property of Kelley, then X has the property of Kelley; in particular, any
continuum belonging to K has the property of Kelley.

The proof of the theorem above uses some different methods and will be
published elsewhere.
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5. Another question of Krasinkiewicz. Let us recall that the suspen-
sion S(X) of a topological space X is the quotient space X×I/R, where R is
the equivalence relation corresponding to the decomposition of the set X×I
into the sets X × {0}, X × {1}, and the singletons contained in X × (0, 1).

For every continuum X, J. Krasinkiewicz [Kr, Section 5] constructed a
dendroid (i.e., an arcwise connected hereditarily unicoherent non-degenerate
continuum) Z, an arc L ⊂ Z and a monotone surjection g such that

(i) g maps the suspension S(X) of X onto Z,
(ii) the fibers of g are hereditarily indecomposable,
(iii) L joins g(v0) to g(v1), where v0, v1 are the vertices of S(X),
(iv) (g ◦ j)−1(z), for z ∈ intL = L \ {g(v0), g(v1)}, cuts X × I between

X×{0} and X×{1}, where j : X× I → S(X) is the quotient map.

He posed the following problem related to this construction.

Problem 5.1 ([Kr, Problem 6.2]). Let Z and L be as in Section 5 of [Kr].
Does there exist a point in intL which separates Z between the ends of L?
Is L a monotone retract of Z?

The negative answer to Problem 1.5, given in Section 4, implies the nega-
tive answer to the first question in Problem 5.1. The second question remains
open.
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