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FREE POWERS OF THE FREE POISSON MEASURE

BY

MELANIE HINZ and WOJCIECH MŁOTKOWSKI (Wrocław)

Abstract. We compute moments of the measures ($�p)�t, where $ denotes the
free Poisson law, and � and � are the additive and multiplicative free convolutions. These
moments are expressed in terms of the Fuss–Narayana numbers.

1. Introduction. Free convolution is a binary operation on the classM
of probability measures on R, which corresponds to the notion of free inde-
pendence in noncommutative probability (see [3, 8, 12]). Namely, if X,Y are
free noncommuting random variables, with distributions µ, ν ∈ M respec-
tively, then the additive free convolution µ � ν is the distribution of the sum
X + Y . Similarly, if moreover X ≥ 0 then the multiplicative free convolution
µ � ν can be defined as the distribution of the product

√
XY
√
X.

Here we can confine ourselves to the class Mc of compactly supported
measures in M. Let Mc

+ denote the class of those µ ∈ Mc \ {δ0} with
support in [0,∞). For µ ∈Mc we define its moment generating function

(1) Mµ(z) :=
∞∑
m=0

sm(µ)zm,

defined in some neighborhood of 0, where

(2) sm(µ) :=
�

R
xm dµ(x)

is the mth moment of µ. Then we define its R-transform Rµ(z) by the
equation
(3) Mµ(z) = Rµ(zMµ(z)) + 1.

If Rµ(z) =
∑∞

m=1 rm(µ)zm then the numbers rm(µ) are called the free cu-
mulants of µ. For µ, ν ∈ Mc we define the additive free convolution µ � ν
and the additive free power µ�t by
(4) Rµ�ν(z) = Rµ(z) +Rν(z) and Rµ�t(z) = tRµ(z).

The latter is well defined at least for t ≥ 1.
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The free S-transform (see [11]) of µ ∈Mc
+ is defined by the relation

(5) Rµ(zSµ(z)) = z or Mµ(z(1 + z)−1Sµ(z)) = 1 + z.

Observe that

(6) Sµ�t(z) =
1
t
Sµ

(
z

t

)
.

If µ, ν ∈ Mc and µ has support contained in [0,∞) then the multiplicative
free convolution µ � ν and the multiplicative free powers µ�p are defined by

(7) Sµ�ν(z) := Sµ(z)Sν(z) and Sµ�p(z) = Sµ(z)p.

The powers are well defined at least for p ≥ 1.
For c ∈ R, c 6= 0, and µ ∈ M we define the dilation Dcµ ∈ M by

Dcµ(X) := µ(c−1X) for every Borel subset X of R. Then we have

(8) MDcµ(z) = Mµ(cz), RDcµ(z) = Rµ(cz), SDcµ(z) =
1
c
Sµ(z).

The last formula, together with (6), leads to

Proposition 1.1. Assume that µ ∈Mc
+, p, t > 0 and both the measures

(µ�t)�p and (µ�p)�t exist. Then

Dtp−1(µ�p)�t = (µ�t)�p.

Proof. If Sµ(z) is the free S-transform of µ then

1
t
Sµ

(
z

t

)p
and

1
tp
Sµ

(
z

t

)p
are the free S-transforms of (µ�p)�t and (µ�t)�p respectively.

2. The free Poisson measure. Our aim is to study the additive and
multiplicative free powers of the free Poisson measure

$ :=
1
2π

√
4− x
x

dx on [0, 4].

It is known that $�t is �-infinitely divisible for t ≥ 1 and $�p is �-infinitely
divisible for p ≥ 1 (see [12, 8, 2, 7]). Therefore the double powers ($�t)�p

and ($�p)�t exist whenever p, t > 0 and max{p, t} ≥ 1.
The additive free powers $�t, t > 0, are well known:

(9) $�t = max{1− t, 0}δ0 +

√
4t− (x− 1− t)2

2πx
dx

with the absolutely continuous part supported on [(1 −
√
t)2, (1 +

√
t)2], as
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well as the corresponding functions:

M$�t(z) =
2

1 + (1− t)z +
√

(1− (1 + t)z)2 − 4tz2
(10)

= 1 +
∞∑
m=1

zm
m∑
k=1

(
m

k

)(
m

k − 1

)
tk

m
,

R$�t(z) =
tz

1− z
, S$�t(z) =

1
t+ z

.(11)

For the multiplicative free powers $�p, p > 0, it is known [2, 7] that

M$�p(z) =
∞∑
m=0

(
m(p+ 1) + 1

m

)
zm

m(p+ 1) + 1
,(12)

R$�p(z) =
∞∑
m=1

(
mp+ 1
m

)
zm

mp+ 1
.(13)

Explicit formulas for the measures $�p are known only for natural p [9, 10].
Our aim now is to study the measures

$(p, t) := ($�p)�t,

where p, t > 0 and max{p, t} ≥ 1. First observe that

R$(p,t)(z) = t
∞∑
m=1

(
mp+ 1
m

)
zm

mp+ 1
(14)

and

S$(p,t)(z) = tp−1(t+ z)−p.(15)

Our previous remarks lead to the following

Proposition 2.1. Assume that p, t > 0 and max{p, t} ≥ 1.

• If p ≥ 1 then $(p, t) is �-infinitely divisible.
• If t ≥ 1 then $(p, t) is �-infinitely divisible.

In order to compute moments of $(p, t) we will use the Lagrange inver-
sion formula which says that if a function z = f(w) is analytic at the point
w = a and f ′(a) 6= 0, f(a) =: b, then for the inverse function w = g(z) we
have

(16) g(z) = a+
∞∑
m=1

dm−1

dwm−1

(
w − a
f(w)− b

)m ∣∣∣∣
w=a

(z − b)m

m!
.

Now we are ready to prove (see [6] for the special case p = 2)
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Theorem 2.2. For p, t > 0 with max{p, t} ≥ 1, define $(p, t) :=
($�p)�t. Then

(17) M$(p,t)(z) = 1 +
∞∑
m=1

zm
m∑
k=1

(
m

k − 1

)(
mp

m− k

)
tk

m
.

Proof. Putting in (16)

f(w) := tp−1w(1 + w)−1(t+ w)−p

and a = b = 0 we have, in view of (5) and (15), M$(p,t)(z) = 1 + g(z).
Therefore

M$(p,t)(z) = 1 +
∞∑
m=1

dm−1

dwm−1
(tm(1−p)(1 + w)m(t+ w)mp)

∣∣∣∣
w=0

zm

m!
.

But now

(1 + w)m(t+ w)mp = tmp
( m∑
k=0

(
m

k

)
wk
)( ∞∑

k=0

(
mp

k

)(
w

t

)k)

= tmp
∞∑
k=0

wk
k∑
i=0

(
m

i

)(
mp

k − i

)
ti−k.

Therefore

dm−1

dwm−1
((1+w)m(t+w)mp)

∣∣∣∣
w=0

= tmp(m−1)!
m−1∑
i=0

(
m

i

)(
mp

m−1− i

)
ti−m+1

= tmp(m− 1)!
m∑
k=1

(
m

k − 1

)(
mp

m− k

)
tk−m,

which leads to our statement.

Note that in view of Proposition 1.1 there is no point to study powers
like

((($�p1)�t1)�p2)�t2...

because all of them are dilations of some of $(p, t).
It would be interesting to verify the following

Conjecture. Assume that p, t > 0. Then the sequence {sm(p, t)}∞m=0

defined by: s0(p, t) := 1 and

sm(p, t) :=
m∑
k=1

(
m

k − 1

)(
mp

m− k

)
tk

m

for m ≥ 1, is positive definite if and only if max{p, t} ≥ 1.

The coefficients at (12) and (17) have a remarkable combinatorial mean-
ing, which was found by Edelman [4]. Namely, fix m, p ∈ N and let NC(p)(m)
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denote the set of all noncrossing partitions π of {1, . . . ,mp} such that p di-
vides the cardinality of every block of π. Then the cardinality of NC(p)(m)
is expressed as the Fuss–Catalan number :

|NC(p)(m)| =
(
m(p+ 1) + 1

m

)
1

m(p+ 1) + 1
.

For other applications of these numbers we refer to [5].
For π ∈ NC(p)(m) we define its rank rk(π) := m − |π|. The elements of

fixed rank are counted by the Fuss–Narayana numbers:

|{π ∈ NC(p)(m) : rk(π) = k − 1}| =
(

m

k − 1

)(
mp

m− k

)
1
m
.

There is a natural partial order on NC(p)(m). Namely, we say that π ∈
NC(p)(m) is finer than σ ∈ NC(p)(m), and write π � σ, if every block of π is
contained in a block of σ. Then NC(p)(m) equipped with � and rk becomes
a graded partially ordered set (which means that for any π, σ ∈ NC(p)(m)
with π � σ, every unrefinable chain π = π0 ≺ π1 ≺ · · · ≺ πr = σ from π
to σ has the same length r = rk(σ)− rk(π)) and a join-semilattice (i.e. any
two elements in NC(p)(m) have a least upper bound).

More general structures, noncrossing partitions on Coxeter groups, were
studied in [1].

3. Symmetrization of ($�p)�t. For µ ∈ M concentrated on [0,∞),
we define its symmetrization µs by

	
R f(x2) dµs(x) =

	
R f(x) dµ(x) for every

compactly supported continuous function f : R→ R. IfMµ(z) is the moment
generating function of µ thenMµs(z) = Mµ(z2), which means that s2m(µs) =
sm(µ) and odd moments of µs are zero.

Now we will compute the free cumulants for the symmetrization of$(p, t).

Theorem 3.1. Assume that p, t > 0 with max{p, t} ≥ 1. Then for the
symmetrization $(p, t)s of $(p, t) we have

R$(p,t)s(z) =
∞∑
m=1

z2m
m∑
k=1

(
−m
k − 1

)(
mp

m− k

)
tk

m
(18)

= −
∞∑
m=1

z2m
m∑
k=1

(
m+ k − 2
k − 1

)(
mp

m− k

)
(−t)k

m
.

Proof. The cumulant generating function R(z) for $(p, t)s satisfies

(19) tp−1R(z)(1 +R(z)) = z2(R(z) + t)p.

To check this, it is sufficient to substitute z 7→ zM(z2) and compare with
(5) and (15). Therefore R(z) = R0(z2), where R0 satisfies

(20) tp−1R0(z)(1 +R0(z)) = z(R0(z) + t)p.
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To conclude, we use the Lagrange inversion formula as in the proof of
Theorem 2.2 putting f(w) := tp−1w(1 + w)(t + w)−p, a = b = 0 to get
R0(z) = g(z).
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