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A GENERALIZATION OF A THEOREM OF MAMMANA

BY

ROBERTO CAMPORESI and ANTONIO J. DI SCALA (Torino)

Abstract. We prove that any linear ordinary differential operator with complex-
valued coefficients continuous in an interval I can be factored into a product of first-order
operators globally defined on I. This generalizes a theorem of Mammana for the case of
real-valued coefficients.

1. Introduction. Let L be a linear ordinary differential operator of
order n,

(1.1) L =
(
d

dx

)n
+ a1(x)

(
d

dx

)n−1

+ · · ·+ an−1(x)
d

dx
+ an(x),

where the coefficients a1, . . . , an are real-valued continuous functions in an
interval I, aj ∈ C0(I). Mammana [4, 5] proved that L always admits a
factorization of the form

(1.2) L =
(
d

dx
− α1(x)

)
· · ·
(
d

dx
− αn(x)

)
,

where the functions α1, . . . , αn are in general complex-valued and continuous
in the entire interval I and such that αj ∈ Cj−1(I,C) (1 ≤ j ≤ n). (See [5,
Teorema generale, p. 207].)

A local factorization of the form (1.2) had been known for some time (see,
for instance, [3, p. 121]). The new point established in [4, 5] is that one can
always find a global decomposition of the form (1.2) (i.e., valid on the whole
interval I) if one allows the αj to be complex-valued. The proof is based
on the existence of a fundamental system of solutions of the homogeneous
equation Ly = 0 (L given by (1.1)) whose complete chain of Wronskians is
never zero in I.

More specifically, let z1, . . . , zn be a fundamental system of solutions with
the property that the sequence of Wronskian determinants
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w0 = 1, w1 = z1,

w2 =

∣∣∣∣∣z1 z2

z′1 z′2

∣∣∣∣∣ , . . . , wj =

∣∣∣∣∣∣∣∣∣∣
z1 z2 · · · zj

z′1 z′2 · · · z′j
...

...
...

z
(j−1)
1 z

(j−1)
2 · · · z

(j−1)
j

∣∣∣∣∣∣∣∣∣∣
(1 ≤ j ≤ n)

never vanishes in the interval I. A generic fundamental system does not
have this property. Recall that z1, . . . , zn are linearly independent solutions
of Ly = 0 if and only if their Wronskian wn is nonzero at some point of I,
in which case wn(t) 6= 0 for all t ∈ I. However, the lower dimensional Wron-
skians wj , j < n, can vanish in I. Mammana proves that a fundamental
system with wj(x) 6= 0 for all x ∈ I and j always exists, with z1 (generally)
complex-valued, while z2, . . . , zn can be taken to be real-valued. The func-
tions αj in (1.2) are then the logarithmic derivatives of ratios of Wronskians,
namely

(1.3) αj =
d

dx
log

wn−j+1

wn−j
(1 ≤ j ≤ n).

The purpose of this paper is to generalize the result of Mammana to
linear ordinary differential operators (1.1) with complex-valued coefficients
aj ∈ C0(I,C) (1 ≤ j ≤ n). We prove that any such operator can be written
in the form (1.2) with αj ∈ Cj−1(I,C), by showing that there exists a
fundamental system with a nowhere-vanishing complete chain of Wronskians
(this condition being equivalent to factorization).

Our proof is quite different from the proof of Mammana in the real case.
It is more of a topological or differential-geometric nature. For example
for n = 2 we use the fact that a differentiable map f : I → CP1 cannot be
surjective (by Sard’s theorem) to prove the existence of a nowhere-vanishing
complex linear combination of any given fundamental system. This implies
the factorization of L. The case n > 2 is handled by induction on n using
similar ideas.

2. The case n = 2. We start with the following result, whose proof is
elementary.

Proposition 2.1. Let L be a second-order linear ordinary differential
operator

L =
(
d

dx

)2

+ a1(x)
d

dx
+ a2(x),

where a1, a2 ∈ C0(I,C), I an interval. Then the following conditions are
equivalent:



GENERALIZATION OF A THEOREM OF MAMMANA 217

(i) L admits the factorization

(2.1) L =
(
d

dx
− γ(x)

)(
d

dx
− β(x)

)
for some γ ∈ C0(I,C) and β ∈ C1(I,C).

(ii) There exists a solution β ∈ C1(I,C) of the complex Riccati equation

β′ + β2 + a1β + a2 = 0.

(iii) There exists a solution α : I → C of Ly = 0 such that α(x) 6= 0 for
all x ∈ I. The relation between the functions α, β and γ is then

β = α′/α, α = e
	
β dx, γ = −a1 − β.

If a1 and a2 are real-valued, then conditions (i)–(iii) above can always be
satisfied with α, β and γ complex-valued. Indeed let y1, y2 be two linearly
independent real solutions of Ly = 0. Then the function α = y1 + iy2 is
never zero in I, and we get the factorization (2.1) with β = α′/α [4]. It is
natural to ask in the real case if there exists a factorization of the form (2.1)
with β and γ real-valued. The answer is no, in general. Indeed, for I open or
compact and a1, a2 real-valued, conditions (i)–(iii) with α, β, γ real-valued
are equivalent to

(iv) L is disconjugate on I, i.e., every nontrivial real solution of Ly = 0
has at most one zero in I.

See, for instance, [2, Corollary 6.1, p. 351], or [1, Theorem 1, p. 5]. This is
also proved in [4] (for I compact), but the connection between disconjugacy
and the factorization of a real linear differential operator of order n into a
product of first-order real operators was first discussed by Pólya in [6]. (The
so-called Pólya factorization [6, formula (18)] is equivalent to the Mammana
factorization (1.2); see [1, formula (8), p. 92].) In general, a real L is not dis-
conjugate on I. For example if the differential equation Ly = 0 is oscillatory
on I, then every solution has infinitely many zeros in I.

When we move from real-valued coefficients to complex-valued coeffi-
cients, the equivalence between disconjugacy and factorization breaks down.
(The definition of disconjugacy in the complex case is similar to the one in
the real case.) A technical reason for this is that there is no analogue of
Rolle’s theorem in the complex case. Rolle’s theorem is used, in the real
case, for proving one of the implications in the above mentioned equiva-
lence, as well as a number of important results, such as Sturm’s separation
theorem (see e.g., [1, Proposition 1, p. 4]).

This brings us to the question whether conditions (i)–(iii) in Proposi-
tion 2.1 always hold for complex differential operators. We shall now see
that this is indeed the case. Thus for a1 and a2 complex-valued, we can al-
ways arrange a factorization of the form (2.1) (even if L is not disconjugate
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on I). Of course such a factorization is not unique, in fact we shall see that
the functions α as in (iii) are quite abundant.

The proof is, however, quite different from the proof of Mammana in the
real case. Indeed, if y1, y2 is a fundamental system, it is not clear how to
exhibit a nowhere-vanishing linear combination of y1 and y2 as in the real
case. Intuitively, one can reason by contradiction as follows. Suppose such
a linear combination does not exist. Then every solution of Ly = 0 has at
least one zero in I. This implies that in order to specify a given solution,
it is enough to know one of its zeros and the derivative at that point. This
is one real parameter plus one complex parameter, for a total of three real
parameters. But we know that the vector space of solutions is isomorphic
to C2 ' R4. This argument would allow us to construct an injective map
R4 → I × R2 ⊂ R3, and one would have to prove its continuity to get a
contradiction.

Instead of making this argument more precise, we will proceed in a dif-
ferent (and simpler) way. We will actually get the result as a corollary of the
following proposition about the impossibility of filling the sphere S2 with a
differentiable curve.

Recall that the complex projective space CP1 is the compactification
of C and can be identified with the Riemann sphere S2.

Proposition 2.2. Let I ⊂ R be an interval. A differentiable map f :
I → CP1 cannot be surjective.

Proof. Sard’s theorem implies that the image under f of the set of critical
values has measure zero. Since all points in I are critical, f(I) has measure
zero and must be different from S2.

Corollary 2.3. Let y1, y2 : I → C be two differentiable functions with-
out common zeros in I. Then there exists a linear combination of y1 and y2

that vanishes nowhere in I.

Proof. Since y1 and y2 do not vanish simultaneously, there is a well
defined map

f : I → CP1, x 7→ f(x) = [y1(x) : y2(x)].

Assume for contradiction that any linear combination has a zero in I. If
(α, β) ∈ C2 \ {0}, then the determinant∣∣∣∣α y1(x)

β y2(x)

∣∣∣∣
vanishes at some point x0 ∈ I. This implies that (y1(x0), y2(x0)) is propor-
tional to (α, β). Thus the map f is surjective, which contradicts Proposi-
tion 2.2.
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Theorem 2.4. Let I ⊂ R be an interval, and let

L =
(
d

dx

)2

+ a1(x)
d

dx
+ a2(x)

be a second-order linear differential operator, where a1, a2 : I → C are
continuous functions. Then there exists a solution α : I → C of Ly = 0 that
vanishes nowhere in I. As a consequence, L admits a factorization of the
form (2.1).

Proof. Let y1, y2 be two linearly independent solutions of Ly = 0. Then
y1, y2 have no common zero in I, and the result follows from Corollary 2.3
and Proposition 2.1.

3. The general case. Let f1, . . . , fn : I → C be some functions, and
let L(f1, . . . , fn) be their linear span (over C), that is, f ∈ L(f1, . . . , fn) if
and only if f is a linear combination of f1, . . . , fn with complex coefficients.

Lemma 3.1. Let f1, . . . , fn : I → C be C1 functions without a common
zero in I, that is, for each x ∈ I there is j ∈ {1, . . . , n} such that fj(x) 6= 0.
Then there exists f ∈ L(f1, . . . , fn) such that

f(x) 6= 0 ∀x ∈ I.

Proof. We proceed by induction on n. If n = 1 the assertion is obvious.
Assume it is true for n and let f1, . . . , fn, fn+1 : I → C be C1 functions
without a common zero in I. Consider the map F : I → Cn+1 given by

F (x) = (f1(x), . . . , fn(x), fn+1(x)).

Let CPn be the complex projective space, i.e. the quotient of Cn+1 \ {0} by
the action of C∗. It is standard to denote the projection Cn+1\{0}→CPn by

π((x1, . . . , xn+1)) = [x1 : · · · : xn+1].

Note that π(F (x)) is well defined since the functions f1, . . . , fn do not vanish
simultaneously at any x ∈ I. Since F is C1, the composition π◦F : I → CPn
cannot be surjective by Sard’s theorem. Thus there exists a = [a1 : · · · : an+1]
such that π(F (x)) 6= a for all x ∈ I. Let M = (mij) be an (n+ 1)× (n+ 1)
invertible matrix such that

M


a1

...
an

an+1

 =


0
...
0
1

 =: en+1.

Regarding M as a linear map from Cn+1 into itself, we see that (M ◦F )(x)
is not proportional to en+1 at any point x ∈ I. Hence the n functions



220 R. CAMPORESI AND A. J. DI SCALA

z1 =
n+1∑
k=1

m1kfk, . . . , zn =
n+1∑
k=1

mnkfk

do not vanish simultaneously at any x ∈ I. Since z1, . . . , zn are C1, we can
use the inductive hypothesis to get f ∈ L(z1, , . . . , zn) such that f(x) 6= 0
for all x ∈ I. But since L(z1, . . . , zn) ⊂ L(f1, . . . , fn, fn+1), we get f ∈
L(f1, . . . , fn, fn+1), which proves the lemma.

Let f1, . . . , fn : I → C be functions of class Cn. Their Wronskian is
defined to be the following determinant:

W(f1, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
... · · ·

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣
.

Theorem 3.2. Assume the Wronskian W(f1, . . . , fn) has no zeros in I.
Then there exist z1, . . . , zn ∈ L(f1, . . . , fn) such that

(3.1)


W(z1)(x) = z1(x) 6= 0 ∀x ∈ I,
W(z1, z2)(x) 6= 0 ∀x ∈ I,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W(z1, . . . , zn)(x) 6= 0 ∀x ∈ I.

Proof. The existence of z1 follows from Lemma 3.1. To construct z2 ∈
L(f1, . . . , fn), we need constants α1, . . . , αn such that

(3.2)
{
z2(x) := α1f1(x) + · · ·+ αnfn(x),
W(z1, z2)(x) 6= 0 ∀x ∈ I.

Observe that

W(z1, z2)(x) = W(z1, α1f1 + α2f2 + · · ·+ αnfn)(x)

=
n∑
k=1

αkW(z1, fk)(x) =
n∑
k=1

αk

∣∣∣∣z1(x) fk(x)
z′1(x) f ′k(x)

∣∣∣∣.
Thus the existence of z2(x) with the desired properties (3.2) is equivalent
to the existence of a linear combination of the 2× 2 determinants

Dk(x) :=
∣∣∣∣z1(x) fk(x)
z′1(x) f ′k(x)

∣∣∣∣, k = 1, . . . , n,

without zeros in I. Notice that D1, . . . , Dn are C1. If we show that they do
not have a common zero on I, then Lemma 3.1 yields the existence of z2.
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Suppose x0 ∈ I and D1(x0) = · · · = Dn(x0) = 0. Then the rank of the
matrix (

f1(x0) f2(x0) · · · fn(x0)
f ′1(x0) f ′2(x0) · · · f ′n(x0)

)
is one since each column

( fj(x0)

f ′
j(x0)

)
is proportional to the nonzero column( z1(x0)

z′
1(x0)

)
. That is, the first two rows of the Wronskian W(f1, . . . , fn)(x0) are

proportional. Since the Wronskian was assumed to be nonzero on I, we have
a contradiction. Thus indeed z2 exists.

Suppose now that we have constructed zj ∈ L(f1, . . . , fn) (j < n) such
that 

W(z1)(x) = z1(x) 6= 0 ∀x ∈ I,
W(z1, z2)(x) 6= 0 ∀x ∈ I,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W(z1, . . . , zj)(x) 6= 0 ∀x ∈ I,

and let us show the existence of zj+1 ∈ L(f1, . . . , fn) such that

W(z1, . . . , zj , zj+1)(x) 6= 0 ∀x ∈ I.

As for z2, we look for constants β1, . . . , βn such that

W(z1, . . . , zj , β1f1 + · · ·+ βnfn)(x) 6= 0 ∀x ∈ I.
That is, we look for a linear combination of the determinants

Ek(x) := W(z1, . . . , zj , fk)(x) (k = 1, . . . , n)

without zeros in I. Note that the functions Ek are C1, so again by Lemma 3.1
it suffices to show that they do not have a common zero in I. Assume on
the contrary that there exists x0 ∈ I such that E1(x0) = · · · = En(x0) = 0.
Then the matrix 

f1(x0) · · · fn(x0)
f ′1(x0) · · · f ′n(x0)

... · · ·
...

f
(j)
1 (x0) · · · f

(j)
n (x0)


has rank ≤ j because all its columns are linear combinations of the columns
of the matrix 

z1(x0) · · · zj(x0)
z′1(x0) · · · z′j(x0)

... · · ·
...

z
(j)
1 (x0) · · · z

(j)
j (x0)


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whose rank is j because W(z1, . . . , zj)(x) 6= 0 for all x ∈ I. It follows that the
first j + 1 rows of the Wronskian W(f1, . . . , fn)(x0) are linearly dependent
and so W(f1, . . . , fn)(x0) = 0. This is a contradiction because we assume
the Wronskian W(f1, . . . , fn) has no zeros in I.

This completes the proof of the theorem.

Theorem 3.3. Let L be a linear ordinary differential operator of order n,

L =
(
d

dx

)n
+ a1(x)

(
d

dx

)n−1

+ · · ·+ an−1(x)
d

dx
+ an(x),

with coefficients aj ∈ C0(I,C), I an interval. Then L has the property W,
i.e., there exists a fundamental system z1, . . . , zn of solutions of Ly = 0 such
that (3.1) holds. Consequently, L admits the factorization

L =
(
d

dx
− α1(x)

)
· · ·
(
d

dx
− αn(x)

)
,

where αj ∈ Cj−1(I,C) (1 ≤ j ≤ n) is given by (1.3) with w0 = 1 and
wj = W (z1, . . . , zj).

Proof. Let f1, . . . , fn be any fundamental system of solutions of Ly = 0.
We apply Theorem 3.2 to find z1, . . . , zn with the required property. The
equivalence (in the real case) between the property W of L and the factor-
ization of L into first-order factors is proved in [1, Theorem 2, p. 91]. Note
that the proof remains unchanged in the case of complex-valued coefficients.
(The condition that the partial Wronskians are all positive throughout I is
replaced by the condition that they vanish nowhere in I.) See also [6], and
[5, Lemma II, p. 198].
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