VOL. 124

2011

NO. 1

STANDARD IDEALS IN CONVOLUTION SOBOLEV ALGEBRAS ON THE HALF-LINE

BҮ

JOSÉ E. GALÉ (Zaragoza) and ANTONI WAWRZYŃCZYK (México)

Abstract. We study the relation between standard ideals of the convolution Sobolev algebra $\mathcal{T}^{(n)}_+(t^n)$ and the convolution Beurling algebra $L^1((1+t)^n)$ on the half-line $(0,\infty)$. In particular it is proved that all closed ideals in $\mathcal{T}^{(n)}_+(t^n)$ with compact and countable hull are standard.

Introduction. For a nonnegative integer n, let $\mathcal{T}^{(n)}_+(t^n)$ denote the Banach space obtained as the completion of the space $C_c^{(\infty)}[0,\infty)$ of test functions on $[0,\infty)$ in the norm

$$||f|| := \int_{0}^{\infty} |f^{(n)}(t)| t^n dt, \quad f \in C_c^{(\infty)}[0,\infty).$$

This space was introduced in [AK] to study ill-posed (abstract) Cauchy problems, and in connection with integrated semigroups and distribution semigroups. When n = 0, it is to be understood that $\mathcal{T}^{(n)}_+(t^n)$ coincides with the space $L^1(\mathbb{R}^+)$ of (classes of) Lebesgue integrable functions on $\mathbb{R}^+ :=$ $(0,\infty)$. In general $\mathcal{T}^{(n)}_+(t^n)$ is continuously contained in $L^1(\mathbb{R}^+)$. Moreover, $\mathcal{T}^{(n)}_+(t^n)$ is a semisimple and commutative convolution Banach algebra, a subalgebra of $L^1(\mathbb{R}^+)$, with character space equal to the set $\overline{\mathbb{C}^+}$, where $\mathbb{C}^+ := \{z \in \mathbb{C} : \Re z > 0\}$, and Gelfand transform given by the Laplace transform

$$(\mathcal{L}f)(z) = \int_0^\infty f(t)e^{-zt} dt, \quad f \in \mathfrak{T}^{(n)}_+(t^n), \, z \in \mathbb{C}^+.$$

(Here, a Banach algebra is understood as a Banach space endowed with a jointly continuous multiplication, so that the submultiplicative norm constant need not be 1.) In fact, the range $\mathcal{L}(\mathcal{T}^{(n)}_+(t^n))$ is contained and dense in the Banach algebra $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ of analytic functions $F \colon \mathbb{C}^+ \to \mathbb{C}$ such that

²⁰¹⁰ Mathematics Subject Classification: Primary 46J15, 46J20; Secondary 26A46, 42A85, 43A20.

Key words and phrases: standard ideal, convolution Sobolev algebra, Laplace transform.

 $z^{j}F^{(j)}(z)$ extends continuously up to the boundary $i\mathbb{R}$ of \mathbb{C}^{+} and satisfies

 $\lim_{z \to 0} z^j F^{(j)}(z) = 0 \quad (1 \le j \le n), \qquad \lim_{z \to \infty} z^j F^{(j)}(z) = 0 \quad (0 \le j \le n).$

Endowed with pointwise multiplication and the norm

$$||F|| := \sum_{j=0}^{n} \max_{\Re z \ge 0} |z^j F^{(j)}(z)|, \quad F \in \mathfrak{A}^{(n)}(\mathbb{C}^+),$$

the space $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ is a Banach algebra. The above facts and other Banach algebra properties of $\mathfrak{T}^{(n)}_+(t^n)$ may be found in [GM], [GMR1] and [GMR2], proved even for fractional derivative versions of $\mathfrak{T}^{(n)}_+(t^n)$.

The problem of describing closed ideals of $\mathcal{T}^{(n)}_+(t^n)$, as those of $L^1(\mathbb{R}^+)$, is not simple. In contrast, the case of the algebra $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ is well understood: In [GW1] and [GW2] the closed ideals of $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ are completely determined on the basis of the classical Korenblyum's theorem for the algebra $A^n(\mathbb{D})$ of functions on the disc which are analytic in \mathbb{D} and of class $C^{(n)}$ on the boundary [K]. The results of [GW1] and [GW2], sketched below, may be considered as a first step towards understanding the structure of ideals in $\mathcal{T}^{(n)}_+(t^n)$.

Let \mathcal{E} be a family of subsets of $i\mathbb{R}$, $\mathcal{E} = \{E_0, E_1, \dots, E_n\}$, such that

- (a) $E_n \subseteq \cdots \subseteq E_1 \subseteq E_0;$
- (b) $E_j \subseteq i\mathbb{R}\setminus\{0\}$ and E_j is relatively closed in $i\mathbb{R}\setminus\{0\}$ for all $j = 1, \ldots, n$, and E_0 is a closed subset of $i\mathbb{R}$.

Let Q be an inner function on \mathbb{C}^+ and let F be a bounded analytic function on \mathbb{C}^+ . We write Q | F to indicate that the quotient F/Q remains analytic and bounded on \mathbb{C}^+ . Then a (closed) ideal of $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ is said to be *standard* if it is of the form

$$\mathfrak{I}(Q;\mathcal{E}) := \{ F \in \mathfrak{A}^{(n)}(\mathbb{C}^+) : Q \mid F \text{ and } F^{(j)}(z) = 0, \, \forall z \in E_j \, (0 \le j \le n) \}.$$

Given an ideal L of $\mathfrak{A}^{(n)}(\mathbb{C}^+)$, put

$$Z^{k}(L) := \{ z \in \overline{\mathbb{C}^{+}} \setminus \{ 0 \} : F^{(j)}(z) = 0 \ (1 \le j \le k) \}$$

if $1 \leq k \leq n$, and $Z(L) = Z^0(L) := \{z \in \overline{\mathbb{C}^+} : F(z) = 0 \text{ for all } F \in L\}$. Set $E_j(L) := Z^k(L) \cap i\mathbb{R} \ (j = 0, 1, \dots, n) \text{ and } \mathcal{E}(L) = \{E_0(L), E_1(L), \dots, E_n(L)\}$. Let Q_L denote the inner factor of L, that is, the greatest inner common divisor (g.i.c.d., for short) of all nonzero functions in L (see [H]). We call $(Q_L; \mathcal{E}(L))$ the *data* of the ideal L. Then a closed ideal L is standard if and only if $L = \mathfrak{I}(Q_L; \mathcal{E}(L))$. Furthermore, all closed ideals of $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ are standard [GW2, Corollary 3.3].

Now, for an ideal I of $\mathfrak{T}^{(n)}_+(t^n)$ and $0 \leq k \leq n$, set $h_0^k(I) := Z^k(L), Q_I := Q_L$ and $\mathcal{E}(I) = \mathcal{E}(L)$, where $L := \overline{\mathcal{L}(I)}$. The space $\overline{\mathcal{L}(I)}$ is an ideal since

 $\mathcal{L}(\mathcal{T}^{(n)}_+(t^n))$ is dense in $\mathfrak{A}^{(n)}(\mathbb{C}^+)$. We call $(Q_I; \mathcal{E}(I))$ the *data* of the ideal I, and $\mathfrak{I}(Q_L; \mathcal{E}(L))$ the *standard ideal* associated with the data $(Q_I; \mathcal{E}(I))$. Then we say that a closed ideal I is *standard* when

$$I = \mathcal{L}^{-1}(\mathcal{L}(I)).$$

The set $h(I) := h_0^0(I)$ is called the *hull* of the ideal L.

Let us consider the Beurling convolution algebra $L^1(\omega_n) := \{\varphi \in L^1(\mathbb{R}^+) : \varphi \omega_n \in L^1(\mathbb{R}^+)\}$ with the norm $\|\varphi\|_n = \int_{\mathbb{R}^+} |\varphi(t)|\omega_n(t) dt$, where ω_n is the weight given by $\omega_n(t) = (\underline{1} + t)^n$ (t > 0). For an ideal J in $L^1(\omega_n)$, let us define $h^k(J) := \{z \in \overline{\mathbb{C}^+} : (\mathcal{L}\varphi)^{(j)}(z) = 0 \ (0 \le j \le k), \forall \varphi \in J\}$ and put $Q_J := Q_{\overline{\mathcal{L}}(J)}, N_k(J) := h^k(J) \cap i\mathbb{R}$ for $k = 0, 1, \ldots, n$, and $\mathfrak{N}(J) = \{N_0(J), N_1(J), \ldots, N_n(J)\}$. We call $(Q_J; \mathfrak{N}(J))$ the data of the ideal J. Then a closed ideal J is said to be standard if

$$J = \{ \varphi \in L^1(\omega_n) : Q_J \, | \, \mathcal{L}(\varphi) \text{ and } (\mathcal{L}\varphi)^{(k)} = 0 \text{ on } N^k(J) \ (0 \le k \le n) \}.$$

Perhaps the most general result about closed ideals in $L^1(\omega_0) = L^1(\mathbb{R}^+)$ is Gurarii's theorem which says that every closed ideal with countable hull is standard; see [G]. In [AZ, Theorem 3.6] a partial extension of that theorem is proven for $L^1(\omega_n)$, $n \ge 1$: Every closed ideal J of $L^1(\omega_n)$ for which the hull h(J) is at most countable and *compact* is standard.

In the present note we establish a correspondence between standard ideals of $\mathcal{T}^{(n)}_+(t^n)$ and certain standard ideals of $L^1(\omega_n)$ and, as a consequence, we prove that all closed ideals of $\mathcal{T}^{(n)}_+(t^n)$ having compact and at most countable hull are standard (Theorem 2.5 below). Then we find that any closed ideal I of $\mathcal{T}^{(n)}_+(t^n)$ with empty hull is of the form $I = \mathcal{N}_a$ where a > 0 and $\mathcal{N}_a := \{f \in \mathcal{T}^{(n)}_+(t^n) : f = 0 \text{ a.e. on } [0, a)\}.$

1. Closed ideals in Sobolev algebras and Beurling algebras. Let $L^1(t^n)$ be the Banach space of (classes of) Lebesgue measurable functions φ on $(0, \infty)$ such that $\varphi(t)t^n$ belongs to $L^1(\mathbb{R}^+)$ with the usual norm. By the definition of $\mathcal{T}^{(n)}_+(t^n)$ the derivation operator $W^n := (-1)^n d^n/dt^n$ is a surjective isometry $W^n : \mathcal{T}^{(n)}_+(t^n) \to L^1(t^n)$ whose inverse operator, say W^{-n} , is given by the Weyl-type integral

$$W^{-n}\varphi(t) = \frac{1}{(n-1)!} \int_{t}^{\infty} (x-t)^{n-1}\varphi(x) \, dx \quad (\varphi \in L^{1}(t^{n}); \, t > 0)$$

Note that $L^{1}(t^{n})$ is not a convolution algebra, and $L^{1}(\omega_{n})$ is formed by the elements of $L^{1}(t^{n})$ which are integrable near 0.

In general, for $f \in \mathcal{T}^{(n)}_+(t^n)$, the values $\lim_{t\to 0^+} f^{(k)}(t)$, $k = 0, 1, \ldots, n$, need not exist. If they do, we denote them by $f^{(k)}(0)$.

Define the subspace \mathfrak{T}_n of $\mathfrak{T}^{(n)}_+(t^n)$ by

$$\mathfrak{T}_n := \{ f \in W^{-n} L^1(\omega_n) : f^{(k)}(0) = 0 \ (0 \le k \le n-1) \}.$$

Let S be the space of all restrictions to $[0, \infty)$ of members of the Schwartz test space $S(\mathbb{R})$.

LEMMA 1.1. Let f in $\mathcal{T}^{(n)}_+(t^n)$ be such that $f^{(j)}(0)$ exists up to order k, with $k \leq n-1$, and $f(0) = \cdots = f^{(k)}(0) = 0$. Then

$$(f * g)^{(j)} = f^{(j)} * g$$

for every $1 \le j \le k+1$ and $g \in S$.

Proof. For g and f as in the statement and x > 0,

$$g * f(x) = \int_0^x g(y) f(x - y) \, dy,$$

whence (g * f)' = f(0)g + g * f' = g * f'. Now the conclusion follows by simple induction.

PROPOSITION 1.2. The space \mathfrak{T}_n has the following properties:

- (i) $\mathfrak{T}_n * \mathfrak{S} \subseteq \mathfrak{T}_n$.
- (ii) $W^n(f * g) = (W^n f) * g$ for all $f \in \mathfrak{T}_n$ and $g \in \mathfrak{S}$.
- (iii) $I \cap \mathfrak{T}_n$ is dense in I for every closed ideal I of $\mathfrak{T}^{(n)}_+(t^n)$; in particular \mathfrak{T}_n is dense in $\mathfrak{T}^{(n)}_+(t^n)$.

Proof. Properties (i) and (ii) are straightforward consequences of Lemma 1.1. To prove (iii) we first show that \mathfrak{T}_n is dense in $\mathfrak{T}^{(n)}_+(t^n)$. For a > 0, let \mathbb{N}_a be as at the end of the Introduction. Put

$$\mathfrak{D} := \bigcup_{a>0} \mathfrak{N}_a.$$

Clearly, $\mathfrak{D} \subseteq \mathfrak{T}_n$ and \mathfrak{D} is an ideal of $\mathfrak{T}^{(n)}_+(t^n)$. Moreover, $\mathfrak{T}^{(n)}_+(t^n)$ possesses bounded approximate identities (b.a.i., for short) of the form $\psi_{\varepsilon}(x) = \varepsilon^{-1}\psi(\varepsilon^{-1}x)$ ($x > 0, \varepsilon > 0$), where one can take ψ in $C_c^{(n)}(0,\infty) \subseteq \mathfrak{D}$; see for instance [GMR1, Proposition 2.3]. Hence $\lim_{\varepsilon \to 0^+} f * \psi_{\varepsilon} = f$ for every $f \in \mathfrak{T}^{(n)}_+(t^n)$, with $f * \psi_{\varepsilon} \in \mathfrak{D}$. In particular \mathfrak{T}_n is a dense subspace of $\mathfrak{T}^{(n)}_+(t^n)$.

Let now I be any closed ideal of $\mathcal{T}^{(n)}_+(t^n)$. Take a b.a.i. ψ_{ε} in \mathfrak{D} as above. Since for each $g \in I$ we have $g * \psi_{\varepsilon} \in I \cap \mathfrak{D} \subset I \cap \mathfrak{T}_n$ and $\lim_{\varepsilon \to 0^+} g * \psi_{\varepsilon} = g$ it follows that $I \cap \mathfrak{T}_n$ is dense in I and the proof is complete. Next, we consider the companion set of \mathfrak{T}_n in $L^1(\omega_n)$. Define

$$\mathfrak{M}_n := \left\{ \varphi \in L^1(\omega_n) : \int_0^\infty x^k \varphi(x) \, dx = 0 \ (0 \le k \le n-1) \right\}.$$

PROPOSITION 1.3. The space \mathfrak{M}_n has the following properties:

- (a) $\mathfrak{M}_n = W^n \mathfrak{T}_n$ and therefore \mathfrak{M}_n is a dense subspace of $L^1(t^n)$.
- (b) \mathfrak{M}_n is a closed ideal of $L^1(\omega_n)$.

Proof. (a) Let $f \in \mathfrak{T}^{(n)}_+(t^n)$ and suppose that $f = W^{-n}\varphi$ with $\varphi \in L^1(\omega_n)$. Then

$$f(t) = \int_{t}^{\infty} \int_{t_{n-1}}^{\infty} \dots \int_{t_1}^{\infty} \varphi(t_0) dt_0 dt_1 \dots dt_{n-1} \quad (t > 0).$$

Hence, for $0 \le m \le n-1$, we have

$$f^{(m)}(t) = (-1)^m \int_{t}^{\infty} \int_{t_{n-m-1}}^{\infty} \dots \int_{t_1}^{\infty} \varphi(t_0) dt_0 dt_1 \dots dt_{n-m-1}$$
$$= \frac{(-1)^m}{(n-m-1)!} \int_{t}^{\infty} (x-t)^{n-m-1} \varphi(t_0) dt_0 \quad (t>0).$$

It follows that $f \in \mathfrak{T}_n$ if and only if $\varphi \in \mathfrak{M}_n$. Equivalently $\mathfrak{M}_n = W^n \mathfrak{T}_n$.

(b) The functional $\varphi \mapsto \int_0^\infty x^k \varphi(x) dx$ is continuous on $L^1(\omega_n)$ for every $0 \le k \le n-1$, so \mathfrak{M}_n is a closed subspace of $L^1(\omega_n)$. Also, by (i) and (ii) of Proposition 1.2 and (a) above we have $\mathfrak{M}_n * \mathfrak{S} \subseteq \mathfrak{M}_n$. By density we infer that \mathfrak{M}_n is an ideal of $L^1(\omega_n)$, too.

The following result is central to this paper.

THEOREM 1.4. For every closed ideal I in $\mathcal{T}^{(n)}_+(t^n)$, the subspace

$$\Omega(I) := W^n(I \cap \mathfrak{T}_n) = (W^n I) \cap \mathfrak{M}_n$$

is a closed ideal of $L^1(\omega_n)$.

Proof. The operator $W^{-n}: \mathfrak{M}_n \to \mathfrak{T}_n$ is bijective, and it is continuous if we endow \mathfrak{M}_n with the $L^1(\omega_n)$ -norm and \mathfrak{T}_n with the relative topology induced by the one of $\mathfrak{T}^{(n)}_+(t^n)$. For the last topology the ideal $I \cap \mathfrak{T}_n$ is closed in \mathfrak{T}_n because I is closed. Now, $W^n(I \cap \mathfrak{T}_n)$ is the inverse image of $I \cap \mathfrak{T}_n$ under W^{-n} , so it is closed in \mathfrak{M}_n and consequently in $L^1(\omega_n)$ by Proposition 1.3(b).

By Proposition 1.2(i), and since I is an ideal, $I \cap \mathfrak{T}_n$ is invariant under convolution with S. From Proposition 1.2(ii) it follows that $\Omega(I)$ is also S-invariant for convolution and so an ideal of $L^1(\omega_n)$. According to the theorem, the mapping $\Omega: I \mapsto \Omega(I)$ defines a correspondence between closed ideals of $\mathcal{T}^{(n)}_+(t^n)$ and closed ideals of $L^1(\omega_n)$ contained in \mathfrak{M}_n . Since $W^{-n}(\Omega(I)) = I \cap \mathfrak{T}_n$ and this ideal is dense in I, Ω is injective. In the next section we use Ω to establish a relationship between standard ideals of $\mathcal{T}^{(n)}_+(t^n)$ and $L^1(\omega_n)$.

2. Standard ideals in Sobolev algebras. To each closed ideal I in $\mathfrak{T}^{(n)}_+(t^n)$ we can associate the closed ideals $L = \overline{\mathcal{L}(I)}$ in $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ and $J = \Omega(I)$ in $L^1(\omega_n)$ with respective data $(Q_I; \mathcal{E}(I))$ and $(\mathfrak{Q}_I; \mathfrak{N}(I))$ where $\mathfrak{Q}_I := Q_{\Omega(I)}, \mathfrak{N}(I) := \mathfrak{N}(\Omega(I))$ (see Introduction). In order to compare these two sets of data, we need a couple of lemmas. The first one tells us that the Laplace transform intertwines the operator W^n and multiplication by z^n .

LEMMA 2.1. For every $f \in \mathfrak{T}_n$,

$$\mathcal{L}(W^n f)(z) = (-1)^n z^n (\mathcal{L}f)(z), \quad \Re z \ge 0.$$

Proof. For $0 \le j \le n-1$, $f^{(j)}(x) = \int_x^\infty f^{(j+1)}(y) \, dy$ with
$$\int_1^\infty |f^{(j+1)}(y)| \, dy \le \int_1^\infty |f^{(j+1)}(y)y^{j+1}| \, dy < \infty.$$

Hence, $\lim_{x\to\infty} f^{(j)}(x) = 0$. Then the statement follows from the equality $\mathcal{L}(W^n f)(z) = (-1)^n \int_0^\infty f^{(n)}(t) e^{-zt} dt$ and integration by parts.

Let F, G be complex functions on $\overline{\mathbb{C}^+} \setminus \{0\}$ such that $F(z) = z^{-n}G(z)$. LEMMA 2.2. For F, G as above,

$$F \in \mathfrak{A}^{(n)}(\mathbb{C}^+) \Leftrightarrow G \in C^{(n)}(\overline{\mathbb{C}^+}) \cap \operatorname{Hol}(\mathbb{C}^+),$$

with

$$G^{(j)}(0) = 0$$
 $(0 \le j \le n-1),$ $\lim_{z \to \infty} z^{j-n} G^{(j)}(z) = 0$ $(0 \le j \le n).$

In this case, $G^{(n)}(0) = n! F(0)$.

Proof. Suppose $F \in \mathfrak{A}^{(n)}(\mathbb{C}^+)$. For $0 \leq m \leq n$,

$$G^{(m)}(z) = (z^{n}F)^{(m)}(z) = \sum_{k=0}^{m} \binom{m}{k} (z^{n})^{(k)} F^{(m-k)}(z)$$
$$= \sum_{k=0}^{m} \binom{m}{k} \binom{n}{k} k! \ z^{n-k} F^{(m-k)}(z),$$

from which we see that $G \in C^{(n)}(\overline{\mathbb{C}^+}) \cap \operatorname{Hol}(\mathbb{C}^+)$, with $G^{(m)}(0) = 0$ if $0 \le m \le n-1$, $G^{(n)}(0) = n! F(0)$, and $\lim_{z\to\infty} z^{m-n}G^{(m)}(z) = 0$ $(0 \le m \le n)$.

Conversely, assume now that G is as above. Then, for $0 \le m \le n$,

(1)
$$\lim_{z \to 0} z^{m-n} G^{(m)}(z) = G^{(n)}(0)/(n-m)!$$

This is a consequence of the formula

$$G^{(m)}(z) = \frac{1}{(n-m-1)!} \int_{[0,z]} (z-\lambda)^{n-m-1} G^{(n)}(\lambda) \, d\lambda,$$

which is valid for $0 \leq k \leq n-1$ and $z \in \overline{\mathbb{C}^+} \setminus \{0\}$, and holds because $G^{(k)}(0) = 0$ if $0 \leq k \leq n-1$.

Then for $F(z) = z^{-n}G(z)$ and $1 \le m \le n$ we have

(2)
$$z^m F^{(m)}(z) = \sum_{k=0}^m \binom{m}{k} \binom{-n}{k} k! z^{m-k-n} G^{(m-k)}(z)$$

whence, by (1),

$$\lim_{z \to 0} z^m F^{(m)}(z) = \sum_{k=0}^m \binom{m}{k} \binom{-n}{k} \frac{k!}{(n-m+k)!} G^{(n)}(0)$$
$$= \frac{m!}{n!} G^{(n)}(0) \sum_{k=0}^m \binom{n}{m-k} \binom{-n}{k} = 0.$$

The last equality is well known. However, for completeness, let us point out that it can be shown by noticing that if |z| < 1 and $c_n(k) = \chi_{[1,n]}(k)$ where $\chi_{[1,n]}$ is the indicator function of [1, n], then

$$1 = (1+z)^{n}(1+z)^{-n} = \left(\sum_{k=0}^{n} \binom{n}{k} z^{k}\right) \left(\sum_{k=0}^{\infty} \binom{-n}{k} z^{k}\right)$$
$$= \sum_{k=0}^{\infty} \sum_{k=0}^{m} c_{n}(k) \binom{n}{k} \binom{-n}{m-k} z^{m},$$

whence in particular

$$\sum_{k=0}^{m} \binom{n}{k} \binom{-n}{m-k} = 0 \quad \text{if } 1 \le m \le n.$$

Finally, from formula (2) it follows readily that $\lim_{z\to\infty} z^m F^{(m)}(z) = 0$ for all $0 \le m \le n$, and so $f \in \mathfrak{A}^{(n)}(\mathbb{C}^+)$.

Let *I* be a closed ideal in $\mathcal{T}^{(n)}_+(t^n)$. Let consider the two (closed) ideals $\overline{\mathcal{L}(I)}$ in $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ and $\Omega(I)$ in $L^1(\omega_n)$, with data $(Q_I; \mathcal{E}(I))$ and $(\mathfrak{Q}_I; \mathfrak{N}(I))$, respectively, as in Section 1. Next, we establish a relation between $(Q_I; \mathcal{E}(I))$ and $(\mathfrak{Q}_I; \mathfrak{N}(I))$. Note that the g.c.i.d. of a family \mathcal{F} of functions in $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ is the same as the g.c.i.d. of the closure $\overline{\mathcal{F}}$ since norm convergence in $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ implies uniform convergence on $\overline{\mathbb{C}^+}$.

PROPOSITION 2.3. Let I, $(Q_I; \mathcal{E}(I))$, $(\mathfrak{Q}_I; \mathfrak{N}(I))$ be as above, with $\mathcal{E}(I) = \{E_0, E_1, \ldots, E_n\}$ and $\mathfrak{N}(I) = \{N_0, N_1, \ldots, N_n\}$. Then

(i) $Q_I = \mathfrak{Q}_I$. (ii) $0 \in E_0 \Rightarrow N_j = E_j \cup \{0\}$ for all $0 \le j \le n$. (iii) $0 \notin E_0 \Rightarrow N_j = E_j \cup \{0\}$ for all $0 \le j \le n - 1$, and $N_n = E_n$. *Proof.* Note that

(3)
$$\mathcal{L}(I \cap \mathfrak{T}_n) = \mathcal{L}(I)$$

since $I \cap \mathfrak{T}_n$ is dense in I. Also, from Lemma 2.1 we have in particular

(4)
$$\mathcal{L}(\Omega(I)) = z^n \mathcal{L}(I \cap \mathfrak{T}_n).$$

Then (i) follows immediately from (3), (4) and the remark prior to the proposition, since $z \mapsto z^n$ is an outer function on \mathbb{C}^+ ; see [H].

Now, let $F = \mathcal{L}(f)$ and $G = \mathcal{L}(\varphi)$, for $f \in I \cap \mathfrak{T}_n$ and $\varphi \in \Omega(I)$, satisfy $G(z) = z^n F(z)$. For $0 \le j \le n$ and $\lambda \ne 0$,

$$\begin{split} \lambda \in E_j &\Leftrightarrow F^{(k)}(\lambda) = 0 \ \forall F \in \overline{\mathcal{L}(I)} \ (0 \le k \le j) \\ &\Leftrightarrow F^{(k)}(\lambda) = 0 \ \forall F \in \mathcal{L}(I \cap \mathfrak{T}_n) \ (0 \le k \le j) \\ &\Leftrightarrow G^{(k)}(\lambda) = 0 \ \forall G \in \mathcal{L}(\Omega(I)) \ (0 \le k \le j) \ \Leftrightarrow \ \lambda \in N_j, \end{split}$$

where the next-to-last equivalence is due to Lemma 2.2. Moreover, it is clear that $G^{(k)}(0) = 0$ for every $0 \le k \le n-1$, and since $0 \in E_0$ we have $G^{(n)}(0) = 0$ by Lemma 2.2 again. In conclusion, $0 \in N_j$ for all $0 \le j \le n$. This proves part (ii).

For (iii), if $\lambda \neq 0$ then $\lambda \in N_j \Leftrightarrow \lambda \in E_j$ for every $0 \leq j \leq n$, as in (ii) above. Also, $0 \in N_j$ for all $0 \leq j \leq n-1$; but $G^{(n)}(0) = n! F(0) \neq 0$ because $0 \notin E_0$. Hence $N_n = E_n$ and the proof is complete.

We are in a position to prove the main result of this section. Given a closed ideal J in $L^1(\omega_n)$ we say that J is *standard in* \mathfrak{M}_n if it is the intersection of \mathfrak{M}_n with a standard ideal of $L^1(\omega_n)$.

THEOREM 2.4. Let I be a closed ideal of $\mathfrak{T}^{(n)}_+(t^n)$. Then I is standard in $\mathfrak{T}^{(n)}_+(t^n)$ if and only if $\Omega(I)$ is standard in \mathfrak{M}_n .

Proof. Suppose that I is standard in $\mathcal{T}^{(n)}_+(t^n)$. Thus there exists data (Q, \mathcal{E}) with $\mathcal{E} = \{E_0, E_1, \dots, E_n\}$ such that

 $I \cap \mathfrak{T}_n = \{ f \in \mathfrak{T}_n : Q \,|\, \mathcal{L}f \text{ and } (\mathcal{L}f)^{(k)} = 0 \text{ on } E_k \ (0 \le k \le n) \}.$

Hence

$$\Omega(I) = \{ W^n f \in \mathfrak{M}_n : Q \mid \mathcal{L}f \text{ and } (\mathcal{L}f)^{(k)} = 0 \text{ on } E_k \ (0 \le k \le n) \}.$$

Let N_k be related with E_k as in Proposition 2.3. Then it follows readily by Lemma 2.1, Lemma 2.2 and Proposition 2.3 that

 $\Omega(I) = \{ \varphi \in \mathfrak{M}_n : Q \, | \, \mathcal{L}\varphi \text{ and } (\mathcal{L}\varphi)^{(k)} = 0 \text{ on } N_k \ (0 \le k \le n) \}.$

This means that $\Omega(I)$ is standard in \mathfrak{M}_n .

Conversely, suppose that $\Omega(I)$ is standard in \mathfrak{M}_n and set $\widetilde{I} = \mathcal{L}^{-1}(\overline{\mathcal{L}(I)})$. Then $L := \mathcal{L}(\widetilde{I}) \subseteq \overline{\mathcal{L}(I)} =: \widetilde{L}$, and $\mathcal{L}(I) \subseteq \mathcal{L}(\widetilde{I})$ since $I \subseteq \widetilde{I}$. Thus we have $L = \widetilde{L}$ and so the data of $\Omega(I)$ and $\Omega(\widetilde{I})$ in \mathfrak{M}_n coincide. Since $\Omega(I)$ is standard it means that $\Omega(\widetilde{I}) \subseteq \Omega(I)$. Also, $\Omega(I) \subseteq \Omega(\widetilde{I})$ since $I \subseteq \widetilde{I}$. Hence $\Omega(I) = \Omega(\widetilde{I})$. Finally note that, for each closed ideal H in $\mathcal{T}^{(n)}_+(t^n)$, we have $W^{-n}(\Omega(H)) = H \cap \mathfrak{T}_n$ and therefore $H = \overline{H} \cap \mathfrak{T}_n = \overline{W^{-n}(\Omega(H))}$. Applying this identity to H = I and $H = \widetilde{I}$ we get

$$\widetilde{I} = \overline{W^{-n}\Omega(\widetilde{I})} = \overline{W^{-n}\Omega(I)} = I,$$

that is, $I = \mathcal{L}^{-1}(\overline{\mathcal{L}(I)})$, so I is standard, as we wanted to show.

REMARK. The above is an interesting characterization, even though what we really need to prove the result below is only the fact that if $\Omega(I)$ is standard then I is standard.

THEOREM 2.5. Let I be a closed ideal in $\mathfrak{T}^{(n)}_+(t^n)$ with hull h(I) compact and at most countable. Then I is standard.

Proof. Let Q_I be the greatest inner common divisor of the ideal I. Using previous notation, we have

$$h_0(I) = [Z(\mathfrak{Q}_I) \cap \overline{\mathbb{C}^+}] \cup E_0(I)$$

Hence, from Proposition 2.3 we deduce that the hull $h(\Omega(I))$ in $L^1(\omega_n)$,

$$h(\Omega(I)) = [Z(\mathfrak{Q}_I) \cap \overline{\mathbb{C}^+}] \cup N_0(I)$$
$$= [Z(Q_I) \cap \overline{\mathbb{C}^+}] \cup E_0(I) \cup \{0\},$$

is compact and at most countable. So I is standard by [AZ, Theorem 3.6].

3. Ideals with empty hull. Let I be a not necessarily closed ideal of $L^1(\mathbb{R}^+)$. Define $\gamma(I) := \inf\{\gamma(g) : g \in I\}$ where $\gamma(g) = \inf(\operatorname{supp} g) \ (g \in I)$. Then the celebrated Nyman's theorem says that every ideal of $L^1(\mathbb{R}^+)$ such that $h(I) = \emptyset$ and $\gamma(I) = 0$ must be dense in $L^1(\mathbb{R}^+)$; see [D, p. 197], for instance. As a corollary, for a closed ideal I in $L^1(\mathbb{R}^+)$ with $h(I) = \emptyset$ there exists a > 0 such that $I = M_a$, where $M_a = \{g \in L^1(\mathbb{R}^+) : \gamma(g) \ge a\}$. This follows from the fact that the translation

$$\delta_a \colon g \mapsto \delta_a * g, L^1(\mathbb{R}^+) \to M_a$$

is bijective and continuous with inverse δ_{-a} . In fact, if $h(I) = \emptyset$ with $\gamma(I) = a$ then $J = \delta_{-a} * I$ is a closed ideal of $L^1(\mathbb{R}^+)$ such that $h(J) = \emptyset$ and $\gamma(J) = 0$. Hence, by Nyman's theorem, $J = L^1(\mathbb{R}^+)$. Finally, $I = \delta_a * J = \delta_a * L^1(\mathbb{R}^+) = M_a$.

Although Nyman's theorem has recently been extended to the Sobolev algebra $\mathcal{T}^{(n)}_+(t^n)$ (even for fractional derivation), the above argument does

not work in this case because $T^{(n)}_+(t^n)$ is not invariant under translations; see [GMR1] for both results.

Here, we apply Theorem 2.5 to show that all closed ideals in $\mathfrak{T}^{(n)}_+(t^n)$ having empty hull are of the form $\mathfrak{N}_a := M_a \cap \mathfrak{T}^{(n)}_+(t^n)$.

LEMMA 3.1. If $f \in \mathfrak{T}^{(n)}_+(t^n)$ is such that $\gamma(f) \geq a > 0$ then $\delta_{-a} * f \in \mathfrak{T}^{(n)}_+(t^n)$. Consequently,

$$\mathcal{N}_a = (\delta_a * \mathcal{T}^{(n)}_+(t^n)) \cap \mathcal{T}^{(n)}_+(t^n).$$

Proof. Set $g(x) := f(x+a) = \delta_{-a} * f(x)$ for x > 0. We know that there exists $F \in L^1(t^n)$ such that

$$f(x) = \frac{1}{(n-1)!} \int_{0}^{\infty} (y-x)^{(n-1)} F(y) \, dy \quad (x > 0).$$

Therefore

$$g(x) = \frac{1}{(n-1)!} \int_{x+a}^{\infty} (y-x-a)^{n-1} F(y) \, dy$$

= $\frac{1}{(n-1)!} \int_{x}^{\infty} (u-x)^{n-1} F(u+a) \, du \quad (x>0),$

with $F(\cdot + a) \in L^1(t^n)$ since $\int_0^\infty |F(u+a)| u^n du \leq \int_0^\infty |F(t)| t^n dt < \infty$. So $g \in \mathcal{T}^{(n)}_+(t^n)$.

Set now $T_a = (\delta_a * \mathfrak{T}^{(n)}_+(t^n)) \cap \mathfrak{T}^{(n)}_+(t^n)$. If $f \in \mathfrak{N}_a \subseteq \mathfrak{T}^{(n)}_+(t^n)$ then $f = \delta_a * (\delta_{-a} * f)$ with $\delta_{-a} * f \in \mathfrak{T}^{(n)}_+(t^n)$, whence $f \in T_a$. Conversely, if $f \in T_a$ then $f = \delta_a * g$ with $f, g \in \mathfrak{T}^{(n)}_+(t^n)$, and $\gamma(f) = a + \gamma(g) \ge a$ by Titchmarsh's theorem (see a proof in [D, p. 188]). This means that $f \in \mathfrak{N}_a$, and the proof is complete.

THEOREM 3.2. Let I be a closed ideal of $\mathfrak{T}^{(n)}_+(t^n)$ such that $h(I) = \emptyset$. Then $I = \mathfrak{N}_a$ for some $a \ge 0$.

Proof. By [GW2, Corollary 3.3], the closed ideal $\overline{\mathcal{L}(I)}$ is standard in $\mathfrak{A}^{(n)}(\mathbb{C}^+)$ and so $\overline{\mathcal{L}(I)} = Q\mathfrak{A}^{(n)}(\mathbb{C}^+)$ where Q is the g.i.c.d. of $\overline{\mathcal{L}(I)}$. Since $h(I) = \emptyset$ it follows that Q is an inner function on \mathbb{C}^+ without zeros and so $Q(z) = e^{-bz}$ for some $b \ge 0$. On the other hand, $I = \delta_a * (\delta_{-a} * I)$ for $a := \gamma(I) \ge 0$. Hence, $\mathcal{L}(I) = e^{-az} \mathcal{L}(\delta_{-a} * I)$ where the ideal $\mathcal{L}(\delta_{-a} * I)$ has no common zeros in \mathbb{C}^+ . Thus b = a.

In the following, the symbol \mathcal{L}^{-1} refers to preimages in $\mathcal{T}^{(n)}_+(t^n)$.

Since $\gamma(I) = a$ we have $I \subseteq \mathcal{N}_a = (\delta_a * \mathcal{T}^{(n)}_+(t^n)) \cap \mathcal{T}^{(n)}_+(t^n)$. For the converse inclusion, note that $\mathcal{T}^{(n)}_+(t^n) = \mathcal{L}^{-1}(\mathfrak{A}^{(n)}(\mathbb{C}^+))$ and so

$$\begin{aligned} \mathcal{N}_{a} &= (\delta_{a} * \mathcal{T}^{(n)}_{+}(t^{n})) \cap \mathcal{T}^{(n)}_{+}(t^{n}) \\ &= \left(\delta_{a} * \mathcal{L}^{-1}(\mathfrak{A}^{(n)}(\mathbb{C}^{+}))\right) \cap \mathcal{T}^{(n)}_{+}(t^{n}) \subseteq \mathcal{L}^{-1}\left(\mathcal{L}(\delta_{a} * \mathcal{L}^{-1}(\mathfrak{A}^{(n)}(\mathbb{C}^{+})))\right) \\ &\subseteq \mathcal{L}^{-1}(e^{-az}\mathfrak{A}^{(n)}(\mathbb{C}^{+})) = \mathcal{L}^{-1}(\overline{\mathcal{L}(I)}) = I \end{aligned}$$

where the last equality follows because I is standard.

Let us notice that the above statement includes the case a = 0, which we next write down explicitly because it gives a proof of Nyman' theorem for $\mathcal{T}^{(n)}_+(t^n)$ different from the one given in [GMR2].

COROLLARY 3.3. Let I be an ideal in $\mathfrak{T}^{(n)}_+(t^n)$ such that $h(I) = \emptyset$ and $\gamma(I) = 0$. Then I is dense in $\mathfrak{T}^{(n)}_+(t^n)$.

Acknowledgements. The authors wish to thank the referee for a very accurate revision of the text and for valuable comments which have improved the paper.

The research of the first named author has been supported by the Project MTM2010-16679, DGI-FEDER, of the MCYTS, Spain, and Project E-64, D.G. Aragón, Spain.

REFERENCES

- [AK] W. Arendt and H. Kellerman, Integrated solutions of Volterra integro-differential equations and applications, in: Integrodifferential Equations (Trento, 1987), G. Da Prato and M. Iannelli (eds.), Pitman Res. Notes Math. 190, Longman, Harlow, 1987, 21–51.
- [AZ] C. Agrafeuil and M. Zarrabi, Closed ideals with countable hull in algebras of analytic functions smooth up to the boundary, Publ. Mat. 52 (2008), 19–56.
- [D] H. G. Dales, Convolution algebras on the real line, in: Radical Banach Algebras and Automatic Continuity, Lecture in Notes in Math. 975, Springer, Berlin, 1983, 180–209.
- [GM] J. E. Galé and P. J. Miana, One-parameter groups of regular quasimultipliers, J. Funct. Anal. 237 (2006), 1–53.
- [GMR1] J. E. Galé, P. J. Miana and J. J. Royo, Nyman type theorem in convolution Sobolev algebras, Rev. Mat. Complut., to appear.
- [GMR2] —, —, —, *Estimates of the Laplace transform on convolution Sobolev algebras*, J. Approx. Theory, to appear.
- [GW1] J. E. Galé and A. Wawrzyńczyk, Closed ideals in weighted algebras on the unit disc, Aportaciones Mat. 40 (2009), 1–12.
- [GW2] —, —, Standard ideals in weighted Korenblyum and Wiener algebras, Math. Scand., to appear.
- [G] V. P. Gurariĭ, Spectral synthesis of bounded functions on the half axis, Funktsional. Anal. i Prilozhen. 3 (1969), no. 4, 34–48 (in Russian).

34	J. E. GALÉ AND A. WAWRZYŃCZYK	
[H] [K]	 K. Hoffman, Banach Spaces of Analytic Functions, Dover Publ., 1962. B. I. Korenblyum, Closed ideals in the ring Aⁿ, Funktsional. Anal. i Prilozhen. 6 (1972), no. 3, 38–52 (in Russian). 	

José E. Galé	Antoni Wawrzyńczyk
Departamento de Matemáticas e IUM.	A Departamento de Matemáticas
Universidad de Zaragoza	Universidad Autónoma Metropolitana-Iztapalapa
50009 Zaragoza, Spain	AP 55-534, 09340 México D.F., México
E-mail: gale@unizar.es	E-mail: awaw@xanum.uam.mx

Received 15 December 2010;	
revised 10 May 2011	(5457)

##