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THE COMPONENT QUIVER OF
A SELF-INJECTIVE ARTIN ALGEBRA

BY

ALICJA JAWORSKA and ANDRZEJ SKOWRONSKI (Torun)

Abstract. We prove that the component quiver X4 of a connected self-injective
artin algebra A of infinite representation type is fully cyclic, that is, every finite set of
components of the Auslander—Reiten quiver I'4 of A lies on a common oriented cycle
in Xa.

Throughout this note, by an algebra is meant a connected associative
artin algebra with an identity over a fixed commutative artinian ring R.
For an algebra A, we denote by mod A the category of finitely generated
right A-modules and by rad4 the Jacobson radical of mod A, generated by
all non-invertible morphisms between indecomposable modules in mod A.
Then the infinite Jacobson radical rady’ of mod A is the intersection of all
powers radiA, i > 1, of rad4. By a result of M. Auslander [2], rad}’ = 0 if
and only if A is of finite representation type, that is, there are in mod A
only finitely many indecomposable modules up to isomorphism. Recall also
that an algebra A is called self-injective if A4 is an injective module, or
equivalently, in mod A projective modules coincide with injective modules.

An important combinatorial and homological invariant of the module
category mod A of an algebra A is its Auslander—Reiten quiver I’y whose
vertices are the isoclasses of indecomposable modules in mod A and the
arrows correspond to irreducible morphisms between indecomposable mod-
ules [4]. In fact, the Auslander—Reiten quiver I'4 describes the structure of
the quotient category mod A/rady’ (see [3]). In general, it is important to
study the behaviour of the connected components of I'4 in the category
mod A. Following [18] a component C of I'4 is called generalized standard
if rad?’(X,Y) = 0 for all modules X and Y in C. Further, the component
quiver X4 of an algebra A is defined in [19] as follows: the vertices of X4
are the connected components of I'4, and two connected components C and
D of I’y are linked in X4 by an arrow C — D if and only if rady’(X,Y) # 0
for some modules X € C and Y € D. Observe that a connected component
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C of I'y is generalized standard if and only if 3’4 has no loop at C. Moreover,
for different connected components C,D in I'4 and X € C, Y € D, we have
Homu (X,Y) = rad¥(X,Y).

A prominent role in the study of module categories is played by paths
and cycles of indecomposable modules (see [19]). Recall that a path in the
module category mod A of an algebra A is a sequence

(*) Xof—1>X1f—2>---—>Xt,1it—>Xt

of non-zero non-isomorphisms between indecomposable modules in mod A,
and if Xy = X; then (x) is called a cycle in mod A. A cycle (x) for which the
homomorphisms fi, ..., f; do not belong to rady’ is said to be finite. Finally,
mod A is said to be cycle-finite if all cycles in mod A are finite. We note that
the module category mod A of an algebra A of finite representation type is
cycle-finite, since then rady’ = 0.

The structure of the component quiver X4 of an algebra A as well as
properties of cycles in mod A carry much information on A and mod A. For
example, the tameness of important classes of algebras of small homological
dimension (tilted algebras [9], double tilted algebras [14], generalized double
tilted algebras [15], quasitilted algebras of canonical type [10], [21], general-
ized muliticoil algebras [12]) is equivalent to the absence of oriented cycles
in their component quivers, or equivalently the absence of infinite cycles in
their module categories. Similarly, it has been shown in [20] that a strongly
simply connected algebra A over an algebraically closed field is of polyno-
mial growth if and only if the component quiver X4 has no oriented cycles,
and if and only if mod A is cycle-finite.

In this note we are concerned with the structure of the module category
mod A and of the component quiver X4 of a self-injective algebra A.

The aim of this note is to prove the following theorem on oriented cycles
in mod A and derive some consequences.

THEOREM 1. Let A be a non-simple connected self-injective algebra and
My, ..., M, a family of indecomposable modules in mod A. Then there is a
cycle in mod A passing through all modules My, ..., M,.

Proof. Since A is a self-injective algebra, we have the self-equivalence
N4 =DHomg(—,A4) : mod A — mod A,

called the Nakayama functor, where D = Homp(—, E') with E being a mini-
mal injective cogenerator in mod R is the standard duality on mod A. More-
over, 1
N " =Homgoer(—, 4A)D : mod A — mod A

is the inverse functor of A4. Further, the Nakayama functor N4 induces a
self-equivalence functor

N4 :projA — proj A
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for the full subcategory proj A of mod A formed by the projective modules
(equivalently, injective modules). Moreover, for an indecomposable projec-
tive module P in mod A, N4(P) is an indecomposable projective module in
mod A such that the simple top, top(P) = P/rad P, of P is isomorphic to
the simple socle, soc(Na(P)), of Na(P).

Let Pi,..., P, be a complete set of pairwise non-isomorphic indecom-
posable projective (equivalently, injective) modules in mod A. Then S; =
top(P1),...,S, = top(P,) is a complete set of pairwise non-isomorphic
simple modules in mod A and there is a permutation v of {1,...,n}, called
the Nakayama permutation, such that P,;y = Na(P;) forany i € {1,...,n}.
Clearly, v has finite order.

For each i« € {1,...,n}, we have in mod A the canonical path P; —
Si — P,(;), and hence a cycle formed by the modules P, and S, r €
{1,...,m;}, where m,; is the minimal positive integer such that v™i(i) =i

(equivalently, the length of the v-orbit of i in {1,...,n}).

Let M be an indecomposable module in mod A. Assume Hom(Pj, M)
# 0 for some j € {1,...,n}, and let f : P, — M be a non-zero homomor-
phism in mod A. Then there is a commutative diagram

/

T /
/

S, 7

/ f/
/
"-’Jl /
¥
L0

in mod A with u, w; the canonical monomorphisms and 7 the canonical
epimorphism Im f — top(Im f) = S}, due to the injectivity of P, in
mod A. Hence Hom4 (M, P,(;)) # 0, since f" # 0. Obviously, if M 2 P; and
M 2 P,), then f and /' are non-isomorphisms. We conclude that in all
cases there is in mod A a cycle passing through M and the modules P, (),
s € {1,...,m;}. Similarly, if Hom4 (M, P;) # 0 for some k € {1,...,n},
we take a non-zero homomorphism g : M — P, in mod A. Then there is a
commutative diagram

Pure)
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in mod A with v the canonical monomorphism from the simple socle S,,-1)
of Py to the non-zero submodule Img of Py, 7,14y : Py-1) — Sy-1p)
the canonical epimorphism, and ¢’ the epimorphism induced by g, due to
the projectivity of P,-1(;) in mod A. Hence Hom (P, 1), M) # 0, because
g” # 0. Thus we conclude that there is in mod A a cycle passing through M
and the modules Py, t € {1,...,my}.

Since A is a connected algebra, we conclude that, for any [ € {1,...,n},
there is a sequence of indices j; = 1,...,jq+1 =l in {1,...,n} such that

HomA<Pjiv Pji+1) 7é 0 or HOmA<Pji+1?Pji) ?é 0

for any i € {1,...,q}. Then it follows from the above discussion (by induc-
tion on 1) that there is in mod A a cycle passing through P, and the modules
Pl,p(l), pE {1, e ,ml}.

Summing up, we have proved that there is a cycle in mod A passing
through all the projective modules Py, ..., P,. Then for an arbitrary inde-
composable module M in mod A there is a cycle passing through M and
the modules Pi, ..., P,, since Hom4(P;, M) # 0 for some j € {1,...,n}.
Clearly, then, for any family Mi,..., M, of indecomposable modules
in mod A, there is a cycle in mod A passing through Mj,..., M, and
P,....P,. =

COROLLARY 2. Let A be a self-injective algebra. Then A is of finite
representation type if and only if mod A is cycle-finite.

Proof. We know that if A is of finite representation type then rady’ = 0,
and hence mod A is cycle-finite. Conversely, assume that mod A is cycle-
finite and rad}’ # 0. Then there are indecomposable modules X and Y in
mod A such that rad¥’ (X, Y) # 0. It follows from Theorem 1 that there is in
mod A a cycle containing X and Y. But then there is in mod A an infinite
cycle

xLyl gz 2o g _x
with 0 # f € rad%’(X,Y’), which contradicts the cycle-finiteness of mod A.

Therefore, mod A cycle-finite forces rady” = 0, and hence finite representa-
tion type of A, by the result of Auslander [2]. =

THEOREM 3. Let A be a connected self-injective algebra of infinite rep-
resentation type and Cy,...,C., 7 > 1, a family of connected components
of I'4. Then there is an oriented cycle in the component quiver X 4 passing
through all components Cy,...,C,.

Proof. We may assume that the components Cy,...,C, are pairwise dif-
ferent. Assume first that » > 2. For each i € {1,...,r}, choose an in-
decomposable module M; in C;. Then My, ..., M, is a family of pairwise

non-isomorphic indecomposable modules, since the components Cy,...,C,
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are pairwise different. Applying Theorem 1, we conclude that there is in
mod A a cycle
X1—Xo— =Xy > X1 =Xy

with My = Xj,,..., M, = X, for some ji,...,j, in {1,...,t}. Taking now

the connected components of I'4 containing the modules X1, ..., X; we
conclude that there is an oriented cycle in X4 passing through all these
components and hence through Cy,...,C,.

Assume now that » = 1. Since A is of infinite representation type, we
have rad}’(X,Y") # 0 for some indecomposable modules X and Y in mod A.
Then, by Theorem 1, for an arbitrary module M in C = C;, we have a cycle
in mod A of the form

for some 0 # f € rady’(X,Y). Hence there is an oriented cycle in X4
passing through C and through the connected components of I'4 containing
the modules X and Y. =

A component C of an Auslander—Reiten quiver I'4 is said to be a sink
(respectively, source) of X4 if C is not a source (respectively, sink) of an
arrow of X' 4.

COROLLARY 4. Let A be a connected self-injective algebra of infinite
representation type. Then no connected component of I'4 is a sink or a source
m ZA.

Proof. Let C be a connected component of I’y and assume that C is
a sink or a source of X 4. It follows from Theorem 3 that C is a unique
component of I'4 and is generalized standard. Hence rad}’' (X, Y’) = 0 for all
indecomposable modules X, Y in mod A, and so rad}’ = 0. This contradicts
our assumption that A is of infinite representation type. =

A component C of an Auslander—Reiten quiver I'4 is said to be a weak
source (respectively, a weak sink) if there is no arrow ¢’ — C in X4 with
C' # C (respectively, there is no arrow C — C” with C # C"”). We note that
in [13] a weak source (respectively, weak sink) of X4 is called the starting
(respectively, ending) component.

COROLLARY 5. Let A be a connected self-injective algebra and C a con-

nected component of I'a. Assume that C is either a weak source or a weak
sink of X 4. Then C = I'4.

Proof. Suppose, to the contrary, that C # I'4. Since A is connected, we
conclude that A is of infinite representation type and there is a connected
component D of I'4 different from C. Then, applying Theorem 3, we deduce
that there is an oriented cycle in X4 passing through C and D, and this
contradicts the assumption on C.
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We mention that it is still not clear (see [I1, Problem 1]) if a connected
artin algebra A with I'4 connected is necessarily of finite representation
type.

From Drozd’s tame and wild theorem [8] the class of finite-dimensional
algebras over an algebraically closed field K may be divided into two disjoint
classes. One class consists of the tame algebras for which the indecomposable
modules occur, in each dimension d, in a finite number of discrete and a finite
number of one-parameter families. The second class is formed by the wild
algebras whose representation theory contains the representation theories of
all finite-dimensional algebras over K (for more details on tame and wild
algebras we refer to [I7, Chapter XIX]).

COROLLARY 6. Let A be a connected tame self-injective algebra of in-
finite representation type over an algebraically closed field K, and C be a
component of I'y. Then C is neither a weak source nor a weak sink of X 4.

Proof. Since A is of infinite representation type, it follows from the va-
lidity of the second Brauer—Thrall conjecture [5], [6] that there are infinitely
many pairwise non-isomorphic indecomposable A-modules of a fixed dimen-
sion d. Further, since A is tame, we know by a theorem of W. Crawley-
Boevey [7] that all but finitely many indecomposable A-modules of di-
mension d lie in stable tubes of rank one. Therefore, I’y admits infinitely
many stable tubes of rank one. In particular, we have C # I'4. Then
it follows from Corollary 5 that C is neither a weak source nor a weak
sink. m

For basic background on the representation theory of algebras we refer
to the monographs [1], [4], [16], [17].
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