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MAPS WITH DIMENSIONALLY RESTRICTED FIBERS
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VESKO VALOV (North Bay)

Abstract. We prove that if f : X → Y is a closed surjective map between metric
spaces such that every fiber f−1(y) belongs to a class S of spaces, then there exists an
Fσ-set A ⊂ X such that A ∈ S and dim f−1(y) \ A = 0 for all y ∈ Y . Here, S can be one
of the following classes: (i) {M : e-dim M ≤ K} for some CW -complex K; (ii) C-spaces;
(iii) weakly infinite-dimensional spaces. We also establish that if S = {M : dim M ≤ n},
then dim f 4 g ≤ 0 for almost all g ∈ C(X, In+1).

1. Introduction. All spaces in the paper are assumed to be paracom-
pact and all maps continuous. By C(X,M) we denote all maps from X
into M . Unless stated otherwise, all function spaces are endowed with the
source limitation topology provided M is a metric space.

The paper is inspired by the results of Pasynkov [11], Toruńczyk [16],
Sternfeld [15] and Levin [8]. Pasynkov announced in [11] and proved in
[12] that if f : X → Y is a surjective map with dim f ≤ n, where X and
Y are finite-dimensional metric compacta, then dim f 4 g ≤ 0 for almost
all maps g ∈ C(X, In) (see [10] for a non-compact version of this result).
Toruńczyk [16] established (in a more general setting) that if f , X and Y
are as in Pasynkov’s theorem, then for each 0 ≤ k ≤ n − 1 there exists a
σ-compact subset Ak ⊂ X such that dimAk ≤ k and dim f |(X \ Ak) ≤
n− k − 1.

Next results in this direction were established by Sternfeld and Levin.
Sternfeld [15] proved that if in the above results Y is not necessarily finite-
dimensional, then dim f4g ≤ 1 for almost all g ∈ C(X, In) and there exists
a σ-compact subset A ⊂ X such that dimA ≤ n− 1 and dim f |(X \A) ≤ 1.
Levin [8] improved Sternfeld’s results by showing that dim f 4 g ≤ 0 for
almost all g ∈ C(X, In+1), and showed that this is equivalent to the existence
of an n-dimensional σ-compact subset A ⊂ X with dim f |(X \A) ≤ 0.

The above results of Pasynkov and Toruńczyk were generalized in [18]
to closed maps between metric spaces X and Y with Y being a C-space
(recall that each finite-dimensional paracompact space is a C-space [6]).

2010 Mathematics Subject Classification: Primary 54F45; Secondary 54E40.
Key words and phrases: extensional dimension, C-spaces, 0-dimensional maps, metric com-
pacta, weakly infinite-dimensional spaces.

DOI: 10.4064/cm123-2-8 [239] c© Instytut Matematyczny PAN, 2011



240 V. VALOV

But the question whether the results of Pasynkov and Toruńczyk remain
valid without the finite-dimensionality assumption on Y is still open.

In this paper we provide non-compact analogues of Levin’s results for
closed maps between metric spaces.

We say that a topological property of metrizable spaces is an S-property
if the following conditions are satisfied:

(i) S is hereditary with respect to closed subsets;
(ii) if X is metrizable and {Hi}∞i=1 is a sequence of closed S-subsets of

X, then
⋃∞
i=1Hi ∈ S;

(iii) a metrizable space X belongs S provided there exists a closed sur-
jective map f : X → Y such that Y is a 0-dimensional metrizable
space and f−1(y) ∈ S for all y ∈ Y ;

(iv) any discrete union of S-spaces is an S-space.

Any map whose fibers have a given S-property is called an S-map.
Here are some examples of S-properties (we identify S with the class of

spaces having the property S):

• S = {X : dimX ≤ n} for some n ≥ 0;
• S = {X : dimGX ≤ n}, where G is an Abelian group and dimG is the

cohomological dimension;
• more generally, S = {X : e-dimX ≤ K}, where K is a CW -complex

and e-dim is the extension dimension (see [4], [5]);
• S = {X : X is weakly infinite-dimensional};
• S = {X : X is a C-space}.
To show that the property e-dim ≤ K satisfies condition (iii), we apply

[3, Corollary 2.5]. For the case of weakly infinite-dimensional spaces and
C-spaces this follows from [7].

The question whether (strong) countable-dimensionality is an S-property
was raised in the first version of this paper. The referee kindly informed us
that, according to [14, Remark 2.2] (see also the remark after [6, Corollary
5.4.6], as well as [6, Problem 6.2.D(b)]), there exists a map with strongly
countable-dimensional fibers from a metric compactum X onto the Cantor
set such that X is not countable-dimensional. Hence, (strong) countable-
dimensionality is not an S-property.

Theorem 1.1. Let f : X → Y be a closed surjective S-map with X and
Y being metrizable spaces. Then there exists an Fσ-subset A ⊂ X such that
A ∈ S and dim f−1(y)\A = 0 for all y ∈ Y . Moreover, if f is a perfect map,
the conclusion remains true provided S is a property satisfying conditions
(i)–(iii).

Theorem 1.1 was established by Levin [9, Theorem 1.2] in the case when
X and Y are metric compacta and S is the property e-dim ≤ K for a given
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CW -complex K. Levin’s proof remains valid for any S-property, but it does
not work for non-compact spaces.

We say that a map f : X → Y has a countable functional weight (notation
W (f) ≤ ℵ0, see [10]) if there exists a map g : X → Iℵ0 such that f4g : X →
Y × Iℵ0 is an embedding. For example [12, Proposition 9.1], W (f) ≤ ℵ0 for
any closed map f : X → Y such that X is a metrizable space and every fiber
f−1(y), y ∈ Y , is separable.

Theorem 1.2. Let X and Y be paracompact spaces and f : X → Y a
closed surjective map with dim f ≤ n and W (f) ≤ ℵ0. Then C(X, In+1)
equipped with the uniform convergence topology contains a dense subset of
maps g such that dim f 4 g ≤ 0.

This theorem was established by Levin [8, Theorem 1.6] for metric com-
pacta X and Y , but Levin’s arguments do not work for non-compact spaces.
We use Pasynkov’s technique from [10] to reduce the proof of Theorem 1.2
to the case of X and Y being metric compacta.

Our last results concern the function spaces C(X, In) and C(X, Iℵ0)
equipped with the source limitation topology. Recall that this topology on
C(X,M) with M being a metrizable space can be described as follows:
the neighborhood base at a given map h ∈ C(X,M) consists of the sets
Bρ(h, ε) = {g ∈ C(X,M) : ρ(g, h) < ε}, where ρ is a fixed compatible met-
ric on M and ε : X → (0, 1] runs over continuous positive functions on X.
The symbol ρ(h, g) < ε means that ρ(h(x), g(x)) < ε(x) for all x ∈ X. It is
well known that for paracompact spaces X this topology does not depend
on the metric ρ and it has the Baire property provided M is completely
metrizable.

Theorem 1.3. Let f : X → Y be a perfect surjection between paracom-
pact spaces and W (f) ≤ ℵ0.

(i) The maps g ∈ C(X, Iℵ0) such that f4g embeds X into Y ×Iℵ0 form
a dense Gδ-set in C(X, Iℵ0) with respect to the source limitation
topology.

(ii) If there exists a map g ∈ C(X, In) with dim f4g ≤ 0, then all maps
having this property form a dense Gδ-set in C(X, In) with respect to
the source limitation topology.

Corollary 1.4. Let f : X → Y be a perfect surjection with dim f ≤ n
and W (f) ≤ ℵ0, where X and Y are paracompact spaces. Then all maps
g ∈ C(X, In+1) with dim f 4 g ≤ 0 form a dense Gδ-set in C(X, In+1) with
respect to the source limitation topology.

Corollary 1.4 follows directly from Theorem 1.2 and Theorem 1.3(ii).
Corollary 1.5 below follows from Corollary 1.4 and [2, Corollary 1.1] (see
Section 3).
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Corollary 1.5. Let X, Y be paracompact spaces and f : X → Y a per-
fect surjection with dim f ≤ n and W (f) ≤ ℵ0. Then for every metrizable
ANR-space M the maps g ∈ C(X, In+1×M) such that dim g(f−1(y)) ≤ n+1
for all y ∈ Y form a dense Gδ-set E in C(X, In+1 ×M) with respect to the
source limitation topology.

2. S-properties and maps into finite-dimensional cubes. This
section contains the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We follow the proof of [19, Proposition 4.1]. Let
us first reduce the proof to the case where f is a perfect map. Indeed, ac-
cording to Vainstein’s lemma, the boundary Fr f−1(y) of every fiber f−1(y)
is compact. Defining F (y) to be Fr f−1(y) if Fr f−1(y) 6= ∅, and an arbitrary
point from f−1(y) otherwise, we obtain a set X0 =

⋃
{F (y) : y ∈ Y } such

that X0 ⊂ X is closed and the restriction f |X0 is a perfect map. More-
over, each f−1(y) \X0 is open in X and has property S (as an Fσ-subset of
the S-space f−1(y)). Hence, X \X0, being the union of the discrete family
{f−1(y) \ X0 : y ∈ Y } of S-sets, is an S-set. At the same time X \ X0 is
open in X. Consequently, X \ X0 is the union of countably many closed
sets Xi ⊂ X, i = 1, 2, . . . . Obviously, each Xi, i ≥ 1, also has property S.
Therefore, it suffices to prove Theorem 1.1 for the S-map f |X0 : X0 → Y .

So, we may suppose that f is perfect. According to [10], there exists
a map g : X → Iℵ0 such that g embeds every fiber f−1(y), y ∈ Y . Let
g = 4∞i=1gi and hi = f 4 gi : X → Y × I, i ≥ 1. Moreover, we choose
countably many closed intervals Ij such that every open subset of I contains
some Ij . By [18, Lemma 4.1], for every j there exists a 0-dimensional Fσ-set
Cj ⊂ Y × Ij such that Cj ∩ ({y} × Ij) 6= ∅ for every y ∈ Y . Now, consider
the sets Aij = h−1

i (Cj) for all i, j ≥ 1 and let A be their union. Since f is
an S-map, so is the map hi for any i. Hence, Aij has property S for all i, j.
This implies that so does A.

It remains to show that dim f−1(y) \ A ≤ 0 for every y ∈ Y . Let
dim f−1(y0) \ A > 0 for some y0. Since g|f−1(y0) is an embedding, there
exists an integer i such that dim gi(f−1(y0) \ A) > 0. Then gi(f−1(y0) \ A)
has a non-empty interior in I. So, gi(f−1(y0) \A) contains some Ij . Choose
t0 ∈ Ij with c0 = (y0, t0) ∈ Cj . Then there exists x0 ∈ f−1(y0) \A such that
gi(x0) = t0. On the other hand, x0 ∈ h−1

i (c0) ⊂ Aij ⊂ A, a contradiction.

Proof of Theorem 1.2. We first prove the next proposition, which is a
small modification of [10, Theorem 8.1]. For any map f : X → Y we consider
the set C(X,Y × In+1, f) consisting of all maps g : X → Y × In+1 such
that f = πn ◦ g, where πn : Y × In+1 → Y is the projection onto Y . We
also consider the other projection $n : Y × In+1 → In+1. It is easily seen
that the formula g 7→ $n ◦ g provides one-to-one correspondence between
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C(X,Y ×In+1, f) and C(X, In+1). So, we may assume that C(X,Y ×In+1, f)
is a metric space isometric with C(X, In+1), where C(X, In+1) is equipped
with the supremum metric.

Proposition 2.1. Let f : X → Y be an n-dimensional surjective map
between compact spaces with n > 0 and λ : X → Z a map into a metric
compactum Z. Then the maps g ∈ C(X,Y ×In+1, f) satisfying the condition
below form a dense subset of C(X,Y × In+1, f): there exists a compact space
H and maps ϕ : X → H, h : H → Y × In+1 and µ : H → Z such that
λ = µ ◦ ϕ, g = h ◦ ϕ, W (h) ≤ ℵ0 and dimh = 0.

Proof. We fix a map g0 ∈ C(X,Y × In+1, f) and ε > 0. Let g1 = $n ◦g0.
Then λ 4 g1 ∈ C(X,Z × In+1). Consider also the constant maps f ′ : Z ×
In+1 → Pt and η : Y → Pt, where Pt is the one-point space. So, we have
η ◦ f = f

′ ◦ (λ 4 g1). According to Pasynkov’s factorization theorem [13,
Theorem 13], there exist metrizable compacta K, T and maps f∗ : K → T ,
ξ1 : X → K, ξ2 : K → Z × In+1 and η∗ : Y → T such that:

• η∗ ◦ f = f∗ ◦ ξ1;
• ξ2 ◦ ξ1 = λ4 g1;
• dim f∗ ≤ dim f ≤ n.

If p : Z × In+1 → Z and q : Z × In+1 → In+1 denote the corresponding
projections, we have

p ◦ ξ2 ◦ ξ1 = λ and q ◦ ξ2 ◦ ξ1 = g1.

Since dim f∗ ≤ n, by Levin’s result [8, Theorem 1.6], there exists a map
φ : K → In+1 such that φ is ε-close to q ◦ ξ2 and dim f∗ 4 φ ≤ 0. Then
the map φ ◦ ξ1 is ε-close to g1, so g = f 4 (φ ◦ ξ1) is ε-close to g0. Denote
ϕ = f4ξ1, H = ϕ(X) and h = (idY ×φ)|H. If $H : H → K is the restriction
of the projection Y ×K → K on H, we have

λ = p ◦ ξ2 ◦ ξ1 = p ◦ ξ2 ◦$H ◦ ϕ, so λ = µ ◦ ϕ, where µ = p ◦ ξ2 ◦$H .

Moreover, g=f4(φ◦ξ1)=(idY ×φ)◦(f4ξ1)=h◦ϕ. Since K is a metrizable
compactum, W (φ) ≤ ℵ0. Hence, W (h) ≤ ℵ0.

To show that dimh ≤ 0, it suffices to prove that dimh ≤ dim f∗ 4 φ.
To this end, we show that any fiber h−1((y, v)), where (y, v) ∈ Y × In+1,
is homeomorphic to a subset of the fiber (f∗ 4 φ)−1((η∗(y), v)). Indeed, let
πY be the restriction of the projection Y × K → Y on the set H. Since
η∗ ◦f = f∗ ◦ξ1, H is a subset of the pullback of Y and K with respect to the
maps η∗ and f∗. Therefore, $H embeds every fiber π−1

Y (y) into (f∗)−1(y),
y ∈ Y . Let ai = (yi, ki) ∈ H ⊂ Y ×K, i = 1, 2, be such that h(a1) = h(a2).
Then (y1, φ(k1)) = (y2, φ(k2)), so y1 = y2 = y and φ(k1) = φ(k2) = v.
This implies $H(ai) = ki ∈ (f∗)−1(η∗(πY (ai))) = (f∗)−1(η∗(y)), i = 1, 2.
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Hence, $H embeds the fiber h−1((y, v)) into the fiber (f∗4φ)−1((η∗(y), v)).
Consequently, dimh ≤ dim f∗ 4 φ = 0.

We can now finish the proof of Theorem 1.2. It suffices to show that
every map from C(X,Y × In+1, f) can be approximated by maps g ∈
C(X,Y × In+1, f) with dim g ≤ 0. We fix g0 ∈ C(X,Y × In+1, f) and
ε > 0. Since W (f) ≤ ℵ0, there exists a map λ : X → Iℵ0 such that f 4 λ
is an embedding. Let βf : βX → βY be the Čech–Stone extension of the
map f . Then dimβf ≤ n (see [13, Theorem 15]). Consider also the maps
βλ : βX → Iℵ0 and ḡ0 = βf4βg1, where g1 = $n ◦ g0. According to Propo-
sition 2.1, there exists a map ḡ ∈ C(βX, βY × In+1, βf) which is ε-close to
ḡ0 and satisfies the following condition: there exists a compact space H and
maps ϕ : βX → H, h : H → βY ×In+1 and µ : H → Iℵ0 such that βλ = µ◦ϕ,
ḡ = h ◦ ϕ, W (h) ≤ ℵ0 and dimh = 0. We have the equalities

βf 4 βλ = (πn ◦ ḡ)4 (µ ◦ ϕ) = (πn ◦ h ◦ ϕ)4 (µ ◦ ϕ)
= ((πn ◦ h)4 µ) ◦ ϕ,

where πn denotes the projection βY × In+1 → βY . This implies that ϕ
embeds X into H because f 4 λ embeds X into Y × Iℵ0 . Let g be the
restriction of ḡ over X. Identifying X with ϕ(X), we find that h is an
extension of g. Hence, dim g ≤ dimh = 0. Observe also that g is ε-close
to g0, which completes the proof.

3. Proof of Theorem 1.3 and Corollary 1.5

Proof of Theorem 1.3(ii). Since W (f) ≤ ℵ0, there is a map λ : X → Iℵ0
such that f 4 λ embeds X into Y × Iℵ0 . Choose a sequence {γk}k≥1 of
open covers of Iℵ0 with mesh(γk) ≤ 1/k, and let ωk = λ−1(γk) for all k.
We denote by C(ωk,0)(X, In, f) the set of all maps g ∈ C(X, In) with the
following property: every z ∈ (f 4 g)(X) has a neighborhood Vz in Y × In
such that (f 4 g)−1(Vz) can be represented as the union of a disjoint open
(in X) family refining the cover ωk. According to [18, Lemma 2.5], each
of the sets C(ωk,0)(X, In, f), k ≥ 1, is open in C(X, In) with respect to the
source limitation topology. It follows from the definition of the covers ωk that⋂
k≥1C(ωk,0)(X, In, f) consists of maps g with dim f4g ≤ 0. Since C(X, In)

with the source limitation topology has the Baire property, it remains to
show that any C(ωk,0)(X, In, f) is dense in C(X, In).

To this end, we need the following result established in our forthcoming
book [1] with T. Banakh: Suppose h0 : Z → E is a map from a Tikhonov
space Z into an ANR-space E and O(h0) is a neighborhood of h0 in C(Z,E)
equipped with the source limitation topology. Then there exists an open
cover γ of Z such that for any γ-map h1 : Z → P into a paracompact space
P (i.e., h−1

0 (ω) refines γ for some open cover ω of P ) there exists a map
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h2 : G → E with h2 ◦ h1 ∈ O(h0), where G is an open neighborhood of the
closure of h(Z) in P .

We apply the above result for a fixed cover ωm, a map g0 ∈ C(X, In)
and a neighborhood Bρ(g0, ε) of g0 in C(X, In), where ε : X → (0, 1] is a
continuous function and ρ is the Euclidean metric on In. More precisely, we
are going to find h ∈ C(ωm,0)(X, In, f) such that ρ(g0(x), h(x)) < ε(x) for all
x ∈ X. According to the result formulated above, there exists an open cover
U of X satisfying the following condition: if α : X → K is a U-map into a
paracompact space K, then there exists a map q : G → In, where G is an
open neighborhood of α(X) in K, such that g0 and q ◦ α are ε/2-close with
respect to the metric ρ. Let U1 be an open cover of X refining both U and
ωm such that inf{ε(x) : x ∈ U} > 0 for all U ∈ U1.

Since dim f 4 g ≤ 0 for some g ∈ C(X, In), according to [1, Theorem 6]
there exists an open cover V of Y such that for any V-map β : Y → L into
a simplicial complex L we can find a U1-map α : X → K into a simplicial
complexK and a perfect PL-map p : K → L with β◦f = p◦α and dim p ≤ n.
We can assume that V is locally finite. Take L to be the nerve of the cover V
and β : Y → L the corresponding natural map. Then there exist a simplicial
complex K and maps p and α satisfying the above conditions. Hence, the
following diagram is commutative:

X

f

��

α // K

p

��
Y

β // L

Since K is paracompact, the choice of the cover U guarantees the exis-
tence of a map ϕ : G→ In, where G ⊂ K is an open neighborhood of α(X),
such that g0 and h0 = ϕ ◦ α are ε/2-close with respect to ρ. Replacing the
triangulation of K by a suitable subdivision, we may additionally assume
that no simplex of K meets both α(X) and K \ G. So, the union N of all
simplexes σ ∈ K with σ ∩ α(X) 6= ∅ is a subcomplex of K and N ⊂ G.
Moreover, since N is closed in K, pN = p|N : N → L is a perfect map.
Therefore, we have the following commutative diagram:

X

f

��

α

  A
AA

AA
AA

A
h0 // In

Y
β

  A
AA

AA
AA

A N

pN
��

ϕ
>>}}}}}}}}

L

Since α is a U1-map and inf{ε(x) : x ∈ U} > 0 for all U ∈ U1, we can
construct a continuous function ε1 : N → (0, 1] and an open cover γ of N
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such that ε1 ◦ α ≤ ε and α−1(γ) refines U1. Since dim pN ≤ dim p ≤ n and
L, being a simplicial complex, is a C-space, we can apply [18, Theorem 2.2]
to find a map ϕ1 ∈ C(γ,0)(N, In, pN ) which is ε1/2-close to ϕ. Let h = ϕ1 ◦α.
Then h and h0 are ε/2-close because ε1 ◦ α ≤ ε. On the other hand, h0 is
ε/2-close to g0. Hence, g0 and h are ε-close.

It remains to show that h ∈ C(ωm,0)(X, In, f). To this end, fix a point
z = (f(x), h(x)) ∈ (f 4 h)(X) ⊂ Y × In and let y = f(x). Then w =
(pN 4 ϕ1)(α(x)) = (β(y), h(x)). Since ϕ1 ∈ C(γ,0)(N, In, pN ), there exists
a neighborhood Vw of w in L × In such that W = (pN 4 ϕ1)−1(Vw) is
the union of a disjoint open family in N refining γ. We can assume that
Vw = Vβ(y) × Vh(x), where Vβ(y) and Vh(x) are neighborhoods of β(y) and
h(x) in Y and In, respectively. Consequently, (f4h)−1(Γ ) = α−1(W ), where
Γ = β−1(Vβ(y)) × Vh(x). Finally, observe that α−1(W ) is the disjoint union
of an open (in X) family refining ωm. Therefore, h ∈ C(ωm,0)(X, In, f).

Proof of Theorem 1.3(i). Let λ and ωk be as in the proof of Theorem
1.3(ii). Denote by Cωk(X, Iℵ0 , f) the set of all g ∈ C(X, Iℵ0) such that f4g is
an ωk-map. It can be shown that every Cωk(X, Iℵ0 , f) is open in C(X, Iℵ0)
with the source limitation topology (see [17, Proposition 3.1]). Moreover,⋂
k≥1Cωk(X, Iℵ0 , f) consists of maps g with f4g embedding X into Y ×Iℵ0 .

So, we need to show that each Cωk(X, Iℵ0 , f) is dense in C(X, Iℵ0) equipped
with the source limitation topology.

To prove this, we follow the notation and arguments from the proof of
Theorem 1.3(ii) (that C(ωk,0)(X, In, f) are dense in C(X, In)) by considering
Iℵ0 instead of In. We fix a cover ωm, a map g0 ∈ C(X, Iℵ0) and a function
ε ∈ C(X, (0, 1]). Since W (f) ≤ ℵ0, we can apply Theorem 6 from [1] to find
an open cover V of Y such that for any V-map β : Y → L into a simplicial
complex L there exists a U1-map α : X → K into a simplicial complex K
and a perfect PL-map p : K → L with β ◦ f = p ◦ α. Proceeding as before,
we find a map h = ϕ1 ◦ α which is ε-close to g0, where ϕ1 ∈ Cγ(N, Iℵ0 , pN ).
It is easily seen that ϕ1 ∈ Cγ(N, Iℵ0 , pN ) implies h ∈ Cωm(X, Iℵ0 , f). So,
Cωm(X, Iℵ0 , f) is dense in C(X, Iℵ0).

Proof of Corollary 1.5. It follows from [2, Proposition 2.1] that the set E
is Gδ in C(X, In+1×M). So, we need to show it is dense in C(X, In+1×M).
To this end, we fix g0 = (g0

1, g
0
2) ∈ C(X, In+1 ×M) with g0

1 ∈ C(X, In+1)
and g0

2 ∈ C(X,M). Since, by Corollary 1.4, the set

G1 = {g1 ∈ C(X, In+1) : dim f 4 g1 ≤ 0}
is dense in C(X, In+1), we may approximate g0

1 by an h1 ∈ G1. Then, by [2,
Corollary 1.1], the maps g2 ∈ C(X,M) with dim g2((f4h1)−1(z)) = 0 for all
z ∈ Y × In+1 form a dense subset G2 of C(X,M). So, we can approximate
g0
2 by a map h2 ∈ G2. Let us show that h = (h1, h2) ∈ C(X, In+1) ×M
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belongs to E. We define the map πh : (f 4 h)(X)→ (f 4 h1)(X) by setting
πh(f(x), h1(x), h2(x)) = (f(x), h1(x)), x ∈ X. Because f is perfect, so is πh.
Moreover,

(πh)−1(f(x), h1(x)) = h2(f−1(f(x)) ∩ h−1
1 (h1(x))), x ∈ X.

So, every fiber of πh is 0-dimensional. We also observe that πh(h(f−1(y))) =
(f 4 h1)(f−1(y)) and the restriction πh|h(f−1(y)) is a perfect surjection
between the compact spaces h(f−1(y)) and (f 4h1)(f−1(y)) for any y ∈ Y .
Since (f 4h1)(f−1(y)) ⊂ {y}× In+1, we have dim(f 4h1)(f−1(y)) ≤ n+ 1,
y ∈ Y . Consequently, applying Hurewicz’s dimension-lowering theorem [6]
for the map πh|h(f−1(y)), we have dimh(f−1(y)) ≤ n+1. Therefore, h ∈ E,
which completes the proof.
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