VOL. 122

2011

NO. 2

THE COMPONENT QUIVER OF A SELF-INJECTIVE ARTIN ALGEBRA

BҮ

ALICJA JAWORSKA and ANDRZEJ SKOWROŃSKI (Toruń)

Abstract. We prove that the component quiver Σ_A of a connected self-injective artin algebra A of infinite representation type is fully cyclic, that is, every finite set of components of the Auslander–Reiten quiver Γ_A of A lies on a common oriented cycle in Σ_A .

Throughout this note, by an algebra is meant a connected associative artin algebra with an identity over a fixed commutative artinian ring R. For an algebra A, we denote by mod A the category of finitely generated right A-modules and by rad_A the Jacobson radical of mod A, generated by all non-invertible morphisms between indecomposable modules in mod A. Then the infinite Jacobson radical rad^{∞} of mod A is the intersection of all powers radⁱ_A, $i \geq 1$, of rad_A. By a result of M. Auslander [2], rad^{∞}_A = 0 if and only if A is of finite representation type, that is, there are in mod Aonly finitely many indecomposable modules up to isomorphism. Recall also that an algebra A is called *self-injective* if A_A is an injective module, or equivalently, in mod A projective modules coincide with injective modules.

An important combinatorial and homological invariant of the module category mod A of an algebra A is its Auslander–Reiten quiver Γ_A whose vertices are the isoclasses of indecomposable modules in mod A and the arrows correspond to irreducible morphisms between indecomposable modules [4]. In fact, the Auslander–Reiten quiver Γ_A describes the structure of the quotient category mod $A/\operatorname{rad}_A^{\infty}$ (see [3]). In general, it is important to study the behaviour of the connected components of Γ_A in the category mod A. Following [18] a component C of Γ_A is called generalized standard if $\operatorname{rad}_A^{\infty}(X,Y) = 0$ for all modules X and Y in C. Further, the component quiver Σ_A of an algebra A is defined in [19] as follows: the vertices of Σ_A are the connected components of Γ_A , and two connected components C and \mathcal{D} of Γ_A are linked in Σ_A by an arrow $C \to \mathcal{D}$ if and only if $\operatorname{rad}_A^{\infty}(X,Y) \neq 0$ for some modules $X \in C$ and $Y \in \mathcal{D}$. Observe that a connected component

²⁰¹⁰ Mathematics Subject Classification: 16D50, 16G10, 16G70.

Key words and phrases: self-injective algebra, component quiver, Auslander–Reiten quiver.

 \mathcal{C} of Γ_A is generalized standard if and only if Σ_A has no loop at \mathcal{C} . Moreover, for different connected components \mathcal{C}, \mathcal{D} in Γ_A and $X \in \mathcal{C}, Y \in \mathcal{D}$, we have $\operatorname{Hom}_A(X,Y) = \operatorname{rad}_A^{\infty}(X,Y).$

A prominent role in the study of module categories is played by paths and cycles of indecomposable modules (see [19]). Recall that a *path* in the module category mod A of an algebra A is a sequence

(*)
$$X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \to X_{t-1} \xrightarrow{f_t} X_t$$

of non-zero non-isomorphisms between indecomposable modules in mod A, and if $X_0 = X_t$ then (*) is called a *cycle* in mod A. A cycle (*) for which the homomorphisms f_1, \ldots, f_t do not belong to $\operatorname{rad}_A^\infty$ is said to be *finite*. Finally, mod A is said to be *cycle-finite* if all cycles in mod A are finite. We note that the module category mod A of an algebra A of finite representation type is cycle-finite, since then $\operatorname{rad}_A^\infty = 0$.

The structure of the component quiver Σ_A of an algebra A as well as properties of cycles in mod A carry much information on A and mod A. For example, the tameness of important classes of algebras of small homological dimension (tilted algebras [9], double tilted algebras [14], generalized double tilted algebras [15], quasitilted algebras of canonical type [10], [21], generalized multicoil algebras [12]) is equivalent to the absence of oriented cycles in their component quivers, or equivalently the absence of infinite cycles in their module categories. Similarly, it has been shown in [20] that a strongly simply connected algebra A over an algebraically closed field is of polynomial growth if and only if the component quiver Σ_A has no oriented cycles, and if and only if mod A is cycle-finite.

In this note we are concerned with the structure of the module category mod A and of the component quiver Σ_A of a self-injective algebra A.

The aim of this note is to prove the following theorem on oriented cycles in mod A and derive some consequences.

THEOREM 1. Let A be a non-simple connected self-injective algebra and M_1, \ldots, M_r a family of indecomposable modules in mod A. Then there is a cycle in mod A passing through all modules M_1, \ldots, M_r .

Proof. Since A is a self-injective algebra, we have the self-equivalence

$$\mathcal{N}_A = \mathrm{D}\operatorname{Hom}_A(-, A_A) : \operatorname{mod} A \to \operatorname{mod} A,$$

called the Nakayama functor, where $D = Hom_R(-, E)$ with E being a minimal injective cogenerator in mod R is the standard duality on mod A. Moreover,

$$\mathcal{N}_A^{-1} = \operatorname{Hom}_{A^{\operatorname{op}}}(-, {}_AA)\operatorname{D} : \operatorname{mod} A \to \operatorname{mod} A$$

is the inverse functor of \mathcal{N}_A . Further, the Nakayama functor \mathcal{N}_A induces a self-equivalence functor

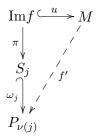
$$\mathcal{N}_A : \operatorname{proj} A \to \operatorname{proj} A$$

for the full subcategory proj A of mod A formed by the projective modules (equivalently, injective modules). Moreover, for an indecomposable projective module P in mod A, $\mathcal{N}_A(P)$ is an indecomposable projective module in mod A such that the simple top, $\operatorname{top}(P) = P/\operatorname{rad} P$, of P is isomorphic to the simple socle, $\operatorname{soc}(\mathcal{N}_A(P))$, of $\mathcal{N}_A(P)$.

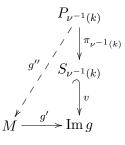
Let P_1, \ldots, P_n be a complete set of pairwise non-isomorphic indecomposable projective (equivalently, injective) modules in mod A. Then $S_1 =$ top $(P_1), \ldots, S_n =$ top (P_n) is a complete set of pairwise non-isomorphic simple modules in mod A and there is a permutation ν of $\{1, \ldots, n\}$, called the *Nakayama permutation*, such that $P_{\nu(i)} \cong \mathcal{N}_A(P_i)$ for any $i \in \{1, \ldots, n\}$. Clearly, ν has finite order.

For each $i \in \{1, \ldots, n\}$, we have in mod A the canonical path $P_i \to S_i \to P_{\nu(i)}$, and hence a cycle formed by the modules $P_{\nu^r(i)}$ and $S_{\nu^r(i)}, r \in \{1, \ldots, m_i\}$, where m_i is the minimal positive integer such that $\nu^{m_i}(i) = i$ (equivalently, the length of the ν -orbit of i in $\{1, \ldots, n\}$).

Let M be an indecomposable module in mod A. Assume $\operatorname{Hom}_A(P_j, M) \neq 0$ for some $j \in \{1, \ldots, n\}$, and let $f : P_j \to M$ be a non-zero homomorphism in mod A. Then there is a commutative diagram



in mod A with u, ω_j the canonical monomorphisms and π the canonical epimorphism $\operatorname{Im} f \to \operatorname{top}(\operatorname{Im} f) = S_j$, due to the injectivity of $P_{\nu(j)}$ in mod A. Hence $\operatorname{Hom}_A(M, P_{\nu(j)}) \neq 0$, since $f' \neq 0$. Obviously, if $M \ncong P_j$ and $M \ncong P_{\nu(j)}$, then f and f' are non-isomorphisms. We conclude that in all cases there is in mod A a cycle passing through M and the modules $P_{\nu^s(j)}$, $s \in \{1, \ldots, m_j\}$. Similarly, if $\operatorname{Hom}_A(M, P_k) \neq 0$ for some $k \in \{1, \ldots, n\}$, we take a non-zero homomorphism $g: M \to P_k$ in mod A. Then there is a commutative diagram



in mod A with v the canonical monomorphism from the simple socle $S_{\nu^{-1}(k)}$ of P_k to the non-zero submodule $\operatorname{Im} g$ of P_k , $\pi_{\nu^{-1}(k)} : P_{\nu^{-1}(k)} \to S_{\nu^{-1}(k)}$ the canonical epimorphism, and g' the epimorphism induced by g, due to the projectivity of $P_{\nu^{-1}(k)}$ in mod A. Hence $\operatorname{Hom}_A(P_{\nu^{-1}(k)}, M) \neq 0$, because $g'' \neq 0$. Thus we conclude that there is in mod A a cycle passing through M and the modules $P_{\nu^t(k)}, t \in \{1, \ldots, m_k\}$.

Since A is a connected algebra, we conclude that, for any $l \in \{1, ..., n\}$, there is a sequence of indices $j_1 = 1, ..., j_{q+1} = l$ in $\{1, ..., n\}$ such that

 $\operatorname{Hom}_A(P_{j_i}, P_{j_{i+1}}) \neq 0 \quad \text{or} \quad \operatorname{Hom}_A(P_{j_{i+1}}, P_{j_i}) \neq 0$

for any $i \in \{1, \ldots, q\}$. Then it follows from the above discussion (by induction on l) that there is in mod A a cycle passing through P_l and the modules $P_{\nu^p(1)}, p \in \{1, \ldots, m_1\}$.

Summing up, we have proved that there is a cycle in mod A passing through all the projective modules P_1, \ldots, P_n . Then for an arbitrary indecomposable module M in mod A there is a cycle passing through M and the modules P_1, \ldots, P_n , since $\operatorname{Hom}_A(P_j, M) \neq 0$ for some $j \in \{1, \ldots, n\}$. Clearly, then, for any family M_1, \ldots, M_r of indecomposable modules in mod A, there is a cycle in mod A passing through M_1, \ldots, M_r and P_1, \ldots, P_n .

COROLLARY 2. Let A be a self-injective algebra. Then A is of finite representation type if and only if mod A is cycle-finite.

Proof. We know that if A is of finite representation type then $\operatorname{rad}_A^{\infty} = 0$, and hence mod A is cycle-finite. Conversely, assume that mod A is cycle-finite and $\operatorname{rad}_A^{\infty} \neq 0$. Then there are indecomposable modules X and Y in mod A such that $\operatorname{rad}_A^{\infty}(X,Y) \neq 0$. It follows from Theorem 1 that there is in mod A a cycle containing X and Y. But then there is in mod A an infinite cycle

 $X \xrightarrow{f} Y \xrightarrow{f_1} Z_1 \xrightarrow{f_2} \cdots \xrightarrow{f_r} Z_r = X$

with $0 \neq f \in \operatorname{rad}_A^\infty(X, Y)$, which contradicts the cycle-finiteness of mod A. Therefore, mod A cycle-finite forces $\operatorname{rad}_A^\infty = 0$, and hence finite representation type of A, by the result of Auslander [2].

THEOREM 3. Let A be a connected self-injective algebra of infinite representation type and C_1, \ldots, C_r , $r \ge 1$, a family of connected components of Γ_A . Then there is an oriented cycle in the component quiver Σ_A passing through all components C_1, \ldots, C_r .

Proof. We may assume that the components C_1, \ldots, C_r are pairwise different. Assume first that $r \geq 2$. For each $i \in \{1, \ldots, r\}$, choose an indecomposable module M_i in C_i . Then M_1, \ldots, M_r is a family of pairwise non-isomorphic indecomposable modules, since the components C_1, \ldots, C_r

are pairwise different. Applying Theorem 1, we conclude that there is in $\mod A$ a cycle

$$X_1 \to X_2 \to \dots \to X_t \to X_{t+1} = X_1$$

with $M_1 = X_{j_1}, \ldots, M_r = X_{j_r}$ for some j_1, \ldots, j_r in $\{1, \ldots, t\}$. Taking now the connected components of Γ_A containing the modules X_1, \ldots, X_t we conclude that there is an oriented cycle in Σ_A passing through all these components and hence through $\mathcal{C}_1, \ldots, \mathcal{C}_r$.

Assume now that r = 1. Since A is of infinite representation type, we have $\operatorname{rad}_A^{\infty}(X, Y) \neq 0$ for some indecomposable modules X and Y in mod A. Then, by Theorem 1, for an arbitrary module M in $\mathcal{C} = \mathcal{C}_1$, we have a cycle in mod A of the form

$$M \to \dots \to X \xrightarrow{f} Y \to \dots \to M$$

for some $0 \neq f \in \operatorname{rad}_A^\infty(X, Y)$. Hence there is an oriented cycle in Σ_A passing through \mathcal{C} and through the connected components of Γ_A containing the modules X and Y.

A component \mathcal{C} of an Auslander–Reiten quiver Γ_A is said to be a *sink* (respectively, *source*) of Σ_A if \mathcal{C} is not a source (respectively, sink) of an arrow of Σ_A .

COROLLARY 4. Let A be a connected self-injective algebra of infinite representation type. Then no connected component of Γ_A is a sink or a source in Σ_A .

Proof. Let \mathcal{C} be a connected component of Γ_A and assume that \mathcal{C} is a sink or a source of Σ_A . It follows from Theorem 3 that \mathcal{C} is a unique component of Γ_A and is generalized standard. Hence $\operatorname{rad}_A^{\infty}(X,Y) = 0$ for all indecomposable modules X, Y in mod A, and so $\operatorname{rad}_A^{\infty} = 0$. This contradicts our assumption that A is of infinite representation type.

A component \mathcal{C} of an Auslander–Reiten quiver Γ_A is said to be a *weak* source (respectively, a *weak* sink) if there is no arrow $\mathcal{C}' \to \mathcal{C}$ in Σ_A with $\mathcal{C}' \neq \mathcal{C}$ (respectively, there is no arrow $\mathcal{C} \to \mathcal{C}''$ with $\mathcal{C} \neq \mathcal{C}''$). We note that in [13] a weak source (respectively, weak sink) of Σ_A is called the starting (respectively, ending) component.

COROLLARY 5. Let A be a connected self-injective algebra and C a connected component of Γ_A . Assume that C is either a weak source or a weak sink of Σ_A . Then $C = \Gamma_A$.

Proof. Suppose, to the contrary, that $\mathcal{C} \neq \Gamma_A$. Since A is connected, we conclude that A is of infinite representation type and there is a connected component \mathcal{D} of Γ_A different from \mathcal{C} . Then, applying Theorem 3, we deduce that there is an oriented cycle in Σ_A passing through \mathcal{C} and \mathcal{D} , and this contradicts the assumption on \mathcal{C} .

We mention that it is still not clear (see [11, Problem 1]) if a connected artin algebra A with Γ_A connected is necessarily of finite representation type.

From Drozd's tame and wild theorem [8] the class of finite-dimensional algebras over an algebraically closed field K may be divided into two disjoint classes. One class consists of the tame algebras for which the indecomposable modules occur, in each dimension d, in a finite number of discrete and a finite number of one-parameter families. The second class is formed by the wild algebras whose representation theory contains the representation theories of all finite-dimensional algebras over K (for more details on tame and wild algebras we refer to [17, Chapter XIX]).

COROLLARY 6. Let A be a connected tame self-injective algebra of infinite representation type over an algebraically closed field K, and C be a component of Γ_A . Then C is neither a weak source nor a weak sink of Σ_A .

Proof. Since A is of infinite representation type, it follows from the validity of the second Brauer–Thrall conjecture [5], [6] that there are infinitely many pairwise non-isomorphic indecomposable A-modules of a fixed dimension d. Further, since A is tame, we know by a theorem of W. Crawley-Boevey [7] that all but finitely many indecomposable A-modules of dimension d lie in stable tubes of rank one. Therefore, Γ_A admits infinitely many stable tubes of rank one. In particular, we have $\mathcal{C} \neq \Gamma_A$. Then it follows from Corollary 5 that \mathcal{C} is neither a weak source nor a weak sink.

For basic background on the representation theory of algebras we refer to the monographs [1], [4], [16], [17].

Acknowledgments. The authors gratefully acknowledge support from the Research Grant N N201 269135 of the Polish Ministry of Science and Higher Education.

REFERENCES

- I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
- [2] M. Auslander, Representation theory of artin algebras II, Comm. Algebra 1 (1974), 269–310.
- [3] —, Applications of morphisms determined by objects, in: Representation Theory of Algebras, Lecture Notes in Pure Appl. Math. 37, Dekker, New York, 1976, 245–327.
- [4] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.

- [5] R. Bautista, On algebras of strongly unbounded representation type, Comment. Math. Helv. 60 (1985), 392–399.
- [6] K. Bongartz, Indecomposable modules are standard, ibid. 60 (1985), 400–410.
- [7] W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451–483.
- [8] Yu. A. Drozd, *Tame and wild matrix problems*, in: Representation Theory II, Lecture Notes in Math. 832, Springer, Berlin, 1980, 242–258.
- [9] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29–47.
- H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161–181.
- [11] S. Liu, Shapes of connected components of the Auslander-Reiten quivers of Artin algebras, in: Representation Theory of Algebras and Related Topics, Canad. Math. Soc. Conf. Proc. 19, Amer. Math. Soc., Providence, 1996, 109–137.
- [12] P. Malicki and A. Skowroński, Algebras with separating almost cyclic coherent Auslander–Reiten components, J. Algebra 291 (2005), 208–237.
- [13] Z. Pogorzały and M. Sufranek, Starting and ending components of the Auslander-Reiten quivers of a class of special biserial algebras, Colloq. Math. 99 (2004), 111-144.
- [14] I. Reiten and A. Skowroński, Characterizations of algebras with small homological dimensions, Adv. Math. 179 (2003), 122–154.
- [15] —, —, Generalized double tilted algebras, J. Math. Soc. Japan 56 (2004), 269–288.
- [16] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, 2007.
- [17] —, —, Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, 2007.
- [18] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517–543.
- [19] —, Cycles in module categories, in: Finite Dimensional Algebras and Related Topics, NATO ASI Ser. C Math. Phys. Sci. 424, Kluwer, Dordrecht, 1994, 309–345.
- [20] —, Simply connected algebras of polynomial growth, Compos. Math. 109 (1997), 99–133.
- [21] —, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470–490.

Alicja Jaworska, Andrzej Skowroński Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: jaworska@mat.uni.torun.pl skowron@mat.uni.torun.pl

> Received 10 September 2010; revised 20 October 2010

(5425)