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ON TWO TAME ALGEBRAS WITH SUPER-DECOMPOSABLE
PURE-INJECTIVE MODULES

BY

STANISŁAW KASJAN and GRZEGORZ PASTUSZAK (Toruń)

Abstract. Let k be a field of characteristic different from 2. We consider two im-
portant tame non-polynomial growth algebras: the incidence k-algebra of the garland G3

of length 3 and the incidence k-algebra of the enlargement of the Nazarova–Zavadskij
poset NZ by a greatest element. We show that if Λ is one of these algebras, then there
exists a special family of pointed Λ-modules, called an independent pair of dense chains
of pointed modules. Hence, by a result of Ziegler, Λ admits a super-decomposable pure-
injective module if k is a countable field.

1. Introduction. Let R be a ring with a unit. By a module we always
mean a left unital module. An R-module is called super-decomposable if it
has no indecomposable direct summand. For the concept of pure-injectivity
we refer to [10] (see also [8] and [9, Chapter 7]).

The problem of the existence of super-decomposable pure-injective mod-
ules over finite-dimensional algebras is stated in [30, Chapter 3] and studied
in particular in [18], [19]. In [17, Chapter 13] Prest considers the problem in
connection with representation types and he proves that such modules exist
for wild algebras [17, Theorem 13.7]. Since then it has turned out that there
also exist tame algebras possessing such modules.

In [18] Puninski has proved that super-decomposable pure-injective mod-
ules exist over any non-polynomial growth string algebra over a countable
field. This is obtained by applying a remarkable theorem of Ziegler which
states that if the ring R is countable, then non-existence of width of the
lattice of all pp-formulae over R is equivalent to R possessing a super-
decomposable pure-injective module (see [30]).

There is a recent result of Harland [7] asserting that super-decomposable
pure-injective modules exist over tubular algebras.

Our work extends the class of tame algebras that are known to possess
super-decomposable pure-injective modules. Actually, we prove the existence
of such modules for important examples of non-polynomial growth algebras
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by applying a criterion for non-existence of width of the lattice of all pp-
formulae expressed in terms of some special family of pointed modules (see
[20, Proposition 5.4]), called an independent pair of dense chains of pointed
modules (Definition 3.2).

The algebras considered in this paper are, in a sense, minimal in certain
classes of tame non-polynomial growth algebras (see [25]). Our main result,
Theorem 1.1, is a basic step in proving the existence of super-decomposable
pure-injective modules for strongly simply connected algebras of non-poly-
nomial growth (see [27] for the definitions).

Our approach is purely module-theoretical. We do not explicitly use any
model-theoretical concepts, like pp-formulae.

Let k be a field, G = G3 be the quiver

G =

•

�� ��@@@@@@@ •

����~~~~~~~

•

�� ��@@@@@@@ •

����~~~~~~~

• •
and I be the ideal of the path algebra kG generated by all commutativity re-
lations (see [25, Section 5]). Following Simson (see e.g. [24, Definition 15.29])
we call the poset represented by G a garland of length 3. The algebra kG/I
is isomorphic to the incidence k-algebra of this poset.

One of our main results is the following theorem proved in Section 6.

Theorem 1.1. Assume that k is a field of characteristic different from 2.
Let Λ be the bound quiver algebra kG/I.

(a) There exists an independent pair of dense chains of pointed Λ-mod-
ules in the sense of Definition 3.2.

(b) If k is countable, then there exists a super-decomposable pure-injec-
tive Λ-module.

We remark that we do not assume that the field k is algebraically closed.
However, if it is, then Λ in Theorem 1.1 is of tame representation type but
not of polynomial growth (see [24, Chapter 14] and [26, Chapter XIX] for
the concept of representation type and growth of algebras).

The paper is organized as follows. In Section 2 we introduce basic con-
cepts related to algebras and k-categories associated to bound quivers. Sec-
tion 3 is devoted to recalling from [20] the concept of an independent pair of
dense chains of pointed modules (Definition 3.2). In Section 4 we collect nec-
essary facts about Galois coverings of k-categories in the restricted context
we need. For more information on that subject the reader is referred to [2]
and [5]. In Section 5 we construct some special independent pairs of dense
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chains of pointed modules over a certain string algebra and in the following
section we prove that an independent pair of dense chains of pointed modules
exists over kG/I. We finish the proof of Theorem 1.1 in Section 6. Finally,
in Section 7, we collect some corollaries important for applications. To give
a flavor of such application, we show in Corollary 7.2 that there exists a
super-decomposable pure-injective module over the incidence algebra of the
Nazarova–Zavadskij poset, another classical example of a non-polynomial
growth algebra (see [12], [13], [24, Chapter 15]), provided k is a countable
field of characteristic different from 2.

2. Algebras and k-categories associated to bound quivers. Let
Q = (Q0, Q1) be a finite quiver with the set Q0 of vertices and the set Q1 of
arrows. Given an arrow α ∈ Q1 with the starting point s(α) and the terminal
point t(α) we denote by α−1 or α− its formal inverse and set s(α−1) = t(α),
t(α−1) = s(α) and (α−1)−1 = α. The set of the formal inverses of all arrows
in Q1 is denoted by Q−1

1 ; the elements of Q1 are called direct arrows whereas
those of Q−1

1 are inverse arrows.
By a walk from x to y of length n ≥ 1 in Q we mean a sequence c1 . . . cn

in Q1 ∪ Q−1
1 such that s(cn) = x ∈ Q0, t(c1) = y ∈ Q0, s(ci) = t(ci+1) and

c−1
i 6= ci+1 for all 1 ≤ i < n; we agree that (c1 . . . cn)−1 = c−1

n . . . c−1
1 . A walk

c1 . . . cn is called a path provided ci ∈ Q1 for 1 ≤ i ≤ n. Furthermore, to
each vertex x ∈ Q0 we associate the stationary path ex of length 0, with
s(ex) = t(ex) = x.

Given a field k we associate to a quiver Q the path k-category kQ, whose
objects are the vertices of Q and the space of morphisms from x to y has
a basis consisting of the paths from x to y. The composition is defined by
concatenation of paths. If Q has no oriented cycles then kQ is a locally
bounded k-category in the sense of [5, 1.1].

Let 〈Q1〉 be the two-sided ideal in kQ generated by the arrows of Q.
A two-sided ideal I in kQ is admissible if

〈Q1〉n ⊆ I ⊆ 〈Q1〉2

for some natural number n. Then the pair (Q, I) is called a bound quiver
and the factor k-category kQ/I is the bound quiver k-category associated to
(Q, I).

The path algebra over a field k associated to Q is the algebra kQ with
the set of all paths in Q as a k-basis and with multiplication induced by
concatenation of paths, i.e.

(α1 . . . αn) · (β1 . . . βm) =

{
α1 . . . αnβ1 . . . βm if s(αn) = t(β1),
0 otherwise.

Again, a two-sided ideal I of kQ is called admissible if 〈Q1〉n ⊆ I ⊆ 〈Q1〉2
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for some natural number n ≥ 2. The pair (Q, I) is also called a bound quiver
and the associated bound quiver algebra is the quotient of kQ modulo I.

Given a k-algebra A, the categories of left A-modules and finite-dimen-
sional left A-modules are denoted by A-Mod and A-mod, respectively.

By a (left) module over a k-category A = kQ/I we mean a k-linear
functor

M : A→ k-Mod,

and M is finite-dimensional if M(x) is finite-dimensional for any x ∈ Q0.
Note that when Q is finite, finite-dimensional means the same as locally
finite-dimensional [4]. The categories of left A-modules and of finite-dimen-
sional left A-modules are denoted by A-Mod and A-mod, respectively.
Clearly, modules in A-Mod are “almost the same” as k-representations of
the bound quiver (Q, I) (see [1, Chapter III]).

There is an equivalence of k-categories

A-Mod→ A-Mod,

where A = kQ/I, A = kQ/I and the ideal in the k-category is denoted
by the same letter I as the corresponding ideal in the k-algebra (formally,
the latter is generated by the former). The above equivalence restricts to an
equivalence of the categories of finite-dimensional modules.

From now on we identify the categories A-Mod and A-Mod. We remark
that the indecomposable projective A-module Aex associated to the vertex x
is identified with the the functor A(−, x), and A, as an A-module, is identified
with

⊕
x∈Q0

A(−, x).
Let A = kQ/I and B = kQ′/I ′ be bound quiver k-categories, where Q

and Q′ are finite quivers. Given a k-category homomorphism η : A→ B we
denote by

η• : B-mod→ A-mod

the induced functor (−) ◦ η.
Following [28] we call a bound quiver (Q, I) and the corresponding bound

quiver k-algebra special biserial if:

• any vertex of Q is the starting point of at most two arrows and the
terminal point of at most two arrows,
• given an arrow β there is at most one arrow α with s(β) = t(α) and
βα /∈ I and at most one arrow γ with s(γ) = t(β) and γβ /∈ I.

A string algebra is a special biserial algebra kQ/I such that I is generated
by paths. By a string in the string algebra kQ/I we mean a walk c1 . . . cn inQ
such that neither ci . . . ci+t nor c−1

i+t . . . c
−1
i belongs to I for 1 ≤ i < i+ t ≤ n.

Moreover, by a band in kQ/I we mean a string S = c1 . . . cn such that:
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• all powers of S are defined, i.e. t(c1) = s(cn) and Sm is a string for all
m ∈ N,
• the string S is not a power of any string of a smaller length,
• c1 is a direct arrow and cn is an inverse arrow.

We can also speak about special biserial and string k-categories replacing
kQ/I by kQ/I.

Given a string S = c1 . . . cn in the string algebra kQ/I the string module
associated to S is by definition an (n+ 1)-dimensional kQ/I-module M(S)
with k-basis {z1, . . . , zn+1} (called the canonical basis of M(S)) and with
multiplication defined by the formulae:

a · zj =


zj−1 if j ≥ 2 and a = cj−1,
zj+1 if j ≤ n and a−1 = cj ,
0 otherwise

for any direct arrow a and j ∈ {1, . . . , n+ 1}, and

ex · zj =

{
zj if (j ≥ 2 and x = s(cj−1)) or (j = 1 and x = t(c1)),
0 otherwise

for any vertex x ∈ Q0 and j ∈ {1, . . . , n+ 1}.
We refer to [3], [28] for basic facts on string algebras and modules. We

recall that, in particular, any string module is indecomposable andM(S1) ∼=
M(S2) if and only if S1 = S2 or S1 = S−1

2 .

3. A sufficient existence condition. We start with some basic facts
on pointed modules.

Let R be a ring with a unit. By a pointed R-module we mean a pair
(M,m), whereM is a left R-module andm ∈M . We say that a pointed mod-
ule (M,m) is indecomposable (finitely generated, finitely presented etc.) if
and only if so is the moduleM . Furthermore, by a pointed R-homomorphism
from (M,m) to (N,n) we mean an R-homomorphism f : M → N such that
f(m) = n; we write f : (M,m) → (N,n) in this case. A pointed homomor-
phism f : (M,m)→ (N,n) is an isomorphism if and only if so is f : M → N .
Pointed modules (M,m) and (N,n) are isomorphic if and only if there exists
a pointed isomorphism f : (M,m)→ (N,n).

It is convenient to identify a pointed R-module (M,m) with the R-
homomorphism χ(M,m) : R → M such that χ(M,m)(1) = m. Then an R-
homomorphism f : M → N is a pointed R-homomorphism f : (M,m) →
(N,n) if and only if

fχ(M,m) = χ(N,n).

Given two pointed modules (M,m) and (N,n), the pointed pushout of
(M,m) and (N,n) is by definition the pointed module (P, p), where P is the
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pushout of the homomorphisms χ(M,m) and χ(N,n) and p corresponds to m
(and n), that is,

P = M⊕N/{(χ(M,m)(r),−χ(N,n)(r)); r ∈ R} = M⊕N/{(rm,−rn); r ∈ R}

and p = (m, 0) = (0, n). We write (M,m) ∗ (N,n) for the pointed pushout
of the pointed modules (M,m) and (N,n).

Let R be an arbitrary ring with a unit. The following concepts are intro-
duced in [20].

Definition 3.1. Assume that L is a countable dense chain without
end points. A dense chain of pointed R-modules is a family (Mq,mq)q∈L
of pointed R-modules such that:

(a) the modules Mq are indecomposable and mq 6= 0 for all q ∈ L,
(b) there exist pointed homomorphisms µq,q′ : (Mq,mq) → (Mq′ ,mq′)

for all q, q′ ∈ L such that q < q′,
(c) the pointed modules (Mq,mq) and (Mq′ ,mq′) are not isomorphic for

any q 6= q′ ∈ L.
Definition 3.2. An independent pair of dense chains of pointed R-

modules is a pair ((Mq,mq)q∈L1 , (Nt, nt)t∈L2) of dense chains of pointed
R-modules such that:

(a) there is no pointed homomorphism from (Mq,mq) to (Nt, nt) and
no pointed homomorphism from (Nt, nt) to (Mq,mq) for all q ∈ L1,
t ∈ L2,

(b) the pointed pushout (Mq,mq) ∗ (Nt, nt) is an indecomposable R-
module for all q ∈ L1, t ∈ L2,

(c) (Mq,mq) ∗ (Nt, nt) is not isomorphic to (Mq′ ,mq′) ∗ (Nt, nt) or to
(Mq,mq) ∗ (Nt′ , nt′) for any q 6= q′ ∈ L1, t 6= t′ ∈ L2.

It is clear that the posets L,L1, L2 in the definitions above are isomorphic
to the poset Q of rational numbers. The assumption that they are arbitrary
countable dense chains without end points is only used for technical reasons
in Section 5.

The following theorem due to Puninski, Puninskaya and Toffalori (see
[20, Proposition 5.4]) shows the significance of independent pairs of dense
chains of pointed R-modules.

Theorem 3.3. If there is an independent pair of dense chains of pointed
R-modules in R-mod then the width (see [17, pp. 205–206]) of the lattice of
all pp-formulae over R does not exist.

The following corollary is a consequence of the above theorem and
Ziegler’s construction [30, Lemma 7.8].
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Corollary 3.4. Assume that R is a countable ring with an identity. If
there is an independent pair of dense chains of pointed R-modules in R-mod
then there exists a super-decomposable pure-injective module over R.

Observe that the above criterion may be used in the case of bound quiver
algebras over a countable field since |kQ/I| ≤ max{|k|,ℵ0} for any finite
quiver Q and an admissible ideal I in kQ.

4. Three non-polynomial growth algebras. We recall that a finite-
dimensional algebra Λ over an algebraically closed field k is tame if, for any
natural number d, the set of all isomorphism classes of d-dimensional inde-
composable Λ-modules can be parameterized, up to finitely many elements,
by a finite number of regular 1-parameter families. Let µΛ(d) be the minimal
number of 1-parameter families needed to parameterize the d-dimensional
indecomposables in the above sense. A (tame) algebra Λ is of polynomial
growth if there exists a natural number g such that µΛ(d) ≤ dg for all d ≥ 2.
We refer to [24, Chapter 14] and [26, Chapter XIX] for precise statements of
the definitions.

We introduce three bound quiver algebras (k-categories) of non-polyno-
mial growth, some associated functors and a certain Galois covering.

From now on we denote

Q :=

x1

β

��
α

��
x2

γ

��
δ
��
x3

Q′ :=

x11

α1

��
β2

""EEEEEEEE x12

α2

��
β1

||yyyyyyyy

x21

δ1
��

γ2

""EEEEEEEE x22

δ2
��

γ1

||yyyyyyyy

x31 x32

and

Λ1 := kQ/I1, I1 = 〈δα, γβ〉,
Λ2 := kQ/I2, I2 = 〈γα− δβ, δα− γβ〉,
Λ3 := kQ′/I3, I3 = 〈γ1α1 − δ2β1, δ1α1 − γ2β1, γ2α2 − δ1β2, δ2α2 − γ1β2〉.

Note that Q′ and I3 are denoted by G and I, respectively, in Section 1.
It is well known that if char(k) 6= 2 then the k-categories Λ1 and Λ2 are

isomorphic. Namely, a k-category isomorphism ι : Λ2 → Λ1 is given by

ι(α) = α+ β, ι(β) = −α+ β, ι(γ) = −γ + δ, ι(δ) = γ + δ.

Furthermore, ι : Λ2 → Λ1 induces an isomorphism

ι• : Λ1-mod→ Λ2-mod

of the associated module categories.



256 S. KASJAN AND G. PASTUSZAK

Observe that Λ1 is a string algebra with two different bands starting
with the same direct arrow and ending with the same inverse arrow (for ex-
ample: γδ− and γαβ−δ−), and, by [4], [29], Λ1 is of tame representation type
and, by [21–23], of non-polynomial growth when k is algebraically closed.
Consequently, so is Λ2 if char(k) 6= 2. For the proof that Λ3 is also tame of
non-polynomial growth we refer to [6] or [14].

Consider the k-category automorphisms ρ : Λ1 → Λ1, σ : Λ2 → Λ2 and
g : Λ3 → Λ3 defined as follows:

ρ(α) = β, ρ(β) = α, ρ(γ) = δ, ρ(δ) = γ,

σ(α) = α, σ(β) = −β, σ(γ) = −γ, σ(δ) = δ,

g(αi) = αj , g(βi) = βj , g(γi) = γj , g(δi) = δj

for (i, j) ∈ {(1, 2), (2, 1)}.
The automorphism g induces an action on Λ3-modules. Given a Λ3-

module M we denote by gM the module (g−1)•(M) (see [5, 3.2], [4]).
It is clear that Λ2 is isomorphic to the orbit category of Λ3 modulo the

action of g ([5, 3.1]). Therefore there is a Galois covering functor

F : Λ3 → Λ2

with covering group Z2 such that F (si) = s for s ∈ {α, β, γ, δ} and i ∈ {1, 2}
(see [6]).

The functor F• is called the pull-up functor associated to F . It has a left
adjoint Fλ and a right adjoint Fρ (called the push-down functors). Since the
covering F has finite fibres, the two functors coincide and they are defined
on the objects of Λ3-Mod as follows:

V11

vα1

��

vβ2

!!CCCCCCCC V12

vα2

��

vβ1

}}{{{{{{{{

V21

vδ1
��

vγ2

!!CCCCCCCC V22

vδ2
��

vγ1

}}{{{{{{{{

V31 V32

7−→

V11 ⊕ V12

wβ

��
wα
��

V21 ⊕ V22

wγ

��
wδ
��

V31 ⊕ V32

where

wα =

[
vα1 0
0 vα2

]
, wβ =

[
0 vβ2

vβ1 0

]
,

wγ =

[
0 vγ2

vγ1 0

]
, wδ =

[
vδ1 0
0 vδ2

]
.
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Proposition 4.1. The following two diagrams are commutative:

Λ1

ρ

��

Λ2
ιoo

σ

��
Λ1 Λ2

ιoo

Λ1-mod
ι• // Λ2-mod

Λ1-mod
ι• //

ρ•

OO

Λ2-mod

σ•

OO

Proof. The commutativity of the left diagram is an easy consequence
of the definitions, and it implies the commutativity of the right one since
(fg)• = g•f• for all composable k-category homomorphisms f and g.

Now we collect basic properties of the Galois covering F : Λ3 → Λ2

and its pull-up and push-down functors. The following lemma is essentially
contained in [5, 3.4].

Lemma 4.2. If char(k) 6= 2, then there is an isomorphism of functors

FλF• ∼= idΛ2-Mod ⊕ σ•.

Proof. We prove that Fλ(F•(M)) ∼= M ⊕ σ•(M) for any Λ2-module M .
Let M be a Λ2-module identified with the representation

V1

vβ

��
vα
��
V2

vγ

��
vδ
��
V3

Then it is easy to see that

F•(M) =

V1

vα
��

vβ

  AAAAAAA V1

vα
��

vβ

~~}}}}}}}

V2

vδ
��

vγ

  AAAAAAA V2

vδ
��

vγ

~~}}}}}}}

V3 V3

and Fλ(F•(M)) =

V1 ⊕ V1

wβ

��
wα
��

V2 ⊕ V2

wγ

��
wδ
��

V3 ⊕ V3

where

ws =

[
vs 0
0 vs

]
for s ∈ {α, δ}, wt =

[
0 vt

vt 0

]
for t ∈ {β, γ}.
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Observe that σ•(M) corresponds to the representation

V1

−vβ
��

vα
��
V2

−vγ
��

vδ
��
V3

We show that the map h : Fλ(F•(M))→M ⊕ σ•(M) given by

Fλ(F•(M)) =

V1 ⊕ V1

wβ

��
wα
��

f1 //

V2 ⊕ V2

wγ

��
wδ
��

f2 //

V3 ⊕ V3
f3 //

V1 ⊕ V1

w′β
��

w′α
��

V2 ⊕ V2

w′γ
��

w′δ
��

V3 ⊕ V3

= M ⊕ σ•(M)

with w′α = wα, w′δ = wδ,

w′t =

[
vt 0
0 −vt

]
for t ∈ {β, γ}, fi =

[
idVi idVi
−idVi idVi

]
for i = 1, 2, 3,

is an isomorphism.
Since char(k) 6= 2, we have dethi = 2dimVi 6= 0, for i = 1, 2, 3, and there-

fore h : Fλ(F•(M))→M ⊕ σ•(M) is an isomorphism. Obviously, it is func-
torial, that is, induces an isomorphism of functors FλF• ∼= idΛ2-Mod ⊕ σ•.

As a consequence of Lemma 4.2 we get the following corollary.

Corollary 4.3.

(a) If M is an indecomposable Λ2-module, M � σ•(M) and char(k) 6= 2,
then F•(M) is an indecomposable Λ3-module.

(b) If M and N are non-isomorphic and indecomposable Λ2-modules,
M � σ•(N) and char(k) 6= 2, then F•(M) � F•(N).

Proof. (a) Let M be an indecomposable Λ2-module and assume that
F•(M) = N1⊕ · · · ⊕Ns for some s ≥ 2 and indecomposable Λ3-modules Ni.
According to Lemma 4.2 we get the following isomorphisms:

(∗) M⊕σ•(M) ∼= Fλ(F•(M)) ∼= Fλ(N1⊕· · ·⊕Ns) ∼= Fλ(N1)⊕· · ·⊕Fλ(Ns).

Observe that the Krull–Remak–Schmidt Theorem yields s = 2 and the
Λ2-modules Fλ(N1) and Fλ(N2) are indecomposable. It follows that M ∼=
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Fλ(N), where N = N1 or N = N2, and obviously

N1 ⊕N2 = F•(M) ∼= F•(Fλ(N)) ∼= N ⊕ gN

by the well-known property of Galois coverings (see [5, 3.2]). Hence Fλ(N1) ∼=
Fλ(N2), and finally M ∼= σ•(M) by (∗), a contradiction.

(b) Assume, to the contrary, that F•(M) ∼= F•(N). According to Lemma
4.2 we get the isomorphisms

M ⊕ σ•(M) = Fλ(F•(M)) ∼= Fλ(F•(N)) ∼= N ⊕ σ•(N).

Since M and N are not isomorphic and indecomposable, there is an isomor-
phisms M ∼= σ•(N) and we get a contradiction.

Now we prove that the pull-up functor F• : Λ2-mod → Λ3-mod of the
covering functor F : Λ3 → Λ2 preserves pointed pushouts (in the sense of
Lemma 4.4). This is a consequence of the fact that any functor having a right
adjoint preserves the colimits which exist in its domain (see [11, Chapter V,
Theorem 5.1]).

First observe that the pull-up functor F• : Λ2-mod→ Λ3-mod induces a
functor between categories of pointed modules. Indeed, let (M,m), (N,n) be
pointed Λ2-modules and f : (M,m)→ (N,n) a pointed Λ2-homomorphism.
If χ(M,m) : Λ2 → M and χ(N,n) : Λ2 → N are the corresponding homomor-
phisms (see Section 3), then fχ(M,m) = χ(N,n) and thus F•(f)F•(χ(M,m)) =
F•(χ(N,n)).

There is an isomorphism

ω : Λ3 → F•(Λ2)

of left Λ3-modules. We fix ω for the remainder of the paper. The homo-
morphism F•(f) : F•(M) → F•(N) is a pointed Λ3-homomorphism from
F•(χ(M,m))ω to F•(χ(N,n))ω, since obviously

F•(f)(F•(χ(M,m))ω) = F•(χ(N,n))ω.

The pointed Λ3-module corresponding to F•(χ(M,m))ω will be denoted
by (F•(M), m̃), that is,

m̃ := (F•(χ(M,m))ω)(1Λ3) ∈ F•(M).

Moreover, we set
F•(M,m) := (F•(M), m̃)

for any pointed Λ2-module (M,m). We point out that the construction de-
pends on ω.

Lemma 4.4. If (M,m) and (N,n) are pointed Λ2-modules, then

F•((M,m) ∗ (N,n)) ∼= F•(M,m) ∗ F•(N,n).
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Proof. Let (M,m) and (N,n) be pointed Λ2-modules. Assume that the
diagram

Λ2

χ(N,n)

��

χ(M,m)//M

f

��
N

h // P

is the pushout of χ(M,m) and χ(N,n) in Λ2-mod. Moreover, assume that
f(m) = p = h(n), that is, (M,m) ∗ (N,n) = (P, p) and fχ(M,m) = χ(P,p) =
hχ(N,n).

Since F• : Λ2-mod → Λ3-mod preserves pushouts (as a left adjoint, see
[11, Chapter V, Theorem 5.1]) we conclude that the diagram

F•(Λ2)

F•(χ(N,n))

��

F•(χ(M,m)) // F•(M)

F•(f)

��
F•(N)

F•(h) // F•(P )

is the pushout of F•(χ(M,m)) and F•(χ(N,n)). Then it is easy to see that
F•(P ) is the pushout of F•(χ(M,m))ω and F•(χ(N,n))ω, so

F•(M,m) ∗ F•(N,n) ∼= (F•(P ), x),

where x = (F•(f)F•(χ(M,m))ω)(1Λ3). On the other hand,

p̃ = (F•(χ(P,p))ω)(1Λ3) = (F•(fχ(M,m))ω)(1Λ3) = (F•(f)F•(χ(M,m))ω)(1Λ3).

This yields

F•((M,m) ∗ (N,n)) = F•(P, p) = (F•(P ), p̃) ∼= F•(M,m) ∗ F•(N,n).

We finish this section with another important property of the pull-up
functor F• : Λ2-mod→ Λ3-mod.

Lemma 4.5. Assume that (M,m) and (N,n) are pointed Λ2-modules.
If there exists a pointed Λ3-homomorphism from (F•(M), m̃) to (F•(N), ñ),
then there exists a pointed Λ2-homomorphism from (M,m) to (N,n).

Proof. Assume that f : (F•(M), m̃) → (F•(N), ñ) is a pointed homo-
morphism in Λ3-mod. Then

fF•(χ(M,m)) = F•(χ(N,n))

and therefore

Fλ(f)Fλ(F•(χ(M,m))) = Fλ(fF•(χ(M,m))) = Fλ(F•(χ(N,n))).

Since FλF• ∼= idΛ2-Mod ⊕ σ•, by Lemma 4.2, we finally get the equality

Fλ(f)(χ(M,m) ⊕ σ•(χ(M,m))) = χ(N,n) ⊕ σ•(χ(N,n)).
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Assume that

Fλ(f) =

[
f1 f2

f3 f4

]
: M ⊕ σ•(M)→ N ⊕ σ•(N).

It follows that[
f1 f2

f3 f4

]
·

[
χ(M,m) 0

0 σ•(χ(M,m))

]
=

[
χ(N,n) 0

0 σ•(χ(N,n))

]
and thus f1χ(M,m) = χ(N,n), so f1 : M → N is a pointed Λ2-homomorphism
from (M,m) to (N,n).

5. Independent pairs of dense chains in Λ1-mod. In this section
we present a construction of independent pairs of dense chains of pointed
modules in Λ1-mod, and examine their properties that are fundamental for
constructing an independent pair of dense chains of pointed modules in Λ3-
mod. The contents of this section refine some results of [18] and [23].

Throughout the section, A = k∆/I is an arbitrary string algebra. Given
an arrow a ∈ ∆1, we define S(a) to be the set of strings over A that start
with a. We recall from [3] that there is a linear ordering < on S(a) such that
S < T if and only if one of the following conditions is satisfied:

• Sϕ−1U = T for an arrow ϕ and a string U ,
• S = TψV for an arrow ψ and a string V ,
• S = S′ψW and T = S′ϕ−1X for some arrows ϕ,ψ and strings S′,W,X.

Assume that a string algebra A possesses two different bands U and V
starting with the same direct arrow and ending with the same inverse arrow
such that U is not a prolongation of V and V is not a prolongation of U ,
i.e. U 6= V X and V 6= UY for any strings X and Y . Moreover, assume
that U < V and let Σ(U, V ) be the set of all finite words over the alphabet
{U, V }, including the empty word ∅.

The following technical lemmata describe the properties of elements of
Σ(U, V ) that we use in the proof of Theorem 5.3.

Lemma 5.1. Assume that U and V are two different bands starting with
the same direct arrow and ending with the same inverse arrow such that U is
not a prolongation of V and V is not a prolongation of U . Moreover, assume
that U < V . Then the following conditions are satisfied:

(a) Up1V q1 . . . UpnV qn = Up
′
1V q′1 . . . Up

′
mV q′m if and only if n = m and

pi = p′i, qi = q′i for any 1 ≤ i ≤ n = m.
(b) Assume that W1,W2 ∈ Σ(U, V ) and W1 = XY1, W2 = XY2 for some

X,Y1, Y2 ∈ Σ(U, V ) such that Y1 and Y2 do not start with the same
letter U or V . Then W1 < W2 if and only if either Y1 starts with U
and Y2 starts with V , or Y1 6= ∅ and Y2 = ∅.
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Proof. (a) It is enough to show that there is no word W ∈ Σ(U, V ) such
that US = W = V S′ for some strings S, S′. But this is obvious since the
assumption US = V S′ implies that U is a prolongation of V or vice versa,
a contradiction.

(b) Assume that W1,W2 ∈ Σ(U, V ), W1 < W2 and there are X,Y1, Y2 ∈
Σ(U, V ) such that W1 = XY1,W2 = XY2 and Y1, Y2 do not start with the
same letter.

Obviously Y1 6= ∅, since Y1 = ∅ implies W1 ≥ W2, because either Y2 = ∅
or Y2 starts with a direct arrow (as an element of Σ(U, V )). Therefore either
(Y1 6= ∅ and Y2 = ∅) or (Y1 6= ∅ and Y2 6= ∅).

Assume that Y1 6= ∅ and Y2 6= ∅, and Y1 starts with V , while Y2 starts
with U . Since U is not a prolongation of V or vice versa, we may assume
that U = St1 . . . tn and V = Sr1 . . . rm for some string S of non-zero length
and arrows (direct or inverse) ti, rj such that t1 6= r1. Now observe that
U < V implies that t1 is a direct arrow and r1 is an inverse arrow. Thus
W1 > W2, becauseW1 starts with the string XSr1 andW2 starts with XSt1,
a contradiction. This proves that Y1 starts with U and Y2 starts with V .

Finally, either Y1 6= ∅ and Y2 = ∅, or Y1 starts with U and Y2 starts
with V . The converse implication follows easily by the definition of <.

If W ∈ Σ(U, V ), we denote by I(W ) ∈ {U, V } the initial letter of W . If
W is an empty word, we set I(W ) = ∅.

Observe that these definitions are correct, because Lemma 5.1(a) shows
that any element W = Up1V q1 . . . UpnV qn of Σ(U, V ) determines the se-
quence p1, q1, . . . , pn, qn uniquely. Then we denote l(W ) =

∑n
i=1(pi + qi).

In Lemma 5.2 and Theorem 5.3 below we assume that U and V are two
different bands such that U < V and U is not a prolongation of V or vice
versa. Thus the premises of Lemma 5.1 hold true.

Lemma 5.2. Assume that W1,W2 ∈ Σ(U, V ) and W1 < W2. If there
exists a word W3 such that W1 ≥ W2W3, then W1 = W2Y for some non-
empty word Y ∈ Σ(U, V ).

Proof. Wemay assume thatW1 = XY1 andW2 = XY2 for someX,Y1, Y2

∈ Σ(U, V ) such that I(Y1) 6= I(Y2). Obviously Y1 6= ∅ or Y2 6= ∅ since
W1 6= W2. Moreover, Y1 = ∅ or Y2 = ∅. Indeed, otherwise I(Y1) = U
and I(Y2) = V by Lemma 5.1(b). But then W1 < W2W3 for any word
W3 ∈ Σ(U, V ), a contradiction. Therefore

(Y1 6= ∅ or Y2 6= ∅) and (Y1 = ∅ or Y2 = ∅).
Assume that Y1 = ∅. This yields Y2 6= ∅ and thus I(Y2) ∈ {U, V }, so W2 =
XY2 < X = W1, a contradiction.

Hence Y1 6= ∅ and Y2 = ∅, which finishes the proof of the lemma (just
put Y = Y1).
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We now present a more general version of a result of Schröer (see [23,
Proposition 6.2]).

Theorem 5.3. Assume that U and V are two different bands such that
U < V and U is not a prolongation of V or vice versa. Let S, T ∈ Σ(U, V ).
Then the set

LTS (U, V ) := {SXTU ; X ∈ Σ(U, V )}

is a dense chain without end points.

Proof. First observe that LTS (U, V ) has no end points. Indeed, Lemma
5.1(b) yields

SXTUTU < SXTU < SXV l(T )+1TU,

because U < V , and thus LTS (U, V ) has neither the smallest nor the greatest
element.

To prove that LTS (U, V ) is dense, assume that SX1TU < SX2TU for
some words X1, X2. We consider two cases:

(1) If SX1TU < SX2TUTU , then obviously

SX1TU < SX2TUTU < SX2TU.

(2) Assume that SX1TU ≥ SX2TUTU . Since SX1TU < SX2TU , Lem-
ma 5.2 yields SX1TU = SX2TUY for some Y 6= ∅. Since the string
Y ends with U , it may be written in the form Y = V nUZ with
l(Z) ≥ 0 and n ≥ 0. Observe that

SX2TUY = SX2TUV
nUZ < SX2TUV

n+1TU,

since U < V . Moreover,

SX2TUV
n+1TU < SX2TU

and finally

SX1TU = SX2TUY = SX2TUV
nUZ < SX2TUV

n+1TU

< SX2TU.

Therefore, in both cases there exists a string X ∈ LTS (U, V ) such that
SX1TU < X < SX2TU . This proves the density of LTS (U, V ).

Note that if we set S = T = ∅ in Theorem 5.3, then the set

L(U, V ) := L∅∅(U, V ) = {XU ; X ∈ Σ(U, V )}

is a dense chain without end points. This is exactly what Schröer shows in
the proof of Proposition 6.2 in [23].

We denote by Q the poset of rational numbers.
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Definition 5.4. A pair (U, V ) of two different bands over the string
algebra A starting with the same direct arrow and ending with the same
inverse arrow is Q-generating provided U < V and U is not a prolongation
of V or vice versa.

Thus, if (U, V ) is a Q-generating pair of bands over the string algebra A,
then Theorem 5.3 implies that the set LTS (U, V ) is isomorphic to the poset Q
of rational numbers for any strings S, T ∈ Σ(U, V ).

Our next aim is to prove that given two Q-generating pairs (U, V ) and
(U−1, V −1) and S, T ∈ Σ(U, V ), S′, T ′ ∈ Σ(U−1, V −1) we can produce an
independent pair of dense chains of pointed modules.

Assume that S = s1 . . . sn is a string over the string algebra A = k∆/I,
M(S) is the associated string module and zS1 ∈ M(S) is the first element
of the canonical k-basis of M(S). We call the pointed A-module (M(S), zS1 )
the canonical pointed string module associated with S.

We remark that, althoughM(S) ∼= M(S−1), usually the pointed modules
(M(S), zS1 ) and (M(S−1), zS

−1

1 ) are not isomorphic.

Lemma 5.5 ([19, 3.1]). Assume that a ∈ ∆1, S, T ∈ S(a) and S < T .
Then there is a pointed A-homomorphism f(T,S) : (M(T ), zT1 )→ (M(S), zS1 )
of the canonical pointed string modules (M(T ), zT1 ) and (M(S), zS1 ).

Assume that T , S are strings over A such that T = t1 . . . tk, S = s1 . . . sm
and TS is also a string. We denote by z(T,S) the element zTSk+1 of the canonical
basis (zTS1 , . . . , zTSk+1, . . . , z

TS
k+m+1) of M(TS).

Lemma 5.6 ([19, 3.2]). Assume that T , S are strings over A such that
T−1S is also a string. Then the pointed module (M(T−1S), z(T−1,S)) is the
pointed pushout of the pointed modules (M(S), zS1 ) and (M(T ), zT1 ).

We refer to [23, Section 2] for a combinatorial description of pointed
homomorphisms between string modules.

Theorem 5.7. Assume that (U, V ) and (U−1, V −1) are Q-generating
over the string algebra A, and let S, T ∈ Σ(U, V ), S′, T ′ ∈ Σ(U−1, V −1).
Then

((M(X), zX1 )X∈LTS (U,V ), (M(Y ), zY1 )
Y ∈LT ′

S′ (U
−1,V −1)

)

is an independent pair of dense chains of pointed modules in A-mod.

Proof. We prove that (M(X), zX1 )X∈LTS (U,V ), (M(Y ), zY1 )
Y ∈LT ′

S′ (U
−1,V −1)

are dense chains of pointed A-modules.
By Theorem 5.3, the sets LTS (U, V ), LT ′S′ (U−1, V −1) are dense chains with-

out end points.
The modulesM(X) andM(Y ) are indecomposable for anyX∈LTS (U, V ),

Y ∈ LT ′S′ (U−1, V −1), since they are string modules over A (see [3]).
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The existence of pointed homomorphisms in (M(X), zX1 )X∈LTS (U,V ) and
(M(Y ), zY1 )

Y ∈LT ′
S′ (U

−1,V −1)
follows from Lemma 5.5.

The pointed modules (M(X1), zX1) and (M(X2), zX2) are not isomorphic
for any X1, X2 ∈ LTS (U, V ) such that X1 6= X2. Indeed, X1 6= X−1

2 since
X−1

2 starts with a different direct arrow than X1; X1 6= X2 by assumption.
It follows that M(X1) and M(X2) are not isomorphic (see [3]), and thus
(M(X1), zX1

1 ) and (M(X2), zX2
1 ) are not either.

Similar arguments show that (M(Y1), zY1
1 ) and (M(Y2), zY2

1 ) are not iso-
morphic for any Y1, Y2 ∈ Σ(U−1, V −1) such that Y1 6= Y2.

Consequently, (M(X), zX1 )X∈LTS (U,V ) and (M(Y ), zY1 )
Y ∈LT ′

S′ (U
−1,V −1)

are
dense chains of pointed modules in A-mod. Now we prove that these chains
are independent.

First we show that there is no pointed homomorphism from (M(X), zX1 )
to (M(Y ), zY1 ) for any X ∈ LTS (U, V ), Y ∈ LT ′S′ (U−1, V −1). Indeed, assume,
to the contrary, that there is a pointed A-homomorphism f : (M(X), zX1 )→
(M(Y ), zY1 ). Observe thatX and Y start with different direct arrows a and b.
This yields

af(zX2 ) = f(azX2 ) = f(zX1 ) = zY1 = bzY2 .

Assume that
f(zX2 ) = λ1z

Y
1 + λ2z

Y
2 + · · ·+ λn+1z

Y
n+1,

where λi ∈ k and zY1 , . . . , zYn+1 is the canonical basis of M(Y ). Thus

zY1 = af(zX2 ) = λ1az
Y
1 + λ2az

Y
2 + · · ·+ λn+1az

Y
n+1.

Observe that a is a direct arrow and Y starts with b 6= a, hence azY1 = 0,
azY2 = 0. Moreover, azYi ∈ {0, zYi−1} for i ≥ 3. It follows that zY1 is a linear
combination of zY2 , . . . , zYn+1, a contradiction with the fact that zY1 , . . . , zYn+1

are linearly independent. Hence there is no pointed homomorphism from
(M(X), zX1 ) to (M(Y ), zY1 ).

Similar arguments show that there is no pointed homomorphism from
(M(Y ), zY1 ) to (M(X), zX1 ).

The pointed pushout of (M(X), zX1 ) and (M(Y ), zY1 ) is indecomposable
since it is isomorphic to (M(X−1Y ), z(X−1,Y )) by Lemma 5.6.

The pointed pushouts (M(X−1
1 Y ), z(X−1

1 ,Y )) and (M(X−1
2 Y ), z(X−1

2 ,Y ))
are not isomorphic for any X1, X2 ∈ LTS (U, V ) such that X1 6= X2. Indeed,
X−1

1 Y 6= X−1
2 Y since X1 6= X2; X−1

1 Y 6= (X−1
2 Y )−1 = Y −1X2, because

X−1
1 starts with a different direct arrow than Y −1.
Similar arguments show that the pointed pushouts (M(X−1Y1), z(X−1,Y1))

and (M(X−1Y2), z(X−1,Y2)) are not isomorphic for any Y1, Y2 ∈ LTS (U−1, V −1)
such that Y1 6= Y2.
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Consequently, (M(X), zX1 )X∈LTS (U,V ) and (M(Y ), zY1 )
Y ∈LT ′

S′ (U
−1,V −1)

are

independent dense chains of pointed A-modules, and the proof is complete.

Recall from Section 4 that we have defined the automorphism ρ : Λ1 →
Λ1 of the k-category Λ1. Now we interpret ρ in terms of the set S(Λ1) of
strings over Λ1.

Let ρ : S(Λ1)→ S(Λ1) be defined by ρ(a) = ρ(a) and ρ(a−1) = ρ(a)−1 for
any direct arrow a ∈ Q1. It is easy to see that the sequence ρ(a1) . . . ρ(an)
is a well-defined string over Λ1 provided a1 . . . an is a string, and we set
ρ(a1 . . . an) = ρ(a1) . . . ρ(an) for any a1 . . . an ∈ S(Λ1).

Observe that ρ◦ρ = 1S(Λ1), ρ|Q1
= ρ|Q1

and s(ρ(a)) = s(a), t(ρ(a)) = t(a)
for any direct or inverse arrow a.

Proposition 5.8. If S ∈ S(Λ1), then ρ•(M(S)) ∼= M(ρ(S)).

Proof. Assume that S = s1 . . . sn and let {z1, . . . , zn+1} be the canonical
k-basis of the string module M(S), and {z1, . . . , zn+1} the canonical k-basis
of M(ρ(S)).

We have the following formulae:

(M(ρ(S))(a))(zj) =


zj−1 if j ≥ 2 and a = ρ(sj−1),
zj+1 if j ≤ n and a−1 = ρ(sj),
0 otherwise

and

(ρ•M(S)(a))(zj) = (M(S)(ρ(a)))(zj) =


zj−1 if j ≥ 2 and ρ(a) = sj−1,
zj+1 if j ≤ n and ρ(a)−1 = sj ,
0 otherwise,

for any direct arrow a and j ∈ {1, . . . , n+ 1}.
Moreover, it is easy to see that

(M(ρ(S))(ex))(zj) = zj if and only if (M(S)(ρ(ex)))(zj) = zj

and

(M(ρ(S))(ex))(zj) = 0 if and only if (M(S)(ρ(ex)))(zj) = 0

for any vertex x ∈ Q0 and j ∈ {1, . . . , n+ 1}.
This shows that zi 7→ zi induces an isomorphism ρ•(M(S)) ∼= M(ρ(S)).

As a corollary we get the following combinatorial lemma.

Lemma 5.9. Assume that (U, V ) is a Q-generating pair of bands over Λ1

such that the pair (U−1, V −1) is also Q-generating. Moreover, assume that
ρ(U) = U−1 and ρ(V ) = V −1. Then:

(a) ρ•(M(S1)) �M(S2) for any S1, S2 ∈ LVV (U, V ).
(b) ρ•(M(T1)) �M(T2) for any T1, T2 ∈ LU

−1

V −1(U−1, V −1).
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(c) ρ•(M(T−1
1 S1)) �M(T−1

2 S2) for any S1, S2 ∈ LVV (U, V ) and T1, T2 ∈
LU−1

V −1(U−1, V −1).

Proof. (a) Assume that S1 = V X1V U and S2 = V X2V U for some
X1, X2 ∈ Σ(U, V ). Thanks to Proposition 5.8 it is enough to show that
S2 6= ρ(S1) and S2 6= ρ(S1)−1.

Obviously

ρ(S1) = ρ(V X1V U) = ρ(V )ρ(X1)ρ(V U) = V −1ρ(X1)V −1U−1

and
ρ(S1)−1 = (V −1ρ(X1)V −1U−1)−1 = UV ρ(X1)−1V.

Therefore S2 6= ρ(S1) since V , as a band, starts with a different arrow than
V −1. Moreover, S2 6= ρ(S1)−1 by Lemma 5.1(a), since S2, ρ(S1)−1 ∈ Σ(U, V )
and S2 starts with V , while ρ(S1)−1 starts with U .

(b) Assume that T1 = V −1Y1U
−2 and T2 = V −1Y2U

−2 for some Y1, Y2 ∈
Σ(U−1, V −1). It is enough to show that T2 6= ρ(T1) and T2 6= ρ(T1)−1.

First, ρ ◦ ρ = 1S(Λ1) yields ρ(W−1) = W for any W ∈ {U, V }. Therefore

ρ(T1) = ρ(V −1Y1U
−2) = ρ(V −1)ρ(Y1)ρ(U−2) = V ρ(Y1)U2

and
ρ(T1)−1 = (V ρ(Y1)U2)−1 = U−2ρ(Y1)−1V −1.

Thus the assertion follows from the fact that V starts with a different arrow
than V −1, and from Lemma 5.1(a) (since T2, ρ(T1)−1 ∈ Σ(U−1, V −1)).

(c) Assume that S1 = V X1V U, S2 = V X2V U for someX1, X2 ∈ Σ(U, V )
and T1 = V −1Y1U

−2, T2 = V −1Y2U
−2 for some Y1, Y2 ∈ Σ(U−1, V −1). We

have to show that T−1
2 S2 6= ρ(T−1

1 S1) and T−1
2 S2 6= ρ(T−1

1 S1)−1.
Obviously

T−1
2 S2 = (V −1Y2U

−2)−1V X2V U = U2Y −1
2 V 2X2V U,

ρ(T−1
1 S1) = ρ(U2Y −1

1 V 2X1V U) = U−2ρ(Y −1
1 )V −2ρ(X1)V −1U−1,

(ρ(T−1
1 S1))−1 = UV ρ(X1)−1V 2ρ(Y −1

1 )−1U2,

so the assertion follows from the fact that U starts with a different arrow
than U−1, and from Lemma 5.1(a) (since T−1

2 S2, ρ(T−1
1 S1)−1 ∈ Σ(U, V )).

Now we state the main theorem of the section.

Theorem 5.10. Assume that

(U, V ) = (γαβ−1δ−1, γδ−1) or (U, V ) = (βα−1βα−1, βα−1γ−1δβα−1).

Then (U, V ) and (U−1, V −1) are Q-generating pairs of bands over Λ1. More-
over, the pair

((M(X), zX1 )X∈LVV (U,V ), (M(Y ), zY1 )
Y ∈LU−1

V−1 (U−1,V −1)
)
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is an independent pair of dense chains of pointed modules in Λ1-mod such
that:

(a) ρ•(M(S1)) �M(S2) for any S1, S2 ∈ LVV (U, V ).
(b) ρ•(M(T1)) �M(T2) for any T1, T2 ∈ LU

−1

V −1(U−1, V −1).
(c) ρ•(M(T−1

1 S1)) �M(T−1
2 S2) for any S1, S2 ∈ LVV (U, V ) and T1, T2 ∈

LU−1

V −1(U−1, V −1).

Proof. We check directly that (U, V ) and (U−1, V −1) are Q-generating
pairs of bands over Λ1. It is easy to show by direct calculations that ρ(U) =
U−1 and ρ(V ) = V −1. Therefore the assertion is an immediate consequence
of Theorem 5.7 and Lemma 5.9.

We remark that there are many other examples of Q-generating pairs of
bands (U, V ) over Λ1 such that the pair (U−1, V −1) is also Q-generating.

6. Independent pairs of dense chains in Λ3-mod. The aim of this
section is to prove the existence of an independent pair of dense chains of
pointed modules in Λ3-mod. This will be a consequence of the main results
of Sections 4 and 5.

Definition 6.1. An independent pair ((Mq,mq)q∈L1 , (Nt, nt)t∈L2) of
dense chains of pointed modules in Λ2-mod is non-symmetric provided the
following conditions are satisfied:

(a) σ•(Mq1) �Mq2 for any q1, q2 ∈ L1,
(b) σ•(Nt1) � Nt2 for any t1, t2 ∈ L2,
(c) σ•(Pq1t1) � Pq2t2 for any q1, q2 ∈ L1, t1, t2 ∈ L2, where we set

(Pqt, pqt) := (Mq,mq) ∗ (Nt, nt)

for any q ∈ L1, t ∈ L2.
Lemma 6.2. If char(k) 6= 2, then there is a non-symmetric independent

pair of dense chains of pointed modules in Λ2-mod.

Proof. Recall from Proposition 4.1 that the following diagram of k-cate-
gory isomorphisms is commutative:

Λ1-mod
ι• // Λ2-mod

Λ1-mod
ι• //

σ•

OO

Λ2-mod

σ•

OO

It is clear that ι•(M) = M as k-vector spaces for any Λ1-module M , and
thus (ι•(M),m) is a well-defined pointed module in Λ2-mod for any pointed
module (M,m) in Λ1-mod. Moreover, ι•(f)=f for any Λ1-homomorphism f ,
and thus ι•(f) : (ι•(M),m) → (ι•(N), n) is a well-defined pointed Λ2-
homomorphism for any pointed Λ1-homomorphism f : (M,m)→ (N,n).
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Assume that (U, V ) is one of the Q-generating pairs of bands from The-
orem 5.10, that is,

(U, V ) = (γαβ−1δ−1, γδ−1) or (U, V ) = (βα−1βα−1, βα−1γ−1δβα−1).

We set L1 := LVV (U, V ), L2 := LU−1

V −1(U−1, V −1) and

(Mq,mq) := (ι•(M(q)), zq1) and (Nt, nt) := (ι•(M(t)), zt1),

for any q ∈ L1, t ∈ L2. Then ((Mq,mq)q∈L1 , (Nt, nt)t∈L2) is an independent
pair of dense chains of pointed Λ2-modules by Theorems 5.3 and 5.7. This
pair is non-symmetric by Theorem 5.10 and Lemma 5.6.

Now we prove the existence of an independent pair of dense chains of
pointed modules in Λ3-mod.

Theorem 6.3. Assume that char(k) 6=2 and ((Mq,mq)q∈L1 , (Nt, nt)t∈L2)
is a non-symmetric pair of dense chains of pointed modules in Λ2-mod. Then

((F•(Mq), m̃q)q∈L1 , (F•(Nt), ñt)t∈L2)

is an independent pair of dense chains of pointed modules in Λ3-mod.

Proof. First we prove that (F•(Mq), m̃q)q∈L1 and (F•(Nt), ñt)t∈L2 are
dense chains of pointed modules in Λ3-mod.

The modules F•(Mq) and F•(Nt) are indecomposable for any q ∈ L1,
t ∈ L2 by Corollary 4.3(a), since Mq and Nt are indecomposable and Mq �
σ•(Mq), Nt � σ•(Nt) for any q ∈ L1, t ∈ L2.

Assume that µq,q′ : (Mq,mq)→ (Mq′ ,mq′) and νt,t′ : (Nt, nt)→ (Nt′ , nt′)
are pointed homomorphisms for some q < q′ ∈ L1 and t < t′ ∈ L2. Then
there exist pointed homomorphisms

F•(µq,q′) : (F•(Mq), m̃q)→ (F•(Mq′), m̃q′)

and
F•(νt,t′) : (F•(Nt), ñt)→ (F•(Nt′), ñt′).

The pointed modules (F•(Mq), m̃q) and (F•(Mq′), m̃q′) are not isomor-
phic by Corollary 4.3(b) for any q 6= q′ ∈ L1. Indeed, F•(Mq) and F•(Mq′)
are not isomorphic since Mq, Mq′ are indecomposable and Mq � σ•(Mq′);
thus (F•(Mq), m̃q) and (F•(Mq′), m̃q′) are not isomorphic.

Similarly, the pointed modules (F•(Nt), ñt) and (F•(Nt′), ñt′) are not
isomorphic for any t 6= t′ ∈ L2.

Consequently, (F•(Mq), m̃q)q∈L1 and (F•(Nt), ñt)t∈L2 are dense chains of
pointed modules in Λ3-mod. Now we prove that these chains are independent.

There is no pointed homomorphism from (F•(Mq), m̃q) to (F•(Nt), ñt)
and no pointed homomorphism from (F•(Nt), ñt) to (F•(Mq), m̃q) for any
q ∈ L1, t ∈ L2 by Lemma 4.5, since there is no pointed homomorphism from
(Mq,mq) to (Nt, nt) and none from (Nt, nt) to (Mq,mq).
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The pointed pushout (F•(Mq), m̃q) ∗ (F•(Nt), ñt) is indecomposable for
any q ∈ L1, t ∈ L2 by Lemma 4.4 and Corollary 4.3(a). Indeed, assume
that (Mq,mq) ∗ (Nt, nt) = (Pqt, pqt). Then (F•(Mq), m̃q) ∗ (F•(Nt), ñt) =
(F•(Pqt), p̃qt) by Lemma 4.4 and F•(Pqt) is indecomposable by Corollary
4.3(a), since Pqt is indecomposable and Pqt � σ•(Pqt).

The pointed pushouts (F•(Mq), m̃q) ∗ (F•(Nt), ñt) and (F•(Mq′), m̃q′) ∗
(F•(Nt), ñt) are not isomorphic for any q 6= q′ ∈ L1 and t ∈ L2 by Lemma
4.4 and Corollary 4.3(b). Indeed, F•(Pqt) � F•(Pq′t) since Pqt, Pq′t are inde-
composable and Pqt � σ•(Pq′t).

Similar arguments show that the pointed pushouts (F•(Mq), m̃q) ∗
(F•(Nt), ñt) and (F•(Mq), m̃q) ∗ (F•(Nt′), ñt′) are not isomorphic for any
q ∈ L1 and t 6= t′ ∈ L2.

Thus, (F•(Mq), m̃q)q∈L1 and (F•(Nt), ñt)t∈L2 are independent dense
chains of pointed modules in Λ3-mod, and the proof is complete.

Proof of Theorem 1.1. The assertion (a) is an immediate consequence of
Theorem 6.3, whereas (b) follows by applying (a) and Corollary 3.4.

7. Final remarks. In this section we collect some consequences of our
results. In particular, we present a technical refinement of Theorem 6.3
(Corollary 7.1), which is important for future applications. Moreover, we
show that there exists an independent pair of dense chains of pointed mod-
ules over the incidence algebra of the Nazarova–Zavadskij posetNZ enlarged
by a unique maximal element.

We recall from [15] the concept of a prinjective module.
Given two k-algebras A,B and a B-A-bimodule M, we consider the

algebra

R =

[
A 0
M B

]
of matrices

[
a 0
m b

]
, a ∈ A, b ∈ B, m ∈M, where multiplication is given by[
a 0
m b

]
·

[
a′ 0
m′ b′

]
=

[
aa′ 0

ma′ + bm′ bb′

]
.

Let

eA =

[
1A 0
0 0

]
and eB =

[
0 0
0 1B

]
.

Observe that if R is the bound quiver algebra kQ/I, then there are convex
subquivers QA and QB of Q such that

A ∼= kQA/(I ∩ kQA) and B ∼= kQB/(I ∩ kQB)

and there are no oriented paths from QB to QA.
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Moreover, every vertex of Q belongs to exactly one of the subquivers QA,
QB, andM can be identified with the linear subspace of kQ/I generated by
the cosets of the paths starting from QA and terminating in QB, equipped
with the natural bimodule structure.

A left finitely generated R-module X is called M-prinjective (see [15])
provided eAX is a projective A-module and eBX is an injective B-module.
We remark that this is a left-module version of the concept of a right prin-
jective module introduced in [15] and [24, 17.4].

The algebra Λ3 can be realized in this manner as follows (we are consis-
tent with the notation of Section 4):[

A1 0
M1 B1

]
∼= Λ3

∼=

[
A2 0
M2 B2

]
,

where
A1 = (ex11 + ex12 + ex21 + ex22)Λ3(ex11 + ex12 + ex21 + ex22),
B1 = (ex31 + ex32)Λ3(ex31 + ex32),
M1 = (ex31 + ex32)Λ3(ex11 + ex12 + ex21 + ex22),

and
A2 = (ex11 + ex12)Λ3(ex11 + ex12),
B2 = (ex21 + ex22 + ex31 + ex32)Λ3(ex21 + ex22 + ex31 + ex32),
M2 = (ex21 + ex22 + ex31 + ex32)Λ3(ex11 + ex12).

The following corollary is a consequence of Lemma 6.2 and Theorem 6.3.
Corollary 7.1.
(a) If char(k) 6= 2, then there exists an independent pair

((M̃q, m̃q)q∈L1 , (Ñt, ñt)t∈L2)

of dense chains of pointed modules in Λ3-mod such that the modules
M̃q, Ñt areM1-prinjective and m̃q (respectively, ñt) belongs to eB1M̃q

(respectively, eB1Ñt) for any q ∈ L1, t ∈ L2.
(b) If char(k) 6= 2, then there exists an independent pair

((M̃ ′q, m̃
′
q)q∈L′1 , (Ñ

′
t , ñ
′
t)t∈L′2)

of dense chains of pointed modules in Λ3-mod such that the mod-
ules M̃ ′q, Ñ ′t are M2-prinjective and m̃′q (respectively, ñ′t) belongs to
(ex21 + ex22) socB2(eB2M̃

′
q) (respectively, (ex21 + ex22) socB2(eB2Ñ

′
t))

for any q ∈ L′1, t ∈ L′2.
Proof. (a) We conclude from the proof of Lemma 6.2 that there is a non-

symmetric pair ((Mq,mq)q∈L1 , (Nt, nt)t∈L2) of dense chains of pointed mod-
ules inΛ2-mod associated to theQ-generating pair of bands (γαβ−1δ−1, γδ−1).
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We set

((M̃q, m̃q)q∈L1 , (Ñt, ñt)t∈L2) := ((F•(Mq), m̃q)q∈L1 , (F•(Nt), ñt)t∈L2).

This is an independent pair of dense chains of pointed modules in Λ3-mod by
Theorem 6.3. One checks directly that, for any string S ∈ Σ(U, V ), where
U = γαβ−1δ−1, V = γδ−1, the module (ex1 + ex2)M(S) is a projective
(ex1 + ex2)Λ1(ex1 + ex2)-module. It follows that the (ex1 + ex2)Λ2(ex1 + ex2)-
modules (ex1 + ex2)Mq, (ex1 + ex2)Nt are projective. Since the algebra B1 is
semisimple, it follows that the modules M̃q, Ñt are M1-prinjective for any
q ∈ L1, t ∈ L2.

The conditions m̃q ∈ eB1M̃q and ñt ∈ eB1Ñt for any q ∈ L1, t ∈ L2,
follow easily from the facts that mq ∈ ex3Mq and nt ∈ ex3Nt.

(b) From the proof of Lemma 6.2, there is a non-symmetric pair
((M ′q,m

′
q)q∈L′1 , (N

′
t , n
′
t)t∈L′2) of dense chains of pointed modules in Λ2-mod

associated to the Q-generating pair of bands (βα−1βα−1, βα−1γ−1δβα−1).
We set

((M̃ ′q, m̃
′
q)q∈L′1 , (Ñ

′
t , ñ
′
t)t∈L′2) := ((F•(M ′q), m̃′q)q∈L′1 , (F•(N

′
t), ñ′t)t∈L′2).

This is an independent pair of dense chains of pointed modules in Λ3-mod by
Theorem 6.3. As in the previous case, the modules M̃ ′q, Ñ ′t areM2-prinjective
for any q ∈ L′1, t ∈ L′2, since the modules (ex2 + ex3)M

′
q, (ex2 + ex3)N

′
t are

injective over the algebra (ex2 + ex3)Λ2(ex2 + ex3) and A2 is semisimple.
The conditions

m̃′q ∈ (ex21 + ex22) socB2(eB2M̃
′
q) and ñ′t ∈ (ex21 + ex22) socB2(eB2Ñ

′
t),

for any q ∈ L′1, t ∈ L′2 follow easily from the facts that m′q ∈ ex2M
′
q,

n′t ∈ ex2N
′
t and γm′q = δm′q = 0, γn′t = δn′t = 0.

The specific independent pairs of dense chains of pointed modules from
Corollary 7.1 play a role in applications of our results to pg-critical algebras
(see [14]), which will be presented in a subsequent paper.

Now we apply Corollary 7.1(a) to show that there exists an indepen-
dent pair of dense chains of pointed modules over the incidence algebra of
the Nazarova–Zavadskij poset, denoted by NZ in [24, 15.31], enlarged by a
unique maximal element.

More precisely, let Γ := k(NZ)∗ be the bound quiver algebra kQ/I,
where

Q :=

1
η1
��

η3

��>>>>>>> 2
η4
��

η2

���������

3

η5
''OOOOOOOOOOOOOO 4

η6

��>>>>>>> 5
η7

��

6

η8���������

∗
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and I = 〈η5η1 − η6η2, η5η3 − η6η4〉. Actually, Γ is just the algebra opposite
to the usual incidence algebra of the poset (NZ)∗ considered in the context
of right modules. But our approach coincides with the traditional (right-
module) one on the level of quiver representations.

Assume that G : Λ3-mod → Γ -mod is the functor defined on objects of
Λ3-mod as follows:

V11

vα1

��

vβ2

!!CCCCCCCC V12

vα2

��

vβ1

}}{{{{{{{{

V21

vδ1
��

vγ2

!!CCCCCCCC V22

vδ2
��

vγ1

}}{{{{{{{{

V31 V32

7−→

V11

vα1

��

vβ2

!!CCCCCCCC V12

vα2

��

vβ1

}}{{{{{{{{

V21

w1 ))SSSSSSSSSSSSSSSS V22

w2

%%JJJJJJJJJ V31

w3

��

V32

w4yyttttttttt

V31 ⊕ V32

where

w1 =

[
vδ1
vγ1

]
, w2 =

[
vγ2

vδ2

]
, w3 =

[
idV31

0

]
, w4 =

[
0

idV32

]
.

The functor is defined on homomorphisms in Λ3-mod in a natural way.
It is easy to see that G : Λ3-mod→ Γ -mod is full, faithful and exact.
Assume that (M,m) is a pointed Λ3-module such that m ∈ eB1M =

ex31M ⊕ ex32M . Then there is a Λ3-homomorphism

χ̃(M,m) : P (x31)⊕ P (x32)→M

such that χ̃(M,m)(ex31 + ex32) = m, where P (x31) = Λ3ex31 and P (x32) =
Λ3ex32 are indecomposable projectives associated to x31 and x32, respec-
tively.

Observe that

G(P (x31)) ∼= Γe5, G(P (x32)) ∼= Γe6,

hence there is an epimorphism of Γ -modules

υ : Γ → G(P (x31))⊕G(P (x32)).

We set

G(M,m) := (G(M),m), where m := (G(χ̃(M,m))υ)(1Γ )

for any pointed Λ3-module (M,m) such that m ∈ eB1M = ex31M ⊕ ex32M .
Assume that (M,m), (N,n) are pointed Λ3-modules such that m ∈

eB1M = ex31M ⊕ ex32M , n ∈ eB1N = ex31N ⊕ ex32N and f : (M,m) →
(N,n) is a pointed Λ3-homomorphism. Then

fχ̃(M,m) = χ̃(N,n) and thus G(f)(G(χ̃(M,m))υ) = G(χ̃(N,n))υ.

This implies that G(f) is a pointed Γ -homomorphism G(M,m)→ G(N,n).
Observe that since G is full and faithful, any pointed homomorphism from
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G(M,n) to G(N,n) is of the form G(f) for some pointed homomorphism
f : (M,m)→ (N,n).

In what follows, we write mq, nt instead of m̃q, ñt.

Corollary 7.2. Assume char(k) 6= 2 and ((M̃q, m̃q)q∈L1 , (Ñt, ñt)t∈L2)
is an independent pair of dense chains of pointed modules in Λ3-mod satis-
fying the conditions of Corollary 7.1(a). Then

((G(M̃q),mq)q∈L1 , (G(Ñt), nt)t∈L2)

is an independent pair of dense chains of pointed modules in Γ -mod. If, in
addition, k is countable, then there exists a super-decomposable pure-injective
Γ -module.

Proof. First observe that the pointed modules (G(M̃q),mq) and
(G(Ñt), nt) are well-defined for any q ∈ L1, t ∈ L2, since m̃q ∈ eB1M̃q

and ñt ∈ eB1Ñt by Corollary 7.1(a).
We prove that (G(M̃q),mq)q∈L1 and (G(Ñt), nt)t∈L2 are dense chains of

pointed Γ -modules.
The modules G(M̃q), G(Ñt) are indecomposable for any q ∈ L1, t ∈ L2,

since G : Λ3-mod→ Γ -mod preserves indecomposability.
The pointed modules (G(M̃q1),mq1) and (G(Ñt2), nt2) are not isomorphic

for any q1, q2 ∈ L1 such that q1 6= q2, since (M̃q1m̃q1) and (M̃q2 , m̃q2) are not
isomorphic and G is full and faithful.

Similarly, the pointed modules (G(Ñt1), nt1) and (G(Ñt2), nt2) are not
isomorphic for any t1, t2 ∈ L2 such that t1 6= t2.

Consequently, (G(M̃q),mq)q∈L1 and (G(Ñt), nt)t∈L2 are dense chains of
pointed modules in Γ -mod. Now we prove that these chains are independent.

First, there is no pointed homomorphism from (G(M̃q),mq) to (G(Ñt), nt)
since there is none from (M̃q, m̃q) to (Ñt, ñt) for any q ∈ L1, t ∈ L2. Similarly,
there is no pointed homomorphism (G(Ñt), nt) → (G(M̃q),mq) for any q ∈
L1, t ∈ L2.

We observe that the pointed pushout

(P ′qt, p
′
qt) := (G(M̃q),mq) ∗ (G(Ñt), nt)

of (G(M̃q),mq) and (G(Ñt), nt) is isomorphic to G(Pqt, pqt), where (Pqt, pqt)
is the pointed pushout of (M̃q, m̃q) and (Ñt, ñt). Indeed, since G is exact it
preserves pushouts by [16, Proposition 2.1].

It follows that the pair of dense chains (G(M̃q),mq)q∈L1 , (G(Ñt), nt)t∈L2

satisfies the condition (c) of Definition 3.2, since the pair (M̃q, m̃q)q∈L1 ,
(Ñt, ñt)t∈L2 does.

The remaining assertion follows now by applying Corollary 3.4.
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Remark 7.3. (a) It is easy to see that the poset NZ in Corollary 7.2
can be replaced by any finite poset I containing NZ as a full subposet. Thus,
in view of [24, Theorem 15.89] and [17, Theorem 13.7], super-decomposable
pure-injective modules do exist over the incidence algebra of I∗ for any poset
I which is wild or of non-polynomial growth in the sense of [24, 15.10], where
I∗ denotes the enlargement of I by a unique maximal element, provided k
is a countable field of characteristic different than 2.

(b) The assumption that k is countable in Theorem 1.1(b) seems to be
essential, at least for a proof based on Ziegler’s result. The assumption on
the characteristic can perhaps be omitted.
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