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MULTIDIMENSIONAL HEISENBERG CONVOLUTIONS AND
PRODUCT FORMULAS FOR MULTIVARIATE LAGUERRE

POLYNOMIALS

BY

MICHAEL VOIT (Dortmund)

Abstract. Let p, q be positive integers. The groups Up(C) and Up(C) × Uq(C) act
on the Heisenberg group Hp,q := Mp,q(C) × R canonically as groups of automorphisms,
where Mp,q(C) is the vector space of all complex p × q matrices. The associated orbit
spaces may be identified with Πq × R and Ξq × R respectively, Πq being the cone of
positive semidefinite matrices and Ξq the Weyl chamber {x ∈ Rq : x1 ≥ · · · ≥ xq ≥ 0}.

In this paper we compute the associated convolutions on Πq×R and Ξq×R explicitly,
depending on p. Moreover, we extend these convolutions by analytic continuation to series
of convolution structures for arbitrary parameters p ≥ 2q− 1. This leads for q ≥ 2 to con-
tinuous series of noncommutative hypergroups on Πq × R and commutative hypergroups
on Ξq×R. In the latter case, we describe the dual space in terms of multivariate Laguerre
and Bessel functions on Πq and Ξq. In particular, we give a nonpositive product formula
for these Laguerre functions on Ξq.

The paper extends the known case q = 1 due to Koornwinder, Trimèche, and others,
as well as the group case with integers p due to Faraut, Benson, Jenkins, Ratcliff, and
others. Moreover, our results are closely related to product formulas for multivariate Bessel
and other hypergeometric functions of Rösler.

1. Introduction. For positive integers p ≥ q consider the vector space
Mp,q of all p× q matrices over C. Consider the associated Heisenberg group
Hp,q := Mp,q × R with the product

(x, a) · (y, b) = (x+ y, a+ b− Im tr(x∗y))

where tr denotes the trace of the q × q matrix x∗y. Clearly, the unitary
groups K := Up := Up(C) and K := Up × Uq act on Hp,q via

u(x, a) := (ux, a) and (u, v)(x, a) := (uxv∗, a)

for u ∈ Up, v ∈ Uq, x ∈ Mp,q, and a ∈ R respectively as groups of au-
tomorphisms. The associated orbit spaces may be identified with Πq × R
and Ξq ×R respectively, Πq being the cone of complex positive semidefinite
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matrices and Ξq the Weyl chamber {x ∈ Rq : x1 ≥ · · · ≥ xq ≥ 0} of type B.
It is well-known that the Banach ∗-algebras Mb(Hp,q,K) of all K-invariant
bounded regular Borel measures with convolution as multiplication are com-
mutative always for K := Up×Uq, and for K := Up for q = 1 only (in which
case the groups K := Up := Up(C) and K := Up × U1 lead to the same
result). Moreover, in these Gelfand pair cases, the associated spherical func-
tions are well-known in terms of multivariate Laguerre and Bessel functions;
we refer to [BJR1], [BJR2], [BJRW], [C], [F], [Kac], [W] and references there
for this topic.

In this paper we compute the associated orbit convolutions on Πq × R
and Ξq × R explicitly, depending on the dimension parameter p. This com-
putation is similar to that of Rösler [R2] where the action of Up and Up×Uq
on Mp,q is considered for the fields R,C,H, and where multivariate Bessel
functions appear as spherical functions. Moreover, following [R2], we extend
these convolutions by analytic continuation to series of convolution struc-
tures for arbitrary parameters p ≥ 2q − 1 by using the famous theorem of
Carlson. This extension leads for q ≥ 2 to continuous series of noncommu-
tative hypergroups on Πq ×R and continuous series of commutative hyper-
groups on Ξq × R. In the latter case, we describe the dual spaces in terms
of multivariate Laguerre and Bessel functions on Πq and Ξq. Moreover, we
determine further data of these hypergroups like the Haar measures, the
Plancherel measures, automorphisms and subhypergroups.

The main results are as follows. For the hypergroup structures on Πq×R
(noncommutative for q ≥ 2) we derive in Section 2:

1.1. Theorem. Let q ≥ 1 be an integer and p ∈ ]2q − 1,∞[. Define a
convolution of point measures on Πq × R by
(1.1) (δ(r,a) ∗p,q δ(s,b))(f)

= κp,q
�

Bq

f
(√

r2 + s2 + rws+ (rws)∗, a+ b− Im tr(rws)
)

·∆(Iq − w∗w)p−2q dw

for f ∈ Cb(Πq × R), r, s ∈ Πq, a, b ∈ R, where

Bq := {w ∈Mq,q : w∗w < Iq, i.e., Iq − w∗w is positive definite},
∆ is the determinant of a q × q matrix, and κp,q > 0 is a suitable constant.
Then this formula establishes by unique bilinear, weakly continuous exten-
sion an associative convolution on Mb(Πq×R). More precisely, (Πq×R, ∗p,q)
is a hypergroup in the sense of Jewett (see [BH], [J]) with (0, 0) as identity
and with the involution (r, a) := (r,−a). Moreover,

ωp,q(f) =
�

Πq×R
f(
√
r, a)∆(r)p−q dr da

defines a left and right Haar measure.
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For the commutative hypergroup structures on Ξq ×R we derive in Sec-
tion 3:

1.2. Theorem. Let q ≥ 1 be an integer and p ∈ ]2q−1,∞[. Then Ξq×R
carries a commutative hypergroup structure with convolution

(1.2) (δ(ξ,a) ◦p,q δ(η,b))(f)

= κp,q
�

Bq

�

Uq

f
(
σ(
√
ξ2 + uη2u∗ + ξwuηu∗ + uηu∗w∗ξ),

a+ b− Im tr(ξwuηu∗)
)
·∆(Iq − w∗w)p−2q du dw

for f ∈ Cb(Ξq ×R), (ξ, a), (η, b) ∈ Ξq ×R, where du means integration with
respect to the normalized Haar measure on Uq and ξ ∈ Ξ is identified with
the associated diagonal matrix in Πq. The neutral element of this hypergroup
is given by (0, 0) ∈ Ξq×R, and the involution by (ξ, a) := (ξ,−a). Moreover,
a Haar measure is given by dω̃p,q(ξ, a) := hp,q(ξ) dξ da with the Lebesgue
density

(1.3) hp,q(ξ) :=
q∏
i=1

ξ2p−2q+1
i

∏
i<j

(ξ2
i − ξ2

j )2.

Moreover, the dual spaces of these commutative hypergroups, i.e., the
sets of all bounded continuous multiplicative functions, will be described
precisely as a Heisenberg fan consisting of multivariate Laguerre and Bessel
functions which were studied in [BF], [F], [FK], [He] and many others. As
already noticed above, this description is well known for the group cases
with integer p ([BJRW], [F]).

In Section 4 we use the product formula on Ξq ×R of Section 3 in order
to derive a product formula for the normalized Laguerre functions

ϕ̃pm(x) :=
lpm(x2/2)
lpm(0)

= e−(x2
1+···+x2

q)/2
Lpm(x2)
Lpm(0)

(x ∈ Ξq)

for p > 2q − 1, which are introduced, for instance, in [FK]. We show that
for all partitions m and all ξ, η ∈ Ξq,

(1.4) ϕ̃pm(ξ) · ϕ̃pm(η) = κp,q
�

Bq

�

Uq

ϕ̃pm
(
σ(
√
ξ2 +uη2u∗+ξwuηu∗+uηu∗w∗ξ)

)
· e−i·Im tr(ξwuηu∗)∆(Iq − w∗w)p−2q du dw.

For q = 1, this formula was derived by Koornwinder [Ko], who also gave
another version of it using Bessel functions.

We here notice that on all three levels discussed above also degenerate
product formulas are available for the limit case p = 2q − 1. We do not
consider the case p < 2q − 1.
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2. Heisenberg convolutions associated with matrix cones. For
positive integers p, q consider the vector space Mp,q of all p × q matrices
over C. Consider the associated Heisenberg group Hp,q := Mp,q×R with the
product

(x, a) · (y, b) = (x+ y, a+ b− Im tr(x∗y))

where tr denotes the trace of the q×q matrix x∗y. Clearly, the unitary group
Up := Up(C) acts on Hp,q via

u(x, a) := (ux, a) for u ∈ Up, x ∈Mp,q, a ∈ R

as a group of automorphisms. We regard Up as a compact subgroup of the
associated semidirect product Gp,q := Up n Hp,q in the natural way and
consider the double coset space Gp,q//Up which may also be regarded as
the space of all orbits of the action of Up on Hp,q in the canonical way.
Moreover, using uniqueness of polar decomposition of p× q matrices, we see
immediately that we may also identify this space of orbits with the space
Πq × R with

Πq := {z ∈Mq,q : z Hermitian and positive semidefinite}
via

Up((x, a)) ' (|x|, a),

where |x| :=
√
x∗x ∈ Πq stands for the unique positive semidefinite square

root of x∗x ∈ Πq.
Now consider the Banach ∗-algebra Mb(Gp,q||Up) of all Up-biinvariant

bounded signed Borel measures on Gp,q with the usual convolution of mea-
sures as multiplication. If we extend the canonical projection P : Gp,q →
Gp,q//Up ' Πq × R to measures by taking images of measures with respect
to P , this extension becomes an isometric isomorphism between the Banach
spaces Mb(Gp,q||Up) and Mb(Πq × R). We may thus transfer the Banach
∗-algebra structure on Mb(Gp,q||Up) to Mb(Πq × R) by this isomorphism
and obtain a probability preserving, weakly continuous convolution ∗p,q on
Mb(Πq ×R). The pair (Πq ×R, ∗p,q) forms a so-called hypergroup; for gen-
eral details on hypergroups and the construction above via double cosets
and orbits we refer to [BH] and [J].

Clearly, this Heisenberg-type convolution ∗p,q on (measures on) Πq×R
is commutative iff so is Mb(Gp,q||Up), i.e., iff (Gp,q, Up) is a Gelfand pair.
As Gelfand pairs associated with Heisenberg groups have been completely
classified (see [BJR2], [C], [Kac], [W]), it turns out that the convolution ∗p,q
is commutative precisely for q = 1. Moreover, for q = 1, the convolutions
∗p,q on Π1 × R = [0,∞[×R and the associated hypergroup structures have
been investigated by several authors; see [Ko], and the monographs [T], [BH]
as well as references therein.
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We next compute the convolution ∗p,q for arbitrary positive integers q
under the technical restriction p ≥ 2q which will be justified below. We
do this by using the approach for the Gelfand pair (Up n Mp,q, Up) in [R2]
where the double coset space (Up n Mp,q//Up) is identified with Πq, and
where the same restriction appears. The computation here is only slightly
more involved, and we obtain:

2.1. Proposition. Let p ≥ 2q ≥ 1 be integers. Then the convolution
∗p,q of point measures is given by

(2.1) (δ(r,a) ∗p,q δ(s,b))(f)

= κp,q
�

Bq

f
(√

r2 + s2 + rws+ (rws)∗, a+ b− Im tr(rws)
)

·∆(Iq − w∗w)p−2q dw

for f ∈ Cb(Πq × R), r, s ∈ Πq, a, b ∈ R with

• Iq ∈Mq,q the identity matrix,
• Bq := {w ∈Mq,q : w∗w < Iq, i.e., Iq − w∗w is positive definite},
• dw denoting integration with respect to Lebesgue measure on Mq,q,
• ∆ denoting the determinant of a q × q matrix,
• κp,q := (

	
Bq
∆(Iq − w∗w)p−2q dw)−1 > 0.

Proof. The canonical projection ϕ : Hp,q → H
Up
p,q ' Πq × R from the

Heisenberg group onto its orbit space is given explicitly by ϕ(x, a) = (|x|, a)
with |x| :=

√
x∗x. Moreover, if we define the block matrix

σ0 :=
(
Iq

0

)
∈Mp,q,

an “orbit” (r, a) ∈ Πq × R has the representative (σ0r, a) ∈ Hp,q. By the
general definition of the orbit convolution ∗p,q (see [J, Section 8.2] or [R2])
we have

(δ(r,a) ∗p,q δ(s,b))(f) = (δUp(σ0r,a) ∗p,q δUp(σ0s,b))(f)(2.2)

=
�

Up

f
(
ϕ((σ0r, a) · u((σ0s, b)))

)
du

=
�

Up

f
(
|σ0r + uσ0s|, a+ b− Im tr(rσ∗0uσ0s)

)
du

where du denotes integration with respect to the normalized Haar measure
on Up. Using the definition of the absolute value of a matrix above and
denoting the upper q × q block of u by uq := σ∗0uσ0 ∈ Mq,q, we readily
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obtain

(δ(r,a)∗p,qδ(s,b))(f) =
�

Up

f
(√

r2 + s2 + ruqs+ (ruqs)∗, a+b−Im tr(ruqs)
)
du.

The truncation Lemma 2.1 of [R3] now implies the proposition.

2.2. Remarks.

(1) The integral in (2.1) exists precisely for exponents p − 2q > −1,
which shows that a formula for ∗p,q of the above kind is available
precisely for p ≥ 2q.

(2) Let p ≥ 2q ≥ 1 be integers, and let f ∈ Cb(Πq × R), r, s ∈ Πq,
a, b ∈ R. Formula (2.1) and a straightforward computation yield

(δ(s,b) ∗p,q δ(r,a))(f)

= κp,q
�

Bq

f
(√

r2 + s2 + rws+ (rws)∗, a+ b+ Im tr(rws)
)

·∆(Iq − w∗w)p−2q dw.

Comparing this with (2.1), the reader can check directly the known
fact that ∗p,q is noncommutative precisely for q ≥ 2. For this, take
for instance a = b = 0, r =

(
1
0

0
0

)
and s =

(
0
0

0
1

)
with the zero matrix

0 ∈Mq−1,q−1.

We next extend the definition of the Heisenberg convolution in (2.1) to
noninteger exponents p ∈ ]2q − 1,∞[ for a fixed dimension parameter q
by Carlson’s theorem on analytic continuation. For the convenience of the
reader we recall this result from [Ti, p. 186]:

2.3. Theorem. Let f(z) be holomorphic in a neighbourhood of the half-
plane {z ∈ C : Re z ≥ 0} and satisfy f(z) = O(ec|z|) on Re z ≥ 0 for some
c < π. If f(z) = 0 for all nonnegative integers z, then f is identically zero
for Re z > 0.

This theorem will lead to the following extended convolution:

2.4. Theorem. Let q ≥ 1 be an integer and p ∈ ]2q − 1,∞[. Define the
convolution of point measures on Πq × R by

(2.3) (δ(r,a) ∗p,q δ(s,b))(f)

= κp,q
�

Bq

f
(√

r2 + s2 + rws+ (rws)∗, a+ b− Im tr(rws)
)

·∆(Iq − w∗w)p−2q dw

for f ∈ Cb(Πq × R), r, s ∈ Πq, a, b ∈ R, where κp,q, dw,∆ and other data
are defined as in Proposition 2.1 above. Then (2.3) defines a weakly con-
tinuous convolution of point measures on Πq × R which can be extended
uniquely in a bilinear, weakly continuous way to a probability preserving,
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weakly continuous, and associative convolution on Mb(Πq × R). More pre-
cisely, (Πq × R, ∗p,q) is a hypergroup with (0, 0) as identity and with the
involution (r, a) := (r,−a).

Proof. It is clear from (2.3) that the mapping

(Πq × R)× (Πq × R)→Mb(Πq × R), ((r, a), (s, b)) 7→ δ(r,a) ∗p,q δ(s,b)

is probability preserving and weakly continuous. It is now standard (see [J])
to extend this convolution uniquely in a bilinear and weakly continuous way
to a probability preserving convolution on Mb(Πq × R).

To prove associativity, it suffices to consider point measures. So let
r, s, t ∈ Πq, a, b, c ∈ R, and f ∈ Cb(Πq). Then

δ(r,a) ∗p,q (δ(s,b) ∗p,q δ(t,c))(f)

= κ2
p,q

�

Bq

�

Bq

f(H(r, a, s, b, t, c; v, w))

·∆(Iq − v∗v)p−2q∆(Iq − w∗w)p−2q dv dw =: I(p)

with a certain argument H independent of p. Similarly,

(δ(r,a) ∗p,q δ(s,b)) ∗p,q δ(t,c)(f) =: I ′(p)

admits a similar integral representation with some integrand H ′ indepen-
dent of p. The integrals I(p) and I ′(p) are well defined and holomorphic in
{p ∈ C : Re p > 2q − 1}. Furthermore, we know from the group cases above
that I(p) = I ′(p) for all integers p ≥ 2q. As

(2.4) |κp,q| = O(|p|q2) uniformly in {p ∈ C : Re p > 2q − 1} for p→∞
(see, for example, [R2, (3.9)]), we readily obtain

I(p+ 2q − 1)− I ′(p+ 2q − 1) = O(|p|2q2),

and Theorem 2.3 ensures that I(p) = I ′(p) for all p > 2q − 1. Thus ∗p,q is
associative.

Finally, it is clear by (2.3) that δ(0,0) is the neutral element. Moreover, as
the support supp(δ(r,a)∗p,q δ(s,b)) of our convolution is obviously independent
of p ∈ ]2q− 1,∞[, all further hypergroup axioms from [BH] or [J] regarding
the support of convolution products are obvious, as they are valid for the
group cases with integer p ≥ 2q.

2.5. Remark. The convolution (2.3) obviously satisfies the following
support formula: For all (r, a), (s, b) ∈ Πq × R,

supp(δ(r,a) ∗p,q δ(s,b))

⊂ {(t, c) ∈ Πq × R : ‖t‖ ≤ ‖r‖+ ‖s‖, |c| ≤ |a|+ |b|+ ‖r‖ · ‖s‖}

with the Euclidean norm ‖x‖ :=
√

tr(x∗x).
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We next collect some properties of the hypergroups (Πq×R, ∗p,q) for p ∈
]2q − 1,∞[. We first turn to examples of automorphisms. For this we recall
that a homeomorphism T on Πq × R is called a hypergroup automorphism
if for all (r, a), (s, b) ∈ Πq × R,

T (δ(r,a) ∗ δ(s,b)
) = δT (r,a) ∗ δT (s,b)

,

where the left hand side means the image of the measure under T .

2.6. Lemma. For all u ∈ Uq and λ > 0, the mappings

Tu,λ(r, a) := (λuru∗, λ2a)

are hypergroup automorphisms on (Πq × R, ∗p,q).
Proof. Equation (2.3) yields

(δTu,λ(r,a) ∗p,q δTu,λ(s,b))(f)

= κp,q
�

Bq

f
(
λ
√
u(r2 + s2 + ru∗wus+ (ru∗wus)∗)u∗,

λ2(a+ b− Im tr(uru∗wusu∗))
)
·∆(Iq − w∗w)p−2q dw.

Using tr(ut) = tr(tu),
√
utu∗ = u

√
t u∗ and the substitution v = u∗wu, we

see that this expression is equal to

(2.5) κp,q
�

Bq

f
(
λu
√
r2 + s2 + rvs+ (rvs)∗ u∗, λ2(a+ b− Im tr(rvs))

)
·∆(Iq − w∗w)p−2q dw

= Tu,λ(δ(r,a) ∗p,q δ(s,b))

as claimed.

2.7. Remark. The Bessel hypergroups on the matrix cones Πq of [R2]
admit many more hypergroup automorphisms. In fact, a complete classifi-
cation of all automorphisms on these Bessel hypergroups is given in [V3].
Due to the additional term Im tr(rws) in (2.3), most of these hypergroup
automorphisms on Πq cannot be extended to our Heisenberg convolutions.

We next turn to the (left) Haar measure which by [J] is unique up to a
multiplicative constant:

2.8. Proposition. A left Haar measure of the hypergroup (Πq×R, ∗p,q)
is given by

ωp,q(f) =
�

Πq×R
f(
√
r, a)∆(r)p−q dr da

for a continuous function f ∈ Cc(Πq × R) with compact support and the
restriction of the Lebesgue measure dr on the vector space of all Hermi-
tian q × q matrices. Moreover, this left Haar measure is also a right Haar
measure.
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Proof. We first recall that the Heisenberg groups Hp,q are unimodular
with the usual Lebesgue measure dλ as Haar measure. Therefore, by general
results on orbit hypergroups (see e.g. [J]), the image ϕ(dλ) of dλ under the
canonical projection ϕ : Hp,p → Πq × R is a left and right Haar measure
on the hypergroup (Πq ×R, ∗p,q). Moreover, the computation in Section 3.1
of [R2] shows that

ϕ(dλ)(r, a) = cp,q ·∆(r)p−q dr da ∈M+(Πq × R)

with a certain known constant cp,q > 0. This proves the result for integers
p ≥ 2q.

For the general case we must check that

(2.6)
�

Πq

�

R
(δ(r,a) ∗p,q δ(

√
s,b))(f)∆(s)p−q ds db

=
�

Πq

�

R
(δ(
√
s,b) ∗p,q δ(r,a))(f)∆(s)p−q ds db =

�

Πq

�

R
f(
√
s, b)∆(s)p−q ds db

for all f ∈ Cc(Πq × R), r ∈ Πq, a ∈ R and p ∈ C with Re p > 2q − 1, where
we use (2.3) also for the convolution for complex p. Clearly, all expressions
are analytic in p for fixed f, r, a, q. Moreover, by (2.3), the absolute values
of all three expressions are bounded by

C‖f‖∞|κp,q| ·MRe(2p−3q)

with some constant C and

M := sup{∆(s) : (s, b) ∈ Πq × R, supp(δ(r,a) ∗p,q δ(
√
s,b)) ∩ supp(f) 6= ∅

or (
√
s, b) ∈ supp(f)}

= sup{∆(s) : (
√
s, b) ∈ supp(f) ∪ ((r,−a) ∗p,q supp(f))}.

Using the estimate (2.4) for |κp,q| and the estimate for the support of con-
volution products in Remark 2.5, we deduce that the necessary estimate in
Carlson’s Theorem 2.3 holds whenever ‖r‖ and the support of f are con-
tained in a sufficiently small neighborhood of (0, 0). Therefore, (2.6) holds
in this case.

Finally, if f ∈ Cc(Πq × R) and r ∈ Πq are arbitrary, then we choose
a sufficiently small scaling parameter λ such that λr and the support of
fλ(s, a) := f(λ−1s, λ−2a) are sufficiently small so that (2.6) holds for λr
and fλ. As the scaling map TIq ,λ is a hypergroup automorphism, it follows
readily that (2.6) for λr and fλ is equivalent to (2.6) for r and f . This
completes the proof.

2.9. Remark. Equation (2.3) implies that for p > 2q−1 and (r, a), (s, b)
∈ Πq × R with positive definite matrices r, s, the convolution product
δ(r,a) ∗p,q δ(s,b) admits a density with respect to the Lebesgue measure, and



158 M. VOIT

hence by the preceding proposition with respect to the Haar measure of the
hypergroup (Πq × R, ∗p,q).

In fact, in the case p > 2q − 1 consider the linear map

w 7→ (r2 + s2 + rws+ (rws)∗, Im tr(rws))

from Bq ⊂ R2q2 to Π◦q×R ⊂ Rq2−1, which has a Jacobi matrix with maximal
rank q2 − 1. As the square root mapping on the interior Π◦q of Πq is a
diffeomorphism, the claim follows immediately from the convolution (2.3).

We next turn to the subhypergroups of (Πq×R, ∗p,q). Recall that a closed
set X ⊂ Πq ×R is called a subhypergroup if for all x, y ∈ X, we have x̄ ∈ X
and {x} ∗ {y} := supp(δx ∗ δy) ⊂ X. We next determine all subhypergroups
of (Πq × R, ∗p,q). We begin with examples of subhypergroups.

2.10. Proposition. Let p > 2q − 1, k ∈ {1, . . . , q}, and u ∈ Uq. Then

Xk,u :=
{(

u

(
r̃ 0
0 0

)
u∗, a

)
: r̃ ∈ Πk, a ∈ R

}
is a subhypergroup of (Πq × R, ∗p,q), and the mapping

(r̃, a) 7→
(
u

(
r̃ 0
0 0

)
u∗, a

)
is a hypergroup isomorphism between the Heisenberg hypergroup (Πk×R, ∗p,k)
and the subhypergroup (Xk,u, ∗p,q).

Proof. The Xk,Iq are obviously subhypergroups by (2.3). Moreover, using
the automorphism Tu,1 of Lemma 2.6, we see that the Xk,u are subhyper-
groups for arbitrary u ∈ Uq.

In order to check that the subhypergroup Xk,u is isomorphic to the hy-
pergroup (Πk × R, ∗p,k), we may assume u = Iq without loss of generality.
We first consider the group cases with integer p ≥ 2q. Here, the inverse
image of Xk,u under the canonical projection ϕ : Hp,q → Πq × R is given
by the subgroup

{((
x
0

)
, a
)

: x ∈ Mp,k, a ∈ R
}

of Hp,q, which is isomorphic
to Hp,k and preserved by the action of Up. Thus, the preceding construction
of the orbit hypergroup structures implies that (Xk,u, ∗p,q) is isomorphic to
(Πk ×R, ∗p,k) as claimed in this case. Therefore, for integers p ≥ 2q and all
f ∈ Cb(Πq × R) and (r, a), (s, b) ∈ Πk × R,

δ(( r
0

0
0

)
,a
) ∗p,q δ(( s

0
0
0

)
,b
)(f) = (δ(r,a) ∗p,k δ(s,b))(fk)

with fk(r, a) := f
((

r
0

0
0

)
, a
)
. If we use the definitions of these convolutions

in Theorem 2.4 for arbitrary p, analytic continuation via Carlson’s theorem
implies in the same way as in the proof of Theorem 2.4 that this equation
holds for all p > 2q − 1. This completes the proof.



MULTIDIMENSIONAL HEISENBERG CONVOLUTIONS 159

2.11. Remark. It follows immediately from (2.3) that X0 := {0} ×
R is a normal subgroup of (Πq × R, ∗p,q) isomorphic to (R,+). We may
now consider the associated quotient hypergroup (Πq × R, ∗p,q)/X0, which
can obviously be topologically identified with Πq. By the definition of the
quotient convolution (see e.g. [V2]) as well as (2.3), the quotient convolution
on Πq is given by

(δr ∗ δs)(f) = κp,q
�

Bq

f
(√

r2 + s2 + rws+ (rws)∗
)
·∆(Iq − w∗w)p−2q dw.

In other words, (Πq × R, ∗p,q)/X0 is isomorphic to the Bessel hypergroup
structure on the cone Πq of [R2] with index p.

2.12. Lemma. Let p > 2q−1. Let X be a subhypergroup of (Πq×R, ∗p,q)
which is not contained in the subgroup X0. Then X0 ⊂ X.

Proof. Consider a subhypergroup X 6⊂ X0. Thus there exist r ∈ Πq \{0}
and a ∈ R with (r, a) ∈ X. If we restrict the integration in (2.3) to matrices
wc = (−1/2 + ci) · Iq ∈ Bq with c ∈ [−

√
3/2,
√

3/2], we conclude from (2.3)
and

√
2r2 + rwcr + rw∗cr = r that

{r} × [−
√

3 · tr(r2)/2,
√

3 · tr(r2)/2] ⊂ {(r, a)} ∗p,q {(r,−a)} ⊂ X.

Therefore, by (2.3), there exists ε > 0 such that for all x ∈ [−ε,+ε] we
have (0, x) ∈ {(r, x)} ∗p,q {(r,−x)} ⊂ X. As X0 is a subgroup isomorphic to
(R,+), it follows that X0 ⊂ X.

2.13. Proposition. Let X be a subhypergroup of (Πq × R, ∗p,q). Then
X is a subgroup of X0 or X is equal to one of the subhypergroups Xk,u of
Proposition 2.10.

Proof. Let X be a subhypergroup which is not contained in X0. Then
X0 ⊂ X by Lemma 2.12, and we may consider the quotient subhypergroup
X/X0 in the quotient hypergroup (Πq × R)/X0 which is isomorphic to the
Bessel hypergroup of [R2] on the cone Πq with parameter p. On the other
hand, all subhypergroups of the Bessel hypergroup structures on the Πq

were classified in Proposition 4.6 of [V3]. As X0 ⊂ X, this classification
leads immediately to the classification above.

2.14. Remark. Let

B := {y ∈ Cq : ‖y‖2 < 1} and S := {y ∈ Cq : ‖y‖2 = 1}.

By Lemma 3.6 and Corollary 3.7 of [R2], the mapping P : Bq → Bq from



160 M. VOIT

the direct product Bq to the ball Bq with

(2.7) P (y1, . . . , yq) :=


y1

y2(Iq − y∗1y1)1/2

...
yq(Iq − y∗q−1yq−1)1/2 · · · (Iq − y∗1y1)1/2


establishes a diffeomorphism such that the image of the measure

∆(Iq − w∗w)p−2q dw

under P−1 is given by
q∏
j=1

(1− ‖yj‖22)p−q−jdy1 . . . dyq.

Therefore, (2.3) may be written as

(2.8) (δ(r,a) ∗p,q δ(s,b))(f)

= κp,q
�

Bq

f
(√

r2 + s2 + rP (y)s+ sP (y)∗r, a+ b− Im tr(rP (y)s)
)

·
q∏
j=1

(1− ‖yj‖22)p−q−j dy1 . . . dyq

for p > 2q−1. Moreover, for p→ 2q−1, this convolution product converges
weakly to the probability measure δ(r,a) ∗2q−1,q δ(s,b) ∈M1(Πq × R) with

(2.9) (δ(r,a) ∗2q−1,q δ(s,b))(f)

= κ2q−1,q

�

Bq−1

�

S

f
(√

r2 + s2 + rP (y)s+ sP (y)∗r, a+ b− Im tr(rP (y)s)
)

·
q−1∏
j=1

(1− ‖yj‖22)p−q−j dy1 . . . dyq−1 dσ(yq),

where σ ∈M1(S) is the uniform distribution on S and κ2q−1,q > 0 a suitable
normalization constant.

This convolution is obviously weakly continuous and can be extended to
an associative, weakly continuous, and probability preserving convolution
on Mb(Πq × R) by Theorem 2.4 and taking the limit above. Moreover, all
further hypergroup axioms may also be checked readily for (2.9). Finally,
the measure ω2q−1,q defined as in Proposition 2.8 is a Haar measure of the
hypergroup (Πq × R, ∗2q−1,q), the mappings Tu,λ(r, a) := (λuru∗, λ2a) are
also automorphisms here as in Lemma 2.6, and the subsets Xk,u ⊂ Πq × R
defined as in Proposition 2.10 are again subhypergroups.
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3. Heisenberg-type convolutions associated with Weyl cham-
bers of type B. In this section we consider the group Uq which by Lemma
2.6 acts as a compact group {Tu,1 : u ∈ Uq} of automorphisms on the Heisen-
berg hypergroups (Πq ×R, ∗p,q). As the orbits of the action of Uq on Πq by
conjugation are described by the ordered eigenvalues ξ1 ≥ · · · ≥ ξq ≥ 0 of
a matrix in Πq, we may identify the space of all Uq-orbits of (Πq × R, ∗p,q)
with the set Ξq × R where

Ξq := {ξ = (ξ1, . . . , ξq) ∈ Rq : ξ1 ≥ · · · ≥ ξq ≥ 0}.

The set Ξq is a closed Weyl chamber of the hyperoctahedral group Bq =
Sq n Zq2 which acts on Rq by permutations of the basis vectors and sign
changes. In this section we show how the convolutions ∗p,q on Πq × R for
p ≥ 2q − 1 lead to orbit hypergroup convolutions ◦p,q on Ξq × R by using
methods of [J] or [R3]. In contrast to the hypergroups (Πq × R, ∗p,q), the
hypergroups (Ξq × R, ◦p,q) are always commutative. We shall identify the
characters of these hypergroups in terms of multivariate Bessel and Laguerre
functions associated with the root system Bq.

Let us go into the details. Let q ≥ 1 be an integer and p ∈ [2q − 1,∞[.
In the situation described above, the mapping

Πq → Ξq, r 7→ σ(r),

which assigns to each matrix r its ordered spectrum σ(r), is continuous,
surjective and open with respect to the standard topologies on both sets.
Therefore the orbit space (Πq×R)Uq (equipped with the quotient topology)
may be identified with Ξq × R also topologically. We now identify both
spaces in the obvious way and consider the continuous, surjective and open
mapping

Φ : Πq × R→ Ξq × R, (r, a) 7→ (σ(r), a),

which corresponds to the orbit map above. This mapping is an orbital map-
ping from the hypergroup (Πq×R, ∗p,q) onto Ξq×R in the sense of Section 13
of [J], and it follows readily from Section 13 of [J] that Ξq ×R carries a cor-
responding orbit hypergroup convolution ◦p,q as follows: For a, b ∈ R and
ξ, η ∈ Ξq we choose representatives x, y ∈ Πq with σ(x) = ξ and σ(y) = η
and put

(3.1) δ(ξ,a) ◦p,q δ(η,b) := Φ(δ(x,a) ∗p,q δ(y,b)).

The properties of this hypergroup convolution can now be derived as in
Section 4 of [R2]. In particular, we can write down the convolution (3.1)
explicitly. For this, we denote the normalized Haar measure on Uq by du, and
ξ∈Ξq will always be identified with the diagonal matrix diag(ξ1, . . . , ξq)∈Πq

without mention.
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3.1. Theorem. Let q ≥ 1 be an integer and p ∈ ]2q−1,∞[. Then Ξq×R
carries a commutative hypergroup structure with the convolution

(3.2) (δ(ξ,a) ◦p,q δ(η,b))(f)

= κp,q
�

Bq

�

Uq

f
(
σ(
√
ξ2 + uη2u∗ + ξwuηu∗ + uηu∗w∗ξ),

a+ b− Im tr(ξwuηu∗)
)
·∆(Iq − w∗w)p−2q du dw

for f ∈ Cb(Ξq × R), (ξ, a), (η, b) ∈ Ξq × R. The neutral element is given by
(0, 0) ∈ Ξq × R, and the involution by (ξ, a) := (ξ,−a). Moreover, a Haar
measure on (Ξq × R, ◦p,q) is given by

dω̃p,q(ξ, a) := hp,q(ξ) dξ da

with the Lebesgue density

(3.3) hp,q(ξ) :=
q∏
i=1

ξ2p−2q+1
i

∏
i<j

(ξ2
i − ξ2

j )2.

Proof. In view of Section 13 of [J] and Section 4 of [R2] on orbit hy-
pergroups, we only have to check the commutativity of ◦p,q as well as the
statement about the Haar measure.

We first turn to the commutativity. We observe that for integers p >
2q − 1, by construction, the hypergroup (Ξq × R, ◦p,q) is isomorphic to the
orbit hypergroup which appears when the group Up×Uq acts on the Heisen-
berg group Hp,q by (u, v)(x, a) := (uxv∗, a) for u ∈ Up, v ∈ Uq, x ∈ Mp,q

and a ∈ R. Moreover, it is well known that

((Up × Uq) nHp,q, Up × Uq)

is a Gelfand pair; see [BJR1], [C], [F], [Kac]. Therefore, ◦p,q is commutative
for integers p ≥ 2q. The general case can now be proved by analytic con-
tinuation using Carlson’s Theorem 2.3 in the same way as in the proof of
Theorem 2.4. We omit the details.

On the other hand, we may check commutativity also directly. In fact,
let a, b ∈ R and ξ, η ∈ Ξq. We also regard ξ, η as real diagonal matrices as
described above. We deduce from invariance of spectrum and trace under
conjugations that

(δ(η,b) ◦p,q δ(ξ,a))(f)

= κp,q
�

Bq

�

Uq

f
(
σ(
√
u∗η2u+ ξ2 + u∗ηwuξ + (u∗ηwuξ)∗),

a+ b− Im tr(u∗ηwuξ)
)
·∆(Iq − w∗w)p−2q du dw.

Substituting w 7→ w̄ as well as dw = dw̄, ∆(Iq − w̄∗w̄) = ∆(Iq − w∗w) > 0,
σ(xT ) = σ(x), tr(xT ) = tr(x), ξ̄ = ξ, and η̄ = η implies that this expression
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is equal to

κp,q
�

Bq

�

Uq

f
(
σ(
√
uT η2ū+ ξ2 + uT ηwūξ + ξuTw∗ηū),

a+ b− Im tr(ξuTw∗ηū)
)
·∆(Iq − w∗w)p−2q du dw.

Using the substitution u 7→ uT , which preserves the Haar measure on Uq, as
well as the substitution w 7→ u∗w∗u, which preserves the Lebesgue measure
on Bq, we find that the expression above is equal to the right hand side
of (3.2). This completes the direct proof of commutativity.

We finally turn to the Haar measure. By Section 13 of [J], the Haar
measure ω̃p,q ∈M+(Ξq ×R) is just given as the image of the Haar measure
ωp,q ∈M+(Πq × R) under the projection Φ. As here the second component
R is not involved, the computation of this image measure can be carried
out in the same way as in the corresponding proof for the matrix Bessel
hypergroups in Theorem 4.1 of [R2]. We therefore omit the details.

3.2. Remarks. (1) For p = 2q − 1 the convolution ∗2q−1,q on Πq × R
introduced in Remark 2.14 can also be transferred to a commutative hyper-
group convolution ◦2q−1,q on Ξq×R in the same way as above. We omit the
details.

(2) As already mentioned in the preceding theorem, the hypergroups
(Ξq×R, ◦p,q) are orbit hypergroups associated with the action of Up×Uq on
the Heisenberg group Hp,q for integers p ≥ 2q. Clearly, one may also form the
associated orbit hypergroup structures (Ξq × R, ◦p,q) for all integers p ≥ q;
then the corresponding convolution for p = q, q+ 1, . . . , 2q− 1 is degenerate
and no longer given by (3.2).

(3) It is clear by the convolution (3.2) that G := {0} × R is a subgroup
of (Ξq × R, ◦p,q) isomorphic to (R,+). We may thus form the quotient hy-
pergroup

(Ξq × R)/G := {G · (ξ, a) = (ξ,R) : (ξ, a) ∈ Ξq × R} ' Ξq.

Using this natural identification as well as the canonical projection Ψ :
Ξq × R→ Ξq, we define the quotient convolution by

δξ •p,q δη := Ψ(δ(ξ,0) ◦p,q δ(η,0)),

i.e.,

(3.4) (δξ ◦p,q δη)(f)

= κp,q
�

Bq

�

Uq

f
(
σ(
√
ξ2 + uη2u∗ + ξwuηu∗ + uηu∗w∗ξ)

)
·∆(Iq − w∗w)p−2q du dw

for f ∈ Cb(Ξq) and ξ, η ∈ Ξq. In other words, the quotient hypergroup
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((Ξq × R)/G, •p,q) is precisely the Bessel hypergroup on the Weyl chamber
Ξq as studied in Section 4 of [R2] for the field C, i.e., the parameter d = 2
there.

We next turn to the characters of the commutative hypergroups
(Ξq×R, ◦p,q). For this we first recall some basic notions and facts about
commutative hypergroups mainly from [J] and [BH].

3.3. Some facts and notions on commutative hypergroups. Let
(X, ∗) be a commutative hypergroup. Then there is a Haar measure ω ∈
M+(X) which is unique up to a multiplicative constant. We introduce the
dual space

X̂ := {α ∈ Cb(X) : δx ∗ δȳ(α) = α(x)α(y) for all x, y ∈ X}

and the space of all multiplicative functions

χb(X) := {α ∈ Cb(X) : δx ∗ δy(α) = α(x)α(y) for all x, y ∈ X},

and equip both with the topology of locally uniform convergence. Both
spaces are locally compact, and for a Gelfand pair (G,K), the space of
spherical functions corresponds to the space χb(X) for the double coset hy-
pergroup (G//K, ∗). The elements of X̂ are called characters.

We define the Fourier transform ̂ : L1(X,ω)→ C0(X̂) by

f̂(α) :=
�

X

α(x) · f(x) dω(x).

Then there exists a unique Plancherel measure π ∈ M+(X̂) such that
the Fourier transform becomes an L2-isometry, i.e., for all f ∈
L1(X,ω)∩L2(X,ω) we have

	
X |f |

2 dω =
	 bX |f̂ |2 dπ, and the Fourier trans-

form can be extended to an isometric isomorphism between L2(X,ω) and
L2(X̂, π).

In contrast to the case of abelian groups, it may occur that supp(π) 6=
X̂ 6= χb(X). This happens for instance for Gelfand pairs associated with
noncompact semisimple Lie groups. On the other hand, there is a growth
criterion in hypergroup theory which ensures supp(π) = X̂ = χb(X). To
explain this, take a compact set A ⊂ X and define recursively the sets A(n)

by A(1) = A and A(n+1) = A(n) ∗A(1) =
⋃
x∈A(n), y∈A(1) supp(δx ∗ δy). We say

that (X, ∗) has subexponential growth if for all compact sets A ⊂ X and all
c > 1 we have ω(A(n)) = o(cn) for n→∞. It was proved in [Vog] and [V1]
that for each commutative hypergroup (X, ∗) with subexponential growth,
supp(π) = X̂ = χb(X).

We now return to the hypergroups (Ξq × R, ◦p,q). As the Heisenberg
groups have polynomial growth, the following result is not surprising:
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3.4. Lemma. The hypergroups (Ξq×R, ◦p,q) have subexponential growth
for p ≥ 2q − 1.

Proof. We see from (3.2) that for all (ξ, a), (η, b) ∈ Ξq × R and (τ, c) ∈
supp(δ(ξ,a) ◦p,q δ(η,b)) the first (and thus largest) components of the vectors
τ, ξ, η satisfy τ1 ≤ ξ1 + η1 and |c| ≤ |a| + |b| + ξ1η1. Now let C ⊂ Ξq × R
be compact. Choose d > 0 such that ξ1 ≤ d and |a| ≤ d for all (ξ, a) ∈ C.
A simple induction shows that then for all n ∈ N and all (τ, c) ∈ C(n) we
have 0 ≤ τq ≤ · · · ≤ τ1 ≤ nd and |c| ≤ nd + n(n−1)

2 · d2. As the Haar
measure ω̃p,q has a polynomially growing Lebesgue density by Theorem 3.1,
the assertion is clear.

By the above results we obtain:

3.5. Corollary. The hypergroups (Ξq × R, ◦p,q) satisfy supp(π) = X̂
= χb(X).

Consider the canonical projection Φ : Πq × R → Ξq × R as at the be-
ginning of this section. This mapping is an orbital morphism in the sense
of [J], and we conclude from [J]:

3.6. Corollary. Let p ≥ 2q−1. For each character α of (Ξq×R, ◦p,q),
the function α ◦ Φ ∈ Cb(Πq × R) is positive definite on the hypergroup
(Πq × R, ∗p,q).

We next introduce a set Σp,q of characters of the hypergroup
(Ξq × R, ◦p,q). Later on we shall see that this set in fact consists of all char-
acters. The set Σp,q consists of two disjoint sets Σ1

p,q and Σ2
p,q of functions,

described in terms of multivariate Laguerre and Bessel functions respec-
tively as discussed in [FK]. This is not surprising, as this connection is well
known for q = 1 (see the product formula in [Ko], [T] and references cited
there) as well as for the group cases with integers p, q ≥ 1; see [F] and refer-
ences there. Before going into details, we collect some notions and facts from
[BF], [F], [FK],and [Kan]. We start with some basic notions on multivariate
special functions:

3.7. Spherical polynomials. Let m = (m1, . . . ,mq) be a partition of
length q with integers m1 ≥ · · · ≥ mq ≥ 0. We define its length |m| :=
m1 + · · ·+mq, the generalized Pochhammer symbol

(3.5) (x)m =
q∏
j=1

(x− j + 1)mj

for x ∈ R (note that we here always use d = 2 in the notation of [FK]), as
well as the dimension constant

dm :=
(p)m(q)m
h(m)2
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where h(m) is the product of the hook lengths of m; see p. 237 of [F] and
p. 66 of [M2]. Moreover, for partitions m we define the spherical polynomials

Φm(x) =
�

Uq

∆m(uxu−1) du for x ∈Mq,q,

where du is the normalized Haar measure of Uq, ∆m is the power function

∆m(x) := ∆1(x)m1−m2∆2(x)m2−m3 · . . . ·∆q(x)mq ,

and the ∆i(x) are the principal minors of the determinant ∆(x); see Ch. XI
of [FK] for details. The Φm are homogeneous of degree |m| and satisfy
Φm(0) = 0 for m 6= 0, Φ0(0) = 1, and Φm(Iq) = 1 for the identity matrix
Iq ∈ Cq,q.

We also consider the renormalized so-called zonal polynomials Zm =
cmΦm with the constants

(3.6) cm :=
(q)m|m|!
h(m)2

> 0.

This normalization is characterized by

(3.7) (tr(x))k =
∑
|m|=k

Zm(x) for k ∈ N0.

In fact, the normalization constant cm can be easily derived from (3.7) and
some formulas on pp. 237–239 of [F]; see also [FK, Section XI.5] or [Kan].
Clearly, we have Zm(Iq) = cm.

By construction, the Φm and Zm are invariant under conjugation by Uq
and thus depend only on the eigenvalues of their argument. More precisely,
for Hermitian x ∈ Mq,q with eigenvalues ξ = (ξ1, . . . , ξq) ∈ Rq, we have
Zm(x) = C1

m(ξ) for the Jack polynomials C1
λ (cf. [FK], [R2]). They are

homogeneous of degree |m| and symmetric in their arguments.
We also introduce the generalized binomial coefficients

(
m
n

)
for partitions

m,n by the unique expansion

Φm(Iq + x) =
∑
|n|≤|m|

(
m
n

)
Φn(x)

with the identity matrix Iq ∈Cq,q. These binomial coefficients satisfy
(
m
n

)
6= 0

only for n ⊂m, i.e. for ni ≤ mi for i = 1, . . . , q. Moreover, it follows from [L]
that

(
m
n

)
≥ 0, and that for integers k,

(3.8)
∑
|n|=k

(
m
n

)
=
(
|m|
k

)
.
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3.8. Multivariate Laguerre polynomials. As in [FK, p. 343] we de-
fine the multivariate Laguerre polynomials

(3.9) Lpm(x) :=
∑
|n|≤|m|

(
m
n

)
(p)m
(p)n

· Φn(−x)

and the associated multivariate Laguerre functions

(3.10) lpm(x) := e− tr(x)Lpm(2x)

for x ∈ Cq,q. The functions Lpm and lpm are also invariant under conjuga-
tion by Uq and may thus be regarded as functions of their eigenvalues, i.e.,
as functions on Ξq. We shall do this from now on without separate nota-
tion.

With a slight difference in notation, these Laguerre polynomials and
functions are also considered by Baker and Forrester [BF] in the context of
Calogero–Sutherland models and Dunkl operators. In fact, a comparison of
the notation in [FK] and [BF] shows that our polynomials Lpm(x) defined
above agree with the Laguerre polynomials |m|! ·Lp−qm (x; 1) in the notation
of Proposition 4.3 of [BF]:

(3.11) Lpm(x) = |m|! · Lp−qm (x; 1) (in the sense of [BF]).

We next collect some known properties of these Laguerre polynomials:

3.9. Lemma. The polynomials Lpm(x) form an orthogonal basis of the
Hilbert space L2(Ξq, dµp,q) with the measure

dµp,q(x) :=
q∏
i=1

(e−xixp−qi ) ·
∏
i<j

(xi − xj)2 dx.

Moreover, for each partition m,
�

Ξq

(Lpm(x))2 dµp,q(x) = dp,q ·
|m|!(p)m
q!cm

= dp,q ·
(p)mh(m)2

q!(q)m

with the normalization constant

dp,q := µp,q(Ξq) =
�

Ξq

1 dµp,q(x).

Finally, Lpm(0) = (p)m.

Proof. For the orthogonality and the normalization we refer to Corol-
lary XV.4.3 of [FK] or Proposition 4.10 of [BF]. As the Lpm form a basis
of all polynomials in q dimensions (use e.g. Proposition 4.3 of [BF] and
the fact that the Jack polynomials form a basis), the completeness of the
system (Lpm)m can be derived by a classical Fourier argument as in the
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one-dimensional case for Laguerre polynomials. Another possibility here is
to use results of [dJ].

We next turn to multivariate Bessel functions of two arguments ξ, η ∈ Cq:

3.10. Multivariate Bessel functions. Following Kaneko [Kan] (see
also Section 2.2 of [R2]) we put

(3.12) Jp(ξ, η) :=
∑
m

(−1)|m|

(p)m|m|!
· C

1
m(ξ)C1

m(η)
C1

m(1, . . . , 1)
.

For η ∈ Ξq we now define the functions ψpη ∈ Cb(Ξq × R) by

(3.13) ψpη(ξ, t) := Jp(ξ2/2, η2/2)

as in Section 4.2 of [R2]. We denote by Σ2
p,q the set of all ψpη with η ∈ Ξq.

The multivariate Bessel functions appear as limits of the Laguerre func-
tions above. For the group case with integers p, this was already observed
by Faraut [F].

3.11. Lemma. Let p ≥ 2q− 1, and let (mk)k be a sequence of partitions
and (λk)k ⊂ R \ {0} a sequence with λk → 0 and limk→∞ λk ·mk = η ∈ Ξq.
Then, for p ≥ 2q − 1,

lim
k→∞

Lpmk(|λk|ξ2)
Lpmk(0)

= Jp(ξ2/2, η2/2)

uniformly on compact sets of ξ ∈ Ξq.
Proof. Writing the expansions of the Laguerre polynomials and Bessel

functions above in terms of so-called shifted Schur functions precisely as
on pp. 240–241 of [F], it can be checked as in Proposition 3.3 of [F] that
for all partitions n, the coefficients of the expansion of Lpmk(|λk|ξ2)/Lpmk(0)
tend to the corresponding coefficients of Jp(ξ2/2, η2/2). Moreover, as Φn is
homogeneous of degree |n| with |Φn(x)| ≤ 1 for ‖x‖2 = 1, and as

(p)n ≥ (q)n1 · · · (q)nq ≥ ((q)b|n|/qc)
q for p ≥ 2q − 1,

we deduce from (3.8) that∣∣∣∣Lpmk(|λk|ξ2)
Lpmk(0)

∣∣∣∣ ≤∑
n

(
mk

n

)
1

(p)n
· |Φn(ξ2)| · |λk||n|

≤
∑
j

∑
|n|=j

(
mk

n

)
1

((q)bj/qc)q
· |λk|j‖ξ‖2j

≤
∑
j

(|mk||λk|)j

j! · ((q)bj/qc)q
· ‖ξ‖2j <∞

locally uniformly in ξ ∈ Ξq. This readily implies the claimed locally uniform
convergence.
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Let us return to the characters of the hypergroup (Ξq × R, ◦p,q).

3.12. Definition. For λ ∈ R \ {0} and a partition m, we define the
function ϕpλ,m ∈ Cb(Ξq × R) by

ϕpλ,m(ξ, t) := eiλt · l
p
m(|λ|ξ2/2)
lpm(0)

(3.14)

= eiλt · e−|λ|(ξ21+···+ξ2q )/2 · L
p
m(|λ|ξ2)
Lpm(0)

with ξ2 := (ξ2
1 , . . . , ξ

2
q ). We denote by Σ1

p,q the set of all ϕpλ,m with λ ∈ R\{0}
and partitions m.

We notice that for integers p, the functions in the set Σ1
p,q agree with

the spherical functions ϕ(λ,m, ·, ·) on pp. 238–241 of Faraut [F]; there the
Laguerre polynomials are defined with some parameter shift.

Recall that we denote by Σ2
p,q the set of all Bessel functions ψpη with

η ∈ Ξq. Again, for integers p ≥ 1, the set Σ2
p,q consists of spherical functions

by [F]. We note that Faraut (p. 241 of [F]) uses slightly different symbols
for these Bessel functions; in his notation we have

ψ(η, ξ) = Jp(ξ2, η) = ψp√
2η

(
√

2 · ξ, t) (t ∈ R arbitrary).

3.13. Theorem. Let p ≥ 2q−1. Then all functions in Σp,q := Σ1
p,q∪Σ2

p,q

are characters of the hypergroup (Ξq × R, ◦p,q).

Proof. By Corollary 3.5, it suffices to show that all functions in Σp,q are
multiplicative and bounded. Taking Remark 3.2(3) and the results of [R2,
Section 4] into account, this is clear for all functions in Σ2

p,q.
The proof for the Laguerre functions in Σ1

p,q is slightly more involved.
Here we first consider the group cases with integers p ≥ 2q− 1 where (Ξq ×
R, ◦p,q) is isomorphic to the orbit hypergroup which appears when the group
Up × Uq acts on the Heisenberg group Hp,q. In these cases it is well known
that the functions in Σ1

p,q correspond to bounded spherical functions on
the associated Gelfand pairs; see [F] and references cited there. For general
parameters p > 2q − 1 we again employ analytic continuation by Carlson’s
Theorem 2.3. For this we fix a partition m, λ ∈ R×, and (ξ, a), (η, b) ∈
Ξq × R, and consider the function

F (p) := ϕpλ,m(ξ, a) · ϕpλ,m(η, b)

−κp,q
�

Bq

�

Uq

ϕpλ,m
(
σ(
√
ξ2 + uη2u∗ + ξwuηu∗ + uηu∗w∗ξ),

a+ b− Im tr(ξwuηu∗)
)
·∆(Iq − w∗w)p−2q du dw,

which has zeros for integer values p ≥ 2q. Moreover, F is analytic on W :=
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{p ∈ C : Re p > 2q − 1}. Furthermore, because of

|(p)m| =
( q∏
j=1

(p− j + 1)mj
)
≥ 1

for p ∈ W and the definition of the Laguerre functions ϕpλ,m above, we see
that ϕpλ,m remains bounded for p ∈W locally uniformly in (ξ, a) ∈ Ξq × R.
Therefore, for a suitable constant C > 0,

|F (p)| ≤ C2 + C · |κp,q|
�

Bq

�

Uq

|∆(Iq − w∗w)p−2q| du dw ≤ C2 + C2 · |κp,q|

with |κp,q| = O(|p|q2) by (2.4) for p ∈ W . Therefore, by Theorem 2.3,
F (p) = 0 for all p > 2q − 1, which proves that all elements of Σ1

p,q are
multiplicative for all p ≥ 2q−1. We finally note that the Laguerre functions
in Σ1

p,q are obviously bounded from their definition.

As bounded multiplicative functions α on a commutative hypergroup
satisfy ‖α‖∞ = 1, we obtain:

3.14. Corollary. For all p ≥ 2q−1, λ ∈ R\{0} and all partitions m,
‖ϕpλ,m‖∞ = 1.

We next turn to the Plancherel measures πp,q of the hypergroups
(Ξq × R, ◦p,q). These measures are well known for the group cases with in-
tegers p by [BJRW], [BJR2], [F], as well as for q = 1 in the general case; see
e.g. Section 8.1 of [T].

3.15. Theorem. Let p ≥ 2q − 1. If the hypergroup (Ξq × R, ◦p,q) is
equipped with the Haar measure ω̃p,q as in Theorem 3.1, then the associated
Plancherel measure πp,q ∈M+(Σp,q) of Section 3.3 is given by

πp,q(g) =
2q · q!
dp,q · 2π

·
�

R\{0}

∑
m

(p)m(q)m
h(m)2

· g(m, λ)|λ|pq dλ

for g ∈ L1(Σp,q, πp,q), where clearly the set Σp,q of functions is identified
with the relevant parameter set in the obvious way.

Proof. Let f ∈ Cc(Ξq × R). The classical Plancherel formula for (R,+)
says that the classical Fourier transform

F (x, λ) :=
�

R
f(x, t)e−iλt dt

with respect to the variable t satisfies

‖f‖22,ω̃p,q =
1

2π

�

Ξq

(�
R
|F (x, λ)|2 dλ

)
hp,q(x) dx.
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For fixed λ ∈ R \ {0}, we now consider the renormalized Laguerre functions

ϕ̃p|λ|,m(z) := lpm(|λ|z2/2)/lpm(0),

which satisfy ϕpλ,m(z, t) = eiλtϕ̃p|λ|,m(z). We then deduce by the Haar den-
sity (3.3), the transformation formula, and hp,q(cx) = c2pq−q · hp,q(x) for
c > 0 that

(3.15) cλ,m :=
�

Ξq

|ϕ̃p|λ|,m(x)|2hp,q(x) dx =
1
|λ|pq

�

Ξq

lpm(z2/2)2

lpm(0)2
hp,q(z) dz.

Moreover, according to Lemma 3.9, the functions ϕ̃p1,m/
√
c1,m form an or-

thonormal basis of L2(Ξq, hp,q(x) dx). Therefore, by Parseval’s identity,

(3.16) ‖f‖22,ω̃p,q =
1

2π

∑
m≥0

�

R

∣∣∣ �
Ξq

F (x, λ)ϕ̃p|λ|,m(x) · hp,q(x) dx
∣∣∣2 · 1

cλ,m
dλ.

As by Section 3.3 and Theorem 3.1 the hypergroup Fourier transform f̂ is
given by

f̂(λ,m) =
�

Ξq

�

R
ϕp|λ|,m(x) · f(x, t) dt hp,q(x) dx

=
�

Ξq

F (x, λ)ϕ̃p|λ|,m(x) · hp,q(x) dx,

we deduce from Lemma 3.9 that

‖f‖22,ω̃p,q =
1

2π

∑
m≥0

�

R
|f̂(λ,m)|2 · 1

cλ,m
dλ

=
2q · q!
dp,q · 2π

∑
m≥0

�

R
|f̂(λ,m)|2 · |λ|pq dλ · (p)m(q)m

h(m)2
= ‖f̂‖22,πp,q

with the measure πp,q introduced in the theorem. As Cc(Ξq × R) is dense
in L2(Ξq × R, hp,q(x) dx dt), the equation also holds for all f ∈ L2(Ξq × R,
hp,q(x) dx dt), which characterizes the Plancherel measure as claimed.

We next prove that the characters in Σp,q form the complete dual space
X̂ of (Ξq × R, ◦p,q). The following representation of the topology on X̂ as
a Heisenberg fan is due to J. Faraut, who considered the group case with
integer p:

3.16. Theorem. Let p ≥ 2q − 1. Then the set Σp,q is equal to the
complete dual space X̂ of the hypergroup (Ξq × R, ◦p,q). More precisely, if
the closed subset

D := ({0} ×Ξq) ∪ {(λ, λ ·m) : λ ∈ R \ {0}, m a partition}
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of Rq+1 carries the usual topology as a subset of Rq+1, and if X̂ = Σp,q
carries the topology of locally uniform convergence, then the mapping

E : Σp,q → D

with

ϕpλ,m ∈ Σ
1
p,q 7→ (λ, λm1, . . . , λmq) and ψpρ ∈ Σ2

p,q 7→ (0, ρ1, . . . , ρq)

establishes a homeomorphism.

Proof. We first notice that it follows easily from the definition of the
functions ϕpλ,m and ψpρ that these functions on the hypergroup X := Ξq ×R
are different for different indices.

We now prove that Σp,q is equal to the complete dual space X̂. For
this consider the subgroup G := {0} × R of X as above and the associated
annihilator

A(X̂,G) := {α ∈ X̂ : α|G ≡ 1}.

This set is a closed subset of the dual X̂ and can by [V2] be identified with
the dual space of the quotient hypergroup (Ξq × R)/G which was studied
in Remark 3.2(3). In fact, the hypergroup (Ξq × R)/G is (isomorphic to)
a Bessel-type hypergroup on the Weyl chamber Ξq as studied in Section 4
of [R2]. We thus conclude readily from Section 4 of [R2] and the general
results on annihilators in [V2] that A(X̂,G) = Σ2

p,q, and that the mapping
E above restricted to Σ2

p,q is a homeomorphism.

We next turn to the complete dual X̂. Here we first conclude from Theo-
rem 3.15 and Corollary 3.5 that the dual X̂ is the closure ofΣ1

p,q in Cb(Ξq×R)
with respect to the topology of locally uniform convergence. To prove that
this closure is equal to Σp,q, we consider some α ∈ X̂ ⊂ Cb(Ξq×R) which is
the locally uniform limit of a sequence (ϕpλn,mn

)n≥1 ⊂ Σ1
p,q. As the restric-

tions to G also converge locally uniformly, it follows from the definition of
the ϕpλ,m that (λn)n≥1 ⊂ R \ {0} converges to some λ ∈ R. We consider two
cases:

(1) If λ = 0, then it follows from the definition of the ϕpλ,m that α ∈
A(X̂,G), and the preceding considerations imply that α ∈ Σ2

p,q.
(2) Let λ 6= 0. If (mn)n≥1 remains bounded, we may choose it as a

constant sequence with mn = m without loss of generality, and we
deduce from λn → λ that α = limn ϕ

p
λn,m

= ϕpλ,m ∈ Σ
1
p,q. We thus

may restrict our attention to the case where at least one component
of mn tends to infinity. In this case we take an arbitrary multiin-
dex m and conclude from the convergence of normalized Laguerre
polynomials Lpλn,m to Lpλ,m (see Section 3.8) that for the density hp,q
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of (3.3),
�

Ξq

α(z, 0) · ϕpλ,m(z, 0)hp,q(z) dz

=
�

Ξq

lim
n→∞

(ϕpλn,mn
(z, 0) · ϕpλn,m(z, 0))hp,q(z) dz

=
�

Ξq

lim
n→∞

(
Lpmn(|λn|z2/2)Lpm(|λn|z2/2)

Lpmn(0)Lpm(0)
· e−|λn| ‖z‖2

)
hp,q(z) dz.

Using a renormalization as in (3.15) with λn → λ, the dominated
convergence theorem, and the fact that the modulus of the ϕpλn,mn

is bounded by 1, we find that this expression is equal to

1
|λ|pq

lim
n→∞

�

Ξq

Lpmn(z2/2)Lpm(z2/2)
Lpmn(0)Lpm(0)

· e−‖z‖2hp,q(z) dz = 0.

Therefore, as α ∈ Cb(Ξq × {0}) ⊂ L2(Ξq, e−λ‖z‖
2
hp,q(z)dz), and as

the Laguerre polynomials (Lpλ,m(z2))m with squared arguments form
an orthogonal basis of this L2-space by Lemma 3.9, it follows that
α = 0 a.s. on Ξq × {0} and thus on Ξq × R. This is a contradiction
to α being a continuous character with α(0, 0) = 1.

Summarizing, we conclude that Σp,q = X̂, and that a sequence
(ϕpλn,mn

)n≥1 ⊂ Σ1
p,q can converge to a character without loss of general-

ity only in the following two cases: either λn → λ 6= 0 and (mn)n is finally
constant, or λn → 0. In the first case, locally uniform convergence obviously
appears, and in the second case we have locally uniform convergence for
λnmn → η ∈ Ξq by Lemma 3.11.

We finally prove that a sequence (ϕpλn,mn
)n≥1 ⊂ Σ1

p,q can converge lo-
cally uniformly to some ψpρ only for parameters with limn λnmn = ρ. If this
is done, it follows readily from the above that the mapping E of our the-
orem is a homeomorphism. In order to prove this statement, consider such
a sequence (ϕpλn,mn

)n≥1 and its limit ψpρ. If the sequence (λnmn)n ⊂ Ξq is
bounded, we find a convergent subsequence with some limit ρ̃ ∈ Ξq. For this
subsequence we obtain ϕpλnk ,mnk

→ ψpρ̃ locally uniformly, and thus ψpρ̃ = ψpρ,
i.e., ρ̃ = ρ. Therefore, each convergent subsequence of the bounded sequence
(λnmn)n ⊂ Ξq converges to ρ, which implies λnmn → ρ as claimed. We fi-
nally consider the unbounded case. Here we may assume without loss of gen-
erality that the largest component of (λnmn)n ⊂ Ξq converges to∞ (switch
to a suitable subsequence), i.e., λnm1,n →∞. We then define λ̃n := ρ/m1,n

and observe that λ̃nmn has a subsequence which converges to some ρ̃ ∈ Ξq
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with ρ̃1 = 1. For this subsequence and any (ξ, t) ∈ Ξq × R we thus have

ϕp
λ̃nk ,mnk

(ξ, t)→ ψpρ̃(ξ, t),

and also, by the definition of ϕpλ,m and our assumption about locally uniform
convergence,

ϕp
λ̃nk ,mnk

(ξ, t) = ϕpλnk ,mnk

(
ξ ·
√
λ̃nk/λnk , t · λ̃nk/λnk

)
→ ψpρ(0, 0) = 1.

It follows that ψpρ̃ ≡ 1, contradicting ρ̃1 = 1. Therefore this limit case cannot
appear, which completes the proof of the theorem.

The proof of the continuity of the mapping E in the theorem above is
quite special. It was pointed out to the author by J. Faraut that a more
systematic approach for this part of the theorem is available by using heat
kernels on the hypergroups Ξq×R and their explicit continuous hypergroup
Fourier transfoms.

We finally turn to a refinement of the last part of the theorem. The
following observation is clear from Section 2:

3.17. Lemma. Let (ξ, a), (η, b) ∈ Ξq × R with ξq > 0 and ηq > 0. Then,
for p > 2q−1, the convolution product δ(ξ,a)◦p,qδ(η,b) is absolutely continuous
with respect to the Haar measure ω̃p,q.

Proof. As absolute continuity is preserved under the continuous projec-
tion Φ : Πq×R→ Ξq×R, the lemma follows immediately from Remark 2.9.

As by the Riemann–Lebesgue Lemma for hypergroups (see [J]) the hy-
pergroup Fourier transform maps functions in L1(Ξq × R, ω̃p,q) to C0 func-
tions on the dual space X̂, the preceding lemma and Theorem 3.16 imply:

3.18. Corollary. Let (ξ, a) ∈ Ξq×R with ξq > 0. Then, for p > 2q−1,
the hypergroup Fourier transform of δ(ξ,a) on the dual space X̂ is a C0-
function. In particular, for ξ ∈ Ξq with ξq > 0,

lim
λ·m1→∞

lpm(λξ2/2)
lpm(0)

= 0.

This limit result for Laguerre functions seems to be new for q ≥ 2; we
expect that it holds for larger parameter regions than considered here.

4. A product formula for Laguerre functions. In this section we
derive a product formula for the multivariate Laguerre functions lpm of Sec-
tion 3 for p ≥ 2q − 1. For q = 1, this formula was established directly
by Koornwinder [Ko], who also discusses its connection with Heisenberg
groups. We here derive the product formula from the product formula (3.2)
for p > 2q − 1 and its degenerate version for p = 2q − 1 according to Re-



MULTIDIMENSIONAL HEISENBERG CONVOLUTIONS 175

mark 3.2(1) for the characters ϕpλ,m ∈ Σ
1
p,q of the commutative hypergroups

(Ξq × R, ◦p,q). We use the general approach of [RV] where, embedded into
a more general setting, it is also explained how for q = 1 Koornwinder’s
product formula for the one-dimensional Laguerre functions corresponds to
the Heisenberg-type hypergroup convolution on [0,∞[×R. We now extend
this approach from q = 1 to q ≥ 1.

For this we recall from Remark 3.2 that G := {0} × R is a subgroup
of the commutative hypergroup (Ξq × R, ◦p,q) for p ≥ 2q − 1. Moreover,
τ(x, t) := eit defines a function τ ∈ Cb(Ξq × R) with

|τ(x, t)| = 1, τ((x, t)) = τ(x, t), τ((x, t) · (0, s)) = τ(x, t) · τ(0, s)

for all x ∈ Ξq and s, t ∈ R. In other words, τ is a partial character of
(Ξq×R, ◦p,q) with respect to G as in Definition 4.1 of [RV]. We now consider
the canonical projection

p : Ξq × R→ (Ξq × R)/G ' Ξq

in accordance with Remark 3.2(3) and recall that the quotient hypergroup
(Ξq × R)/G agrees with the corresponding Hermitian Bessel hypergroup
on Ξq of Rösler [R2], i.e., the corresponding hypergroup involution is the
identity mapping. Following Section 4 of [RV], we now define a deformed
quotient convolution of point measures on Ξq by

(4.1) δξ •τ,p,q δη := p(τ · (δ(ξ,0) ◦p,q δ(η,0))) for ξ, η ∈ Ξq.

According to Section 4 of [RV], this convolution can be uniquely extended
in a weakly continuous bilinear way to a commutative Banach ∗-algebra
(Mb(Ξq), •τ,p,q) with the total variation norm. More precisely, by Theorem
4.6 and Corollary 4.7 of [RV], (Ξq, •τ,p,q) becomes a Hermitian signed hyper-
group in the sense of [R1]; see also [RV] and [Ross] for the notion of signed
hypergroups.

Let us compute the convolution (4.1) in an explicit way. Equation (3.2)
for p > 2q − 1 shows that for f ∈ Cb(Ξq) we have

(4.2) δξ •τ,p,q δη(f) =
�

Ξq

f dp (τ · (δ(ξ,0) ◦p,q δ(η,0)))

=
�

Ξq×R
f(x) · eit d(δ(ξ,0) ◦p,q δ(η,0))(x, t)

= κp,q
�

Bq

�

Uq

f
(
σ(
√
ξ2 + uη2u∗ + ξwuηu∗ + uηu∗w∗ξ)

)
· e−i·Im tr(ξwuηu∗) ·∆(Iq − w∗w)p−2q du dw.
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For p = 2q − 1 one obtains a corresponding degenerate version of this for-
mula by using Remarks 3.2(1) and 2.14. We notice that this convolution
is obviously not probability preserving and usually even not positivity pre-
serving.

Moreover it follows from Theorem 5.2 of [RV] that for p ≥ 2q− 1 and all
partitions m, the normalized Laguerre functions

ϕ̃pm(x) :=
lpm(x2/2)
lpm(0)

= e−(x2
1+···+x2

q)/2
Lpm(x2)
Lpm(0)

(x ∈ Ξq)

comprise all bounded R-valued multiplicative functions on (Ξq, •τ,p,q). In
summary, we have the following product formula:

4.1. Corollary. For all p > 2q − 1, ξ, η ∈ Ξq, and all partitions m,

(4.3) ϕ̃pm(ξ) · ϕ̃pm(η)

= κp,q
�

Bq

�

Uq

ϕ̃pm
(
σ(
√
ξ2 + uη2u∗ + ξwuηu∗ + uηu∗w∗ξ)

)
· e−i·Im tr(ξwuηu∗)∆(Iq − w∗w)p−2q du dw.

Moreover, for p = 2q − 1,

ϕ̃2q−1
m (ξ) · ϕ̃2q−1

m (η)

= κ2q−1,q

�

Bq−1

�

S

�

Uq

ϕ̃2q−1
m

(
σ(
√
ξ2 + η2 + ξP (y)η + ξP (y)∗η)

)
· e−i·Im tr(ξP (y)uηu∗) ·

q−1∏
j=1

(1− ‖yj‖22)p−q−j du dy1 . . . dyq−1 ds(yq)

with y := (y1, . . . , yq) and B := {y ∈ Cq : ‖y‖2 < 1}, where s ∈ M1(S)
denotes the uniform distribution on the sphere S := {y ∈ Cq : ‖y‖2 = 1},
and P is the map defined in (2.7).

As the convolution •τ,p,q of (4.2) is not mass preserving, there does not
exist an associated translation invariant measure mτ,p,q ∈ M+(Ξq) in the
usual hypergroup sense. However, Theorem 4.6 of [RV] ensures that the Haar
measure

dmp,q(ξ) =
q∏
i=1

ξ2p−2q+1
i

∏
i<j

(ξ2
i − ξ2

j )2 dξ ∈M+(Ξq)

of the usual quotient hypergroup (Ξq×R)/G ' Ξq also admits the following
adjoint relation for •τ,p,q: If for f ∈ Cc(Ξq) and ξ ∈ Ξq we define the translate

Tξf(η) :=
�

Ξq

f d(δξ •τ,p,q δη),
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then we have, for all f, g ∈ Cc(Ξq),

(4.4)
�

Ξq

(Tξf) · g dmp,q =
�

Ξq

(Tξg) · f dmp,q.

4.2. Remark. Consider the group case with integer parameters p ≥
2q − 1. Here, all characters of the double coset hypergroup (Ξq × R, ◦p,q)
correspond to positive definite spherical functions on the Heisenberg group
Hp,q and admit therefore a dual product formula, i.e., for all α, β ∈ Σp,q (see
Theorem 3.16) there is a unique probability measure ρα,β ∈ M1(Σp,q) such
that for all (x, t) ∈ Ξq × R,

(4.5) α(x, t) · β(x, t) =
�

Σp,q

γ(x, t) dρα,β(γ).

Let us take

α(x, t) := eλ1it · l
p
m(|λ1|x2/2)
lpm(0)

and β(x, t) := eλ2it · l
p
n(|λ2|x2/2)
lpn(0)

for λ1, λ2 6= 0 and partitions m,n.
If we consider the t-dependence of the product in (4.5) for x = 0, we find

for λ1, λ2 > 0 that

Lpm(λ1x
2/2)

Lpm(0)
· L

p
n(λ2x

2/2)
Lpn(0)

=
∑

|k|≤|m|+|n|

c(m,n,k;λ1, λ2, p, q) ·
Lpk((λ1 + λ2)x2/2)

Lpk(0)

for unique coefficients c(m,n,k;λ1, λ2, p, q) which satisfy

c(m,n,k;λ1, λ2, p, q) ≥ 0 and
∑
k

c(m,n,k;λ1, λ2, p, q) = 1.

For instance, for n = 0, we deduce for 0 ≤ λ1 ≤ λ2 that

Lpm(λ1x
2/2) =

∑
k

c(m,k; p, q)Lpk(λ2x
2/2)

with nonnegative coefficients c(m,k; p, q).
On the other hand, for λ1 > 0 and −λ1 < λ2 < 0 we obtain

lpm(λ1x
2/2)

lpm(0)
· l
p
n(|λ2|x2/2)
lpn(0)

=
∑
k

c(m,n,k;λ1, λ2, p, q) ·
lpk((λ1 + λ2)x2/2)

lpk(0)
.

We expect that these and further related results also hold for arbitrary
(noninteger) p ≥ 2q − 1. For q = 1, the formulas above are connected with
the discrete Laguerre convolution of [AG].
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