COLLOQUIUM MATHEMATICUM

VOL. 124 2011 NO. 1

ON RESTRICTIONS OF INDECOMPOSABLES
OF TAME ALGEBRAS

BY

R. BAUTISTA (Morelia), E. PEREZ (Mérida) and L. SALMERON (Morelia)

Abstract. We continue the study of ditalgebras, an acronym for “differential tensor
algebras”, and of their categories of modules. We examine extension/restriction inter-
actions between module categories over a ditalgebra and a proper subditalgebra. As an
application, we prove a result on representations of finite-dimensional tame algebras A
over an algebraically closed field, which gives information on the extension/restriction
interaction between module categories of some special algebras Ay, called convex in A.

1. Introduction. In the representation theory of finite-dimensional al-
gebras, the notions of tame and wild representation type play a central role.
An algebra is called wild if the question of classifying its indecomposable
modules contains the problem of finding a normal form for pairs of square
matrices over a field under simultaneous conjugation by a non-singular ma-
trix. It is tame if the pairwise non-isomorphic indecomposable modules in
each dimension can be parametrized by a finite number of parameters.

Matrix reduction techniques have been successfully used to enrich the
representation theory of algebras, notably in the proof of fundamental re-
sults such as Drozd’s tame and wild theorem (which states that, over an
algebraically closed field, any finite-dimensional algebra is either tame or
wild, but not both, see [9]) and Crawley-Boevey’s theorems on tame alge-
bras (see [7] and [§]). These techniques were introduced by the Kiev School
in the representation theory of algebras (see [10]), in an attempt to formalize
and generalize matrix problems methods. Here we follow the formulation of
this methodology described in [6], which uses the language of ditalgebras,
and we use these lecture notes as a general reference for this work. We refer
to Chapter XIX of [I1] for background on tame and wild finite-dimensional
algebras.

Throughout this paper, we have a fixed base field k. All our algebras
are associative k-algebras with unit element, A-Mod denotes the category of
(left) A-modules, and A-mod denotes the full subcategory of A-Mod formed
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by the finite-dimensional A-modules. Right A-modules are identified with
left modules over the opposite algebra A°P. The functor D = Homg(—, k) :
A-Mod — A°P-Mod restricts to a duality D : A-mod — A°P-mod with
D? > 1d.

Consider the following well known situation (see for instance [Il, I.6] and,
for the corresponding situation in the context of categories, [2] and [3]). Let
A be a finite-dimensional algebra and take any idempotent eqg of A. If we set
Ag := egAeg, we have the standard restriction functor p : A-Mod — Ag-Mod,
where p(M) = egM for any M € A-Mod. It has a left adjoint functor
tens = Aep ®4,— and a right adjoint functor hom = Hom,(ep4, —).

The functors tens and hom are both full and faithful, and they are dual
to each other. More precisely, the following square commutes up to isomor-
phism:

AMod 25 A°P-Mod

tens]\ W\hom

Ag-Mod 2% APP-Mod
where D := Homy(—, k) and Dy is the corresponding functor for Ay. Indeed,
if M € Ayg-Mod, we have a natural isomorphism

hom Do (M) = Hom yor (69 A°P, Homy (M, k)) = Homy, (M ® g0 €9 AP, k)
= Homy(Aeg @4, M, k) = D tens(M)

determined by the isomorphism Aey ®,4, M = M ® AP eoA°P of left A-
modules, which is natural in M.

In this work, we will assume furthermore that Ag is a convex algebra in
A in the following sense. The notation in the following definitions will be
kept throughout this paper.

DEFINITION 1.1. Let A be a finite-dimensional basic algebra over the
field k and assume that there is a semisimple subalgebra S of A such that
A admits the S-S-bimodule decomposition A = S @ rad A. Consider a de-
composition 1 = ) e of the unit element as a sum of central primitive
orthogonal idempotents of S and let Ey be a non-empty subset of . Then
E)y is called:

e convex if €’ Ae’ Ae # 0 with €”,e € Ey and €’ € E implies ¢’ € Ey;
e final if € Ae # 0 with ¢’ € FE and e € Ey implies €' € Ej;
e cofinal if €' Ae # 0 with e € F and €' € E; implies e € Ej.
Notice that Ey is convex whenever it is final or cofinal. Given a convex subset

Ey of E, we are interested in the algebra Ag := egAey, where eg := ZeeEO e,
and we want to establish some relations between the categories A-mod and
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Ap-mod. Notice that Ay is also a basic finite-dimensional algebra which
splits over its radical: Ag = Sy @ rad Ay, where Sy = egSey and rad Ag =
eo(rad A)eg.

The algebra Ag is called convex in A if Ejy is a convex subset of F; and
Ag is final (resp. cofinal) in A if Ejy is final (resp. cofinal) in E.

Given a convex algebra Ag in A, the morphism ¢ : A — Ay given by
PY(A) = epAeg for A € A is a morphism of algebras. This yields natural
structures of a Ap-A-bimodule and of a A-Ag-bimodule on Agy. Hence, we
have the following two natural new types of “restriction functor”.

DEFINITION 1.2. Given a convex algebra Ay in A, we have the functors

res := Ay ®4 — : A-Mod — Ap-Mod,
res’ ;== Homy(Ag, —) : A-Mod — Ag-Mod.

In Section 2, we will collect some basic properties of res. The correspond-
ing basic properties of res’ are given in Section 7. Although res (resp. res’)
coincides with the standard restriction functor p in case Ay is a cofinal (resp.
final) algebra in A, in general it does not.

As an application of our study of the extension/restriction interactions
for modules over ditalgebras developed in Sections 3 and 4, we will prove in
Section 6 the following result.

THEOREM 1.3. Assume that A is a basic finite-dimensional tame algebra
over an algebraically closed field k, and consider a decomposition of the unit
1 =) .cpe as a sum of primitive orthogonal idempotents of A. Consider
a convex subset Eg of E and the associated convexr algebra Ag. Then, for
any d € N, there is a finite family Zo(d) of indecomposable Ag-modules such
that, for any indecomposable A-module M with dimg M < d and such that
M does not admit a minimal projective presentation with direct summands
of the form Ae with e € Ey, the module res(M) is isomorphic to a direct
sum of modules in Zy(d).

The passage from ditalgebras to algebras is discussed in Section 5. In the
final Section 7, we present the dual formulation of our results for algebras.

2. Convex algebras and restrictions

LEMMA 2.1. Assume that the algebra Ay is convex in A, and denote by
P(A) and P(Ag) the categories of morphisms between projective A-modules
and projective Ag-modules, respectively. Then the functor res preserves pro-
jectives, and hence induces a functor Res : P(A) — P(Ay) such that the
following square commutes up to isomorphism:
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PA) 5 AMod
Res‘ J/res
Cokg

7)(/10) e Ao—MOd
Here, Cok and Cokq are the corresponding cokernel functors.

Proof. First notice that the isomorphism Ay ®4 A — Ag of Ag-A-bi-
modules restricts to isomorphisms Ay ® 4 Ae; — Age; of Ag-modules for any
e; € E. Here, Age; = 0 whenever e; € Ey. Thus, the functor res preserves pro-
jectives, because it preserves direct sums. Then, given an object ¢ : P — Py
in P(A), we can consider the object Res(¢) = 14, ® ¢ : Ag @4 P1 —
Ao ®4 Py in P(Ap). Given a morphism (u,v) : ¢ — ¢’ in P(A), the rule
Res(u,v) = (resu,resv) clearly defines a functor. Since res is right exact,
for any ¢ € P(A) there is an isomorphism 7, : Cokg Res ¢ — res Cok ¢. It is
natural in the variable ¢. u

Write J := rad A. Then, as usual, we denote by P!(A) the full subcat-
egory of P(A) whose objects are the morphisms « : P — @ with image
contained in J@Q.

LEMMA 2.2. If Ay is a convex algebra in A, we have Res(P(A)) C
PL(Ag), and therefore res preserves projective covers.

Proof. This follows from the observation that any morphism ¢ : M — N
in A-Mod which factors through JN is mapped by res to a morphism res ¢ :
res M — res N factoring through Jores N, where Jy = egJeg = rad Ag. =

LEMMA 2.3. If Ay is a cofinal algebra in A, then res is isomorphic to the
standard restriction functor p : A-Mod — Ag-Mod.

Proof. If Ay is cofinal in A, we have Ay = egAeg = epA, an equality of
right A-modules. Hence, given M € A-Mod, we have Ag ®4 M = egA @1 M
~ egM, a natural isomorphism in the variable M. =

REMARK 2.4. Given a convex algebra Ag in the finite-dimensional al-
gebra A, it is not always true that the functor res is isomorphic to the
standard restriction functor p : A-Mod — Ag-Mod. Indeed, res annihilates
every indecomposable projective Ae; with e; € E'\ Ej.

The functor res does not preserve, in general, minimal projective pre-
sentations. For example, if A is the path algebra of the quiver 1 — 2 and
Ag is defined by the idempotent es corresponding to the vertex 2, then the
minimal projective presentation of the simple A-module S; corresponding
to the vertex 1 is not preserved by res.

LEMMA 2.5. Let Ag be a convex algebra in A. Then the functor tens =
Aeg ®p, — : Ag-Mod — A-Mod preserves projectives and induces a functor
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Tens : P(Ag) — P(A) such that the following diagram commutes up to
isomorphism:

P4) 25 A-Mod
Tens]\ Ttens
Cokg

P(Ay) 29 Ag-Mod

Moreover,
restens = 14,-Mod

and so, given M € A-Mod, we have M = tensres(M) if and only if M =
tens(M') for some M' € Ayg-Mod.

Proof. The functor tens preserves projectives. Indeed, a typical projec-
tive Ag-module is a direct sum of Ag-modules of the form Agpe; for some
idempotent e; of Ey. But Aeg ®4, Aoe; = Ae; and Aeg® 4, — preserves direct
sums. Thus, Aey ®4, — induces a functor

Tens : P(Ag) — P(A)

such that Tens(¢) = 1 ® ¢ for any object ¢ : P — Q of P(Ap), and
Tens(u,v) = (1 ® u,1 ® v) for any morphism (u,v) : ¢ — ¢ in P(Ap).
From the fact that Aep ®,4, — is right exact, we get, for each ¢ € P(Ay),
an isomorphism 7 : Cok(1 ® ¢) — Aeg @4, Cokg ¢. It is easy to verify that
71 : Cok Tens — tens Cokg is a natural isomorphism.

Now, notice that Ag ® 4 Aeg = Ag, hence, for M € Ap-Mod, we have the
isomorphisms of Ap-modules A9 @ Aeg @, M = Ag @4, M = M, which are
natural in the variable M.

LEMMA 2.6. Given a convex algebra Ag in A and M € A-Mod, we have
M = tens(res(M)) if and only if the projectives in the minimal projective
presentation of M are direct sums of modules of the form Ae; with e; € Ej.

Proof. In general, for arbitrary algebras Ay = egAeg with eg any idem-
potent of A, we know from the argument in the proof of [I 1.6.8] that a
A-module M € A-Mod is of the form M = tens(NN) for some N € Ap-Mod
if and only if there is an exact sequence P, — Py — M — 0, where P;
and Py are direct sums of summands of Aeg. Then, for a convex algebra Ay
in A, having in mind the fact that minimal presentations of M arise as
direct summands in any projective presentation of M, and the uniqueness of
decompositions in finite-dimensional indecomposables, we can easily derive
our statement. m

3. Subditalgebras and reduction functors. Let us recall from [6]
the notion of a proper subditalgebra.
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DEFINITION 3.1. Let A = (7,4) be any ditalgebra with layer (R, W).
Assume we have R-R-bimodule decompositions Wy = W} & W and W; =
W @ W/ Consider the subalgebra T" of T generated by R and W' = W/ ®
W{. Then T" is freely generated by R and W’ (see [6, 1.3]). Let us write A’ :=
[T"]o, which is freely generated by the pair (R, W{), and assume furthermore
that 6(Wg) € A'W{A" and 6(W]) C AWJA'W]A'. Then the differential
d on T restricts to a differential 6’ on the t-algebra 7’ and we obtain a
new ditalgebra A’ = (17”,¢") with layer (R, W’). A layered ditalgebra A’ is
called a proper subditalgebra of A if it is obtained from an R-R-bimodule
decomposition of W as just described.

The inclusion r : T" — T yields a morphism of ditalgebras r : A" — A,
and hence a restriction functor

Rj/ = F,. : A-Mod — A’-Mod.
The projection 7 : A = [T]op — [T"]o = A’ yields an extension functor
E4 == Fy : A-Mod — A-Mod.

DEFINITION 3.2. Let A = (T,6) be a ditalgebra with layer (R, W). Then
an algebra B is called a proper subalgebra of A if B = [T"]y for some proper
subditalgebra A" = (1", §") of A associated to R-R-bimodule decompositions
Wo =Wy W) and Wy = W] & W}, where W] = 0.

REMARK 3.3. With the notation of the previous definitions, notice that
we can identify the category B-Mod with .A’-Mod, and the algebra Endp(X)
with End 4 (X) for any A’-module X. Assume that X is an admissible B-
module (that is, an admissible A’-module X, as in [0, 12.4]). Thus, we have
a splitting Endg(X)°? = S@ P and, in this case, the construction A — AX,
described in [6], 12.7-12.9], has the following simple form: WX = WX @ W¥,
where W¥ = X* ®p BW}B ®p5 X and WX = (X* @3 BW1B ®p X) @
P*. Then, by definition, AX = (T%,§%), where TX = Tg(WX) and the
differential 6% is determined, for w € BWJB U BW B, v € X* and x € X,
by the formula

Krewer)=Av)@wer+0,.(0(w) + (1) e we pw),
where A : X* — P*®g X" and p : X — X ®g P* are the morphisms
defined in [6, 11.10] and 0, : T — T is the linear map defined in [6], 12.8].
Moreover, for v € P*, by definition, 6% (y) = pu(v), where p : P* — P*®gP*
is the comultiplication morphism, as in [6] 11.7]. The ditalgebra AX has layer
(S,WWX) and there is an associated functor (see [6, 12.10])

FX . AX_Mod — A-Mod.

REMARK 3.4. Suppose that A’ is a proper subditalgebra of the layered
ditalgebra A and that B is a proper subalgebra of A’. Then B is a proper
subalgebra of A.
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Proof. Assume that A = (T,6) has layer (R, W). Suppose that A" =
(T',4") is the proper subditalgebra of A associated to R-R-bimodule decom-
positions Wy = W] @ W and Wi = W{ @ W/'. In particular, ¢’ is just the
restriction of § to T”. Since B is a proper subalgebra of A’, it is associated to
R-R-bimodule decompositions W) = Vi@V and W] = V/& V" with V{ = 0.
Then B is the proper subalgebra of A associated to the R-R-bimodule de-
compositions Wy = Vj & (Vy @ W) and W, = V] & (V' @ W), where
Vi=0.m

LEMMA 3.5. Assume that A’ is a proper subditalgebra of the layered
ditalgebra A and that B is a proper subalgebra of the layered ditalgebra
A" (hence of A too). Therefore, according to the above remarks, for any
admissible B-module X, we can consider the associated functors

X 1 X
AX Mod 25 A-Mod  and  AX -Mod £ A'-Mod
In this case, A'X is a proper subditalgebra of AX and we have a commutative
diagram

AX Mod F—X> A-Mod

RAT lRﬁ,
AX Mod 5 A'-Mod

where Rﬁ,}; and Rj, denote the corresponding restriction functors. More-
over, for any M € A" -Mod, we have FXEj,};(M) = B4, F'X(M).

Proof. Here, A = [T]o, A" = [T")o, AX = [TX]g and A'X = [T'X]5. We
use the notation introduced in the previous remarks. Then

AX = (Ts(WE @ Wi¥),6%) and AX = (Ts(WX @ W), ™).
Thus, AX has layer

(S, [X*@p B(Vy @ Wy)B®p X]® (X" @p B(V{' ®W{)B®p X]® P"),
while A'X has layer
(S,[X*®@p BVyB®p X]|® [X*®p BV'B®g X]|® P*).
We want to see that §'X is the restriction of 6%. For this, take v € X*,
w € VJ'UV{" and 2 € X, and let us show that ¢ (v@w®r) = X (VW ).
It is clear that the linear map o, : T — T defined in [6, 12.8] restricts
to the corresponding linear map o,,, : 7" — T'X. Since A’ is a proper
subditalgebra of A, we also know that ¢’(w) = §(w). Thus, the expressions
K ewer)=Av)®@wer+0,,(8w)+ (1) v o we p(z)

and

S owor) =Av)@we s+ 0,6 (w) + (-1 v @ w p(x)
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coincide. Finally, 8% (y) = u(y) = 6% (y) for v € P* . Therefore, A'X is a
proper subditalgebra of AX.

Now we show that Rﬁ/F X = piX Rﬁ,);. Take M € AX-Mod and recall,
from [6, 12.10], that F* (M) has underlying B-module X ®g M and the
action of A on FX (M) is determined by the formula

w- (z®m) :sz'@(l/i@w@w)*m,
el
where (x;,v;)ier is a fixed dual basis of Xg and * denotes the left action of
TX on M, w € BVyBUBW/}/B, x € X and m € M. Then R%,F~ (M) has
underlying B-module X ®g M where A’ acts via the same formula given
above for w € BV B. Now, the result of the action of a typical generator
v@wez of WX onm € Rﬁ,); (M) is again (v@w®z)*m. Thus, F'XRﬁ,); (M)
has underlying B-module X ®g M and action -’ given by
w (x ®@m) :Z:ci®(yi®w®a:)*m:w-(x®m).
i€l

Hence R4 FX(M) = FXRA(M). Given f = (f°, f') € Homyx (M, N),
we find that (FX(f))°[z @ m] = = ® fO(m) + > jes TPj ® f(v;)[m] and
(FX(NHw)z@m] =3 ,c; 2 @ fH(v; ®w @ )[m], where z € X, m € M
and w € Wy. Here, (pj,7;)jes is a fixed dual basis of Ps.

Now, [R4FX(£)]°[x ® m] and [R4, FX(f)]'(w)[r ® m] have the same
recipe as (FX(f))°[z ® m] and (FX(f))!(w)[z ® m] above when evaluated
at any w € Wj{. Also, [F'XRﬁ,);(f)]O[x ® m] and [F’XRj,); (A (w)[zr @ m)]
have the same recipes. Thus, Rj,F X(f) = F'X Rj,); (f) and the square in
the statement of the lemma commutes.

Finally, take M € A"X-Mod; we will see that FX B4 (M) = E4, F'X (M).

Recall that Eﬁ, = F, : A“Mod — A-Mod is induced by the projection
morphism of algebras m : A — A’. Thus, for N € A’-Mod, the A-module
E4,(N) has underlying R-module N and the action of A on n € N is
determined by w*n = wn if w € W, and w*n =0 if w € W[.

Now, F'X Eg‘,}; (M) has underlying B-module X ®g M and the action of
w € BVYBUBW{'B on X ®g M (recall that A is freely generated by B and
BV{'B + BW/'B) is given by

w-(x@m):inQ@(z/i@w@m)*m,
icl

where x is the action of W3 on Eg‘,f( (M). Thus,

w-(w@m):in®(w®w®$)®m if w e BVy'B,
el



RESTRICTIONS OF INDECOMPOSABLES 43

and w - (zx ® m) = 0 if w € BW//B, where ® denotes the action of A%
on m. Moreover, F'*X (M) has underlying B-module X ®g M and the action
of we BVJ'B on X ®g M is given by

wo (r®@m) :Zm®(w®w®x)®m.
el
Next, the action of BVJ'B U BW}/B on E4,F'*X(M) is given by

w o (r®@m) :Zmi®(u¢®w®:p)®m if w e BV)'B,
el
and w ® (z @ m) = 0 if w € BW{JB. Hence, the action - coincides with ®
and we are done. =

LEMMA 3.6. Assume that A" = (T",8") is a proper subditalgebra of the
layered ditalgebra A = (T,0). With the notation of assume that the
ditalgebra A'® is obtained from A’ by absorption of the bimodule Vf, as in
[6, 8.20], where W =V @ V' is a given R-R-bimodule decomposition and
§(Vy) = 0. Consider also the ditalgebra A* obtained from A by absorption
of the same bimodule V. Then A'® is a proper subditalgebra of A® and there
18 a commutative diagram

A Mod 5 A-Mod

a
Rl ‘ lRﬁf

AeMod £ A'-Mod
where F® and F'* denote the associated reduction functors. Moreover, for
any M € A’*-Mod, we have FOE4. (M) = E4,F'*(M).

Proof. We are considering the R-R-bimodule decompositions Wy = W@
W and Wi = W @ WY, which define A" and its layer (R, W’). Thus, W =
Vg @ Vy' @ W and A® has layer (R*, W®), where R* is the subalgebra of T
freely generated by R and V{j, and we have W§ = R*(Vy'®@W//)R* and W{ =
R°WiR®. Likewise, A'® has layer (R* W'®), where Wj* = R°Vj'R* and
Wi = R°W/{R®. Then W§ = Wi*@R* W R* and W = W{*®R*W{' R*. By
definition, A* = (7%,6%) = (T,6) and A = (T"*,§"*) = (1",4’). Therefore,
4’ is the restriction of §%, and A’® is a proper subditalgebra of A%. Here, the
equality Rﬁ,F @ — FlaRAY is clear because all these functors are identity
functors. The projection algebra morphism A% = [T%], — [T, = A™
coincides with the projection morphism A = [T]g — [T']o = A’. Thus,
Eﬁ, = Eﬁ,aa and the last formula of the lemma holds trivially. =

LEMMA 3.7. Assume that A’ is a proper subditalgebra of the layered
ditalgebra A. Assume that the ditalgebras A’ and A% are obtained from
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A" and A, respectively, by deletion of the same idempotent (as in [6l, 8.17]).
Then A’ is a proper subditalgebra of A and there is a commutative diagram

AdMod EL A-Mod

d A
Rf‘/d ‘/ ‘ R.A’

d Frd
A Mod — A'-Mod
where F4 and F' denote the associated reduction functors. Moreover, for

any M € A'"Mod, we have FdEjZ(M) = B4 F'Y(M).

Proof. Adopt the notation of[3.1]and let e be the idempotent in question.
Recall that if A has layer (R, W), then A? has layer (eRe,eWpe @ eWie).
Likewise, if A’ has layer (R,W’), then A'® has layer (eRe,eW/}e @ eW/e).
We have projection morphisms of ditalgebras n : A — A% and o' : A’ — A",
Moreover, if we consider the inclusion morphisms r : A’ — A and r? : A"
— A%, we have the equality nr = r;’. Hence, Rﬁ,Fd =LF,=FyF.u=
FRA,.
and 7} : A’ — A'® obtained by restriction from 7 and 7, respectively,
and the canonical projections of algebras 7 : A — A’ and 7¢ : A — A’
which satisfy the equality nym = 7%0. Considering the induced functors be-
tween dthe categories of modules over the corresponding algebras, we obtain
FIE4, (M) = E4,F"(M) for any M € A"Mod. u

LEMMA 3.8. Assume that A’ is a proper subditalgebra of the layered
ditalgebra A. Assume that the ditalgebras A" and A" are obtained from A
and A, respectively, by regqularization of the same bimodule (as in [6, 8.19]).

Then A" is a proper subditalgebra of A" and there is a commutative diagram

A"-Mod , A-Mod

w o

A" -Mod LN A’-Mod

We can also consider the morphisms of algebras 79 : A — A

where F" and F'" denote the assoctated reduction functors. Moreover, for
any M € A"-Mod, we have F"E4, (M) = E4,F"(M).

Proof. Adopt the notation of and denote by Vj the bimodule in
question. Thus, Wy = W) @& W/ and W; = W{ & W/’ are the R-R-bimodule
decompositions which define A’. Moreover, we also have R-R-bimodule de-
compositions Wi = Vg @ V' and W{ = ¢'(Vy) @ V{’. Recall that A has layer
(R,W) and A" has layer (R, (Vy' @ W[) @ (V{" @ W{')). Likewise, A" has
layer (R,W’) and A" has layer (R, Vy @ V}’). Since §" and 6" are induced
by § and &', respectively, and ¢’ is the restriction of §, it follows that §" is
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the restriction of 6" and A" is a proper subditalgebra of A”. The canonical
projection morphisms of ditalgebras n: A — A" and n/ : A — A", and
the inclusion morphisms s : A" — A and s" : A" — A", satisfy the equality
ns = s"n’. Hence, Rﬁ,FT =FF), = FyFy = F”"Rﬁ,rr. We can also consider
the morphisms of algebras 1y : A — A" and 1, : A — A" obtained by
restriction from 7 and 7/, respectively, and the canonical projections of alge-
bras m: A — A" and 7" : A" — A", which satisfy the equality njm = 7" no.
Considering the induced functors between the categories of modules over
the corresponding algebras, we obtain FTE;?,TT (M) = Eﬁ,F”"(M) for any
M e A"-Mod. =

PROPOSITION 3.9. Assume that A" is a proper subditalgebra of the lay-
ered ditalgebra A and that B is a proper subalgebra of the layered ditalgebra
A" (hence of A too). me for any admissible B-module X, A'X is a

proper subditalgebra of AX and we have a commutative diagram

AX -Mod —11X—> A-Mod

X A
Rj/x‘ ‘RA,
X

A'X Mod L A’ -Mod

Assume that A is a Roiter ditalgebra and that A" admits a triangular layer.
Then, for any M € A-Mod with R%,(M) = F'(N') for some N' €
A'X Mod, there is N € AX-Mod such that FX(N) = M. If X is complete,

then also Rﬁ,}; (N)= N

Proof. From [6, 16.1], we know that for any S-module N’ such that there
is L € A-Mod with underlying B-module structure equal to the canonical B-
module X ®g N’, there is a unique N € AX-Mod with underlying S-module
N’ such that FX(N) = L. We will deduce the proposition from this fact.

Assume that M € A-Mod is such that R4, (M) = F'X(N") for some N’ €
A'X_Mod. Consider an isomorphism f = (f, f!) : R4, (M) — F'X(N').
We know that A is a Roiter ditalgebra and that A’ admits a triangular
layer. From [6, 12.3], A’ is a Roiter ditalgebra and f* : M — X ®g N’ is
an isomorphism of B-modules (recall that §'(B) = 0). Thus, we can copy
the A-module structure of M onto the B-module X ®g N’ with the help
of the morphism f° of B-modules, and obtain a new A-module L. Hence,
a-(z@n) = fO>a(f°)"H(x®n)) for any a € A, x € X and n € N'. Therefore,
a-(x®n) = ax®n for a € B, which means that the underlying B-module of L
is just X @ N’. From the fact stated above, there is a unique N € AX-Mod
such that FX(N) =L = M.

Finally, if X is a complete admissible B-module, we know from [6l, 13.5]
that F'X is full and faithful. Thus F'X reflects isomorphisms and, from
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FX(N) = M, we get F'X(N') 22 R4(M) = R4 FYX(N) 2 F'XRAL(N)
and we can derive our last claim. =

LEMMA 3.10. Assume that A" is an initial subditalgebra of the triangular
ditalgebra A, as in [6, 14.8]. From [6, 14.9], we know that A’ is triangular.
Then the following statements hold.

(1) Suppose that A”* and A* are obtained from A" and A for z€{a,d,r}
as in[3.61[3.8] respectively. Then A’* is an initial subditalgebra of the
triangular ditalgebra A®.

(2) Assume that B is an initial subalgebra of the triangular ditalgebra A’
Suppose that X is a triangular admissible B-module (see [6, 14.6],
having in mind that we are looking at a splitting Endp(X)P =
S @ P). Then A'X is an initial subditalgebra of the triangular di-
talgebra AX.

Proof. This follows in all cases by inspection of the bimodule filtrations
of the layer. The bimodule filtrations of the layer of A% are described in [0
8.20], and the corresponding filtrations for A% and A" can be derived from
those described in [0, 8.12]. In the remaining case, we have to look carefully
at the description of the bimodule filtrations of the layer of AX given in
[6l, 14.10]. Here, if we assume that A has layer (R, W), that A’ has layer
(R,W'), and that B is identified with the initial subditalgebra A" of A" and
has layer (R, V), then the triangular filtration of Wy has the form

OZWSQW&Q---QWgE{:%Q--~§W56:W6§---§W502Wo.

Thus, the triangular filtration {[W{X],,}m of the bimodule WX is initial in
the triangular filtration {[W3],}n of W§*, with [W{X],, = [WgX]m for all
m < 20x (¢, — ¢ + 1). The situation for triangular filtrations in degree one
is similar. m

4. Main result for ditalgebras. In this section, the ground field &
is assumed to be algebraically closed. We shall prove the following theorem

for modules over a seminested tame ditalgebra with an initial subditalgebra
(see [6l, 23.5]).

THEOREM 4.1. Assume that A’ is an initial subditalgebra of the semi-
nested tame ditalgebra A over the algebraically closed field k. Then, for any
d € N, there is a finite family Z(d) of indecomposable A'-modules such that,
for any indecomposable A-module M with dimy M < d and M % Eﬁ/(N) in
A-Mod for any N € A'-Mod, the module R4,(M) is isomorphic in A'-Mod
to a direct sum of modules in Z(d).

Recall that, given a seminested ditalgebra A and a fixed vertex v of A, a
module N € A-Mod is called concentrated at v if supp N = {v} and N =0
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for any solid arrow « of A. We recall from [0 28.8] the following theorem
(which was stated in [9] and proved in detail in [5]).

THEOREM 4.2. Assume A is a seminested tame ditalgebra over the al-
gebraically closed field k. Assume that d € N and v is a marked vertex
of A, say with marked loop z. Then there is a finite subset S(d,v) of k such
that for any indecomposable M € A-Mod with dimy M < d and such that
M, # 0 and spec M(z) € S(d,v), there is N € A-mod concentrated at v
with N = M.

We can derive the following consequence, which will play a fundamental
role in the proof of our main result.

THEOREM 4.3. Assume that A’ is a proper minimal subditalgebra of the
tame seminested ditalgebra A over the algebraically closed field k. Then,
for any d € N, there is a finite family Z(d) of indecomposable A’'-modules
such that, for any indecomposable M € A-Mod with dimy M < d and M %
E4/(N) in A-Mod for any N € A’-Mod, the module R%,(M) is isomorphic
in A'-Mod to a direct sum of modules in Z(d).

Proof. Consider all the marked vertices vy, ..., v; of A’. Given d € N, we
can apply to each of these marked vertices v1, ..., v; of A and obtain the
corresponding sets of scalars S(d, v;) for i € [1,¢]. For each i € [1,t], consider
the family Z(d,v;) := {Jo(\,v;) | n < dand XA € S§(d,v;)} of A-modules.
Consider also the non-marked points v;41, ..., v, of A’ and the correspond-
ing one-dimensional A’-modules S;y1,...,S,. Then we have the finite fam-
ily of indecomposable A’-modules Z(d) := (Ui, Z(d,v:)) U {Si+1,--.,Sn}.
If M € A-Mod is indecomposable with dimy M < d and not isomorphic to
any A-module concentrated at any vertex v;, then Rﬁ,(M ) is isomorphic
to a direct sum of A’-modules in the family Z(d). It remains to notice that
M Eﬁ, (N) for any N € A’-Mod implies that M is not isomorphic to any
A-module concentrated at any v;. Indeed, if M = M’ with M’ concentrated
at some v;, then M = M’ = E4,R%,(M'). u

REMARK 4.4. Given a seminested ditalgebra A4 over our algebraically
closed field k, we shall consider the five basic operations A — A?*, where z €
{d,a,r, e,u}, called deletion of idempotents as in [0, 23.14], reqularization of
a solid arrow as in [0, 23.15], absorption of a loop as in [6l, 23.16], reduction
of an edge as in [0, 23.18] and unravelling of a loop as in [6, 23.23], and their
corresponding reduction functors F* : A*~-Mod — A-Mod.

Assume that A’ is an initial subditalgebra of a seminested ditalgebra A.
Then A’ is a seminested ditalgebra too. Thus, if we can perform a basic
operation A" — A’* for z € {d,a,r,e,u}, we can also perform the basic op-
eration A — A*, where we respectively delete the same idempotent, absorb
the same loop, regularize the same arrow, reduce the same edge or unravel
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the same loop as before. In this case, we shall say that A’* and A* are
simultaneously obtained from A’ and A by a basic operation of type z.

The only delicate point in the last observation occurs in the case of
the edge reduction A’ — A’¢, where we reduce an edge, say «, of A’, which
requires, in order that A’¢ is indeed a seminested ditalgebra, that the proper
subalgebra B of A’ which supports the edge « is an initial subalgebra of A’.
Here, since A’ is an initial subditalgebra of A, we see that B is also an
initial subalgebra of A, and we can perform the operation A — A° within
the context of seminested ditalgebras.

LEMMA 4.5. Suppose that A’ is an initial subditalgebra of the seminested
ditalgebra A. Assume that the ditalgebras A* and A* are simultaneously
obtained from the seminested ditalgebras A’ and A, respectively, by one of the
five basic operations z € {d,a,r,e,u}. Consider the corresponding reduction
functors

A*-Mod £5 A-Mod  and  A”*-Mod £ A'-Mod.

Then, for any M € A-Mod with R4,(M)=F'*(N") for some N'€ A’*-Mod,
there is N € A*-Mod such that F*(N) = M and R%,.(N) = N'.

Proof. For z € {u,e}, this was proved in For z € {r,a} it fol-
lows from the fact that F? is an equivalence. For z = d, denote by e the
idempotent such that 1 — e is to be eliminated. Then M € A-Mod with
R4, (M) = F'(N') for some N’ € A'"*-Mod implies that eM = eR%, (M) =
R4, (M) = M. Hence, M = F4(N) for some N € A%-Mod. =

Proof of Theorem Since A is seminested and A’ is an initial subdi-
talgebra of A, we infer that A’ is also a seminested ditalgebra. From Drozd’s
theorem, any seminested ditalgebra A is tame if and only if it is not wild.
From [6], 22.13], since A is a tame seminested ditalgebra, so is A’. Fix any
d € N. From [6], 28.22], there is a finite sequence of basic operations

A/ — A/zl — A/z1zg — e ./4/2;1-~~zt7

where z1,...,2 € {d,a,7,e,u} and A**""* is a minimal ditalgebra. More-
over, if we consider the associated reduction functors

F/Zi . A/Zlmzi_lzi_Mod N A/le-zi_l_MOd
for i € [1,¢], then the composition functor
F:=F*5pF=.. . F%. A% _Mod — A-Mod

has the property that, for any M’ € A-Mod with dimy M’ < d, there is
some N’ € A#1#-Mod with F'(N') = M.
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From [3.10| and [4-4] we can consider simultaneously the finite sequence of
basic operations

A A7 s A2 s AP
and the associated reduction functors
F#o A2 %1% _Mod — A #-1-Mod,
where, for each i € [1,t], the ditalgebra A#1% = (T'#1% §#1%) ig an
initial subditalgebra of the seminested ditalgebra A% = (T#1% §#1 %)
for i € [1,t]. We shall also consider the composition functor
F:=F*... % A2* . Mod — A-Mod.

As before, we use the notation A’*1% = [T'#1%]y and A% "% = [T#1%],
for ¢ € [1,¢]. We introduce the short notation for the extension functors

E; = B4 0 AP FMod — A*FMod,
and for the restriction functors
R; = R4 A% Mod — A'™#-Mod,
for i € [1,t]. Set
Ry := R4/ : AMod — A-Mod and Ey:= E4, : A-Mod — A-Mod.

Then, from the previous section applied to the basic reductions (which are
particular cases of those considered before), we have:

1. F'*"R; = R;_1F* fori € [1,15};

2. F*E;(N') = E;_1F'%(N") for N € A1 Mod and i € [L,1].
Therefore, RyFF'=F'R; and FE;(N')=FEyF'(N’) for any N' € A"*1"*-Mod.

Since A is a tame ditalgebra, so is A*1"# (see [6, 22.8] and [0, 22.10]).
From there is a finite family Z;(d) of indecomposable A"*1"*-modules
such that, for any indecomposable A*'"*-module M’ with dimj M’ < d
and M" % E,(N"), and for any N” € A*1"*-Mod, the module R,(M’) is
isomorphic to a direct sum of indecomposables in Z;(d).

Consider the finite family Z(d) of indecomposable A’-modules of the form
F'(N') for some N’ € Z,(d). Take an indecomposable M € A-Mod with
dimgy M < d and M % Eo(M’) for any M’ € A'-Mod. Since dimy Ro(M) =
dimg M < d, there is an A*1""#-module N’ with F'(N') = Ry(M). From
there is N € A*"*-Mod such that F(N) = M and R;(N) = N'. Since
M is indecomposable, so is N. Assume that N = E;(N") for some N” €
A’Z1#_Mod; then M = F(N) = FE,(N") = EoF'(N"). This contradicts
the hypothesis on M, thus N % E;(N") for any N” € A*1"*_-Mod. But
dimy N < dimy F(N) = dimiy M < d (see [6, 28.2]). Therefore, R;(N) =
@:_, N/, with N! € Z,(d). Tt follows that Ro(M) = RyF(N) = F'R,(N) =
@'_, F/(N!) with F'(N!) € Z(d). This finishes the proof of the theorem. =
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5. Convex algebras and Drozd’s ditalgebras

DEFINITION 5.1. Let A be a seminested ditalgebra with layer (R, W)
and a set P of points. Then a proper subditalgebra A’ of A, say associated
to the R-R-bimodule decompositions Wy = W & W} and Wy = W] & W/,
is called convez if there is a subset Py of P such that

eWie =W, and eWje=W], where e= g €.

xE€Py

REMARK 5.2. Assume that A’ is a convex subditalgebra of the sem-
inested ditalgebra A. Suppose that A has layer (R, W) and a set P of points,
and that the convex subditalgebra A’ is associated to the R-R-bimodule de-
compositions Wy = W) @ W/ and W7 = W{ & W/, and to the subset P
of P. Consider the central orthogonal idempotents

6:2% and f:=1—e= Z er

zE€Py x€P\Po

of R. By assumption, the ditalgebra A’ has layer (R, W’), and we have
the decomposition of R-R-bimodules W/ = W/} & W{ with W] = eW/e and
Wi = eWle. Then R = R.x Ry, where R, := eRe and Ry = fRf. Moreover,
we have isomorphisms of R-R-bimodules: W) = W§ x 0, where W§ denotes
the R.-R.-bimodule obtained from Wé by restriction and 0 is the trivial
R¢-R¢-bimodule; and W] = WY x 0, where W denotes the R-R.-bimodule
obtained from W/ by restriction and 0 is the trivial R¢-R¢-bimodule. Then
we have an isomorphism of graded t-algebras Tr(W') = Tx, (W€) x Tg,(0),
where W€ = WEBWT (see [0, 10.1]). We already have the differential ¢’ of A’,
defined on the t-algebra T" = Tr(W') by restriction of the differential § of A.
For ¢ € {0,1}, notice that whenever the R-bimodule W; is freely generated
by the set B; of arrows, the R-bimodule W/ = eWje is freely generated
by the subset B, of B; formed by the arrows starting and ending at points
of Py. Thus, A’ is a seminested ditalgebra. Moreover, the R.-bimodule W€ is
freely generated by the same set B] of arrows. Then we can also consider the
differential 0¢ defined on each arrow « of the t-algebra T° := Tx_ (W€) by
the same formal expression for ¢’(«). Thus, we can consider the seminested
ditalgebra A¢ = (7, 0¢), with points P¢ = Py and with the same arrows
as A’. If we consider the minimal ditalgebra Af = (Tx ;+(0),0), then it is now
clear that A’ is a product of ditalgebras, A’ = A°¢ x A7, as in [6 10.2].

LEMMA 5.3. Let A be a basic finite-dimensional algebra over the alge-
braically closed field k and let Ay be a convex algebra in A. Consider the
Drozd ditalgebra D = D of A (as in [6, 23.25]). Then there is a convex
subditalgebra D' of D and a functor ' : D'-Mod — P (Ag) such that the
following square commutes up to isomorphism:
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DMod =4 Pl(4)

Rg, l lRes

D'Mod = PYA)
Here, = denotes the usual equivalence of [6, 19.8].

Proof. By assumption, there is a semisimple subalgebra S of A such that
A admits the S-S-bimodule decomposition A = S @ P, where P = rad A.
Consider a decomposition 1 = ), ; e; of the unit element as a sum of central
primitive orthogonal idempotents of S. Consider the set E := {e; | i € I}
of idempotents and the convex subset Ey := {e; | i € Iy} of E such that
/10 = 60/160, with ey = Zie[o €;.

Let us recall, from [6l, 23.25], the description of the bigraph of the nested
ditalgebra D. We consider a special dual basis (p;j,7p,)jes of the right S-
module P (as constructed in [6, 23.11]). Thus, {p;}jes and {7y, }jes are
vector space bases for P and P*, respectively. Consider also the structural
constants cﬁJ of the product of A restricted to P. Hence, psp, = ), céjrpt
for any basic elements p, and ps of P. Then R = R4 is a trivial algebra,
with canonical decomposition 1 = (3;c;€}) + (3, €), where € = (% 9)
and e = (8 692) Thus, the bigraph of D has 2|I| points assomated to these
idempotents, which we denote by the same symbols. For each basic element
p € e;jPe;, we have the basic element v, € e;P*e; such that v,(q) = 0y 4 (the
Kronecker delta of the basic elements p,q € P). Every such basic element p

determines: a solid arrow o, := (% 0) of D from e to e/; a dotted arrow
Uzlv = (76" 0) of D from e to €}; and a dotted arrow vp : ( %) of D from

eg’ to e/. These are all the arrows of D. The values of the differential §4 of
D on these arrows are given by

6 ap Cs 7“5 PPt praps cs 7‘5 JDtO‘pr pS

7,8,t r,8,t
At 2 : / A 1 _§ : //
d (Up) Cs 5 7ptv p ’ 0 (Up) Cs 6 Dp,pt pr Ps'
r,s,t r,s,t

Equivalently,

apt E Csr praps § Cs rapr pS
E Csr pr s? E :Csr p7

Now, consider the convex proper subditalgebra D' of D determined by
the set of idempotents E5 ={e; |ie Iy} U{e! | i€ Iy}. Then consider the
idempotent e := >, ; el +> el of R = RA, and the R-R-subbimodules



52 R. BAUTISTA ET AL.

W = eWpe of Wy = Wc{l and W{ := eWje of Wi = W{l. If we consider
the idempotent f :=1—e of R, we have the R- R bimodule decompositions
Wo = W, @ W§ and Wy = W{ @ W{', where W[ := fWyf @ eWyf & fWoe
and W' := fWif @ eW,f @& fWie. In order to show that D’ is the proper
subditalgebra associated to these bimodule decompositions, we just have to
check that §(Wy) € D'W{D’ and 6(W{) C D'W|D'W{D’, where D' denotes
the subalgebra of D = [T]o generated by R and W{. If a,, is a typical
solid arrow of D’, which is a typical solid arrow of D between idempotents
of E3, thus p, € ePe, we want to see that 6 (ay,) = >, . ct, v/ o, —

r,8 =8, “pr
s Cop0p, vy € D'WID'. Indeed, ¢, # 0 means that the basic element
pe appears with non-zero coefficient in the expression of the product psp,
in terms of basic elements of P. From the convexity of Fy, since psp, # 0,
we know that ps and p,, which start and end at idempotents in Ej, have
to connect at an idempotent of Ey too (recall that each basic element p, is
directed, as in [6 23.1]). Thus, v;, is a dashed arrow of W] and «,, is a solid
arrow of Wy. Similarly, . is a solid arrow of Wy and v, is a dashed arrow
of W{. The fact that §(vy,) = 3, ¢, vy, v, and 6% (vy,) =3, ek vy vp)
live in D'W{D'W{D’ is verified similarly. This shows that D’ is indeed a
convex subditalgebra of D.
Now, let us construct the functor = : D’-Mod — P(Ap). According to
there is an isomorphism of ditalgebras D’ = D¢ x Df. As a consequence,

for instance from [6, 16.3], we have an equivalence
D°-Mod x D/-Mod — D'-Mod,

and hence a projection functor H : D'-Mod — D¢-Mod. Given M € D’-Mod,
we have H(M) = eM, and given ¢ € Homp (M, N), we have H(g) =
(H(9)", H(g)") with H(g)(em) = eg”(m) and H(g)"'(v)(em) = g'(v)(em)
for v e Wf = eWie and m € eM.

Moreover, if we consider the Drozd nested ditalgebra D40 of the alge-
bra Ao, there is a very natural isomorphism of nested ditalgebras D¢ = D%o
determined by the isomorphisms

S 0 So O
R =e¢R%% =¢ e 7Y :RA°>
0 S 0 Sy
0 O 0 O
WE =eWde =e e = (W)™,
P 0 P 0

P* 0 Fy 0
Wi =eWile=e ex (9 = (W)™
0 P 0 P

Here, the last two isomorphisms are determined by the canonical isomor-
phism of Sp-So-bimodules egP*ey = Fj, where the first dual is taken over
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the algebra S and the second over Sy. By construction, our special dual basis
(Pj,Vp;)jes of the S-S-bimodule P contains a special dual basis (p;, vp; )jeJo
of the Sp-Sp-bimodule Py = egPey. More precisely, {p; | j € Jo} is a k-basis
for Py and {v,, | j € Jo} is a k-basis for egP*ep, which we shall identify
with FJ. Then the given isomorphisms map each solid arrow «; of D¢ to
the solid arrow ay of D4 and similarly for dashed arrows. The non-zero
structural constants of the product of basic elements p,., ps of eg Peg coincide
with those of the same basic elements considered in P. This means that the
differentials 6¢ and §4° coincide on the arrows. Thus, we have an isomor-
phism ¢ : DA — D€ of nested ditalgebras, and therefore an isomorphism of
categories F, : D°-Mod — DA-Mod.
Now, we can define the functor =’ to be the composition

D'-Mod 2L D°-Mod 22 DY-Mod =2 PL(A,).

It remains to show that the square of functors in the statement of
our lemma commutes up to isomorphism. Recall that any D-module M
determines a triple (M, Ma, 1), where My, My € S-Mod and vy is a
morphism in Homg.g(P*, Homy (M, M3)), and conversely. By definition,
EA(M) : A®g My — A ®g My is the object in P!(A) such that, for A € A
and my € My, we have EA(M)(A @ m1) = > .c; Apj ® ¥ar(Vp,)[ma]. Thus,
RGSEA<M) =14, ®EA(M) Ay R AR My — Ay @4 A®Rg Ms.

For m € My, A € A and \y € Ay, we have

A0 ®A®m1 = Agegreg ® 1 @ mq = Ag ® egheg @ m1 = Ay ® egAeg @ egmy .
Then
Res Z4(M)(Ao @ A@my) = Res Z4(M) (Ao @ egAeg @ egmiy)

=X ® Y eoreop; @ P (p,)leom]
jed
= Z Ao @ egAeop; @ Yar(Vp,)[eomal,
J€Jo
where the non-zero terms Ao ® egAegpj ® eotnr (Vp, )[ma] of the sum over J
correspond to indices j € J with eppjeq # 0, which means indices j € Jp.

Let us examine the other composition. The D4°-module F,, HRB, (M) =
eM has associated triple (egMi, egMa, eprr), where

Yem € Homg-s,(Fy, Homy (e My, eoMz))
= HOHISO—SO (eOP*eo, Homk(Ml, Mg))

is the restriction of ¥p;. Then EAOF¢HRg,(M) : Ag ®g, eoM1 — A ®s5,
eoMz acts as Ao ®@ egmi — > e 1 Aopj @ em (Yp;)[eomi] and we obtain the
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following isomorphism in P*(Ag):
Res E4 (M)
_

Ao @4 A®g My Ao @4 A®g Mo
b= EagFoHRE, (M) b=
Ay ®s, eo M1 Ao ®s, eoMa

We have exhibited an isomorphism nys : Res E4(M) — Z4,F, HRE,(M). It
is not hard to see that it is natural in M. =

LEMMA 5.4. Given a convex subditalgebra A’ of a seminested dital-
gebra A, we can modify the triangular filtrations of A, obtaining a different
seminested ditalgebra A with the same underlying layered ditalgebra A, such
that A’ is an initial convex subditalgebra of A. Thus, A and A coincide as
ditalgebras and share the same layer (and the same basis of their layer), but
the heights of their arrows are different. We have A-Mod = A-Mod; as we
shall see later, sometimes it is possible and convenient to replace A by A.

Proof. We use the notation of[5.1]and consider the R-bimodule filtrations
0=W)CWlcC...CcWjC.-..cwWrlcwh=w,
with ¢ € {0, 1}, given by the triangularity of A (see [6, 5.1]). Now, consider
the ditalgebra A = (T,6) with the same layer (R,W) as A = (T,9), but
with new R-bimodule filtrations of length 2¢y for Wy and of length 2¢; for
W1, given, for t € {0,1}, by

Wi =eWie foric 0,4,

WftH =eWie ® CZ, where C’,f = eWtif & thZf o thie, for i € [1,4,];
here f denotes the idempotent 1 —e of R. It remains to show that these are
triangular filtrations of the layer, as in [6, 5.1]. Denote by A; the subalgebra

of A generated by R and Wg for i € [0,20y]. We want to show that
sSWth € AW 4, for i € [0,200 — 1],
SWHY C AWLAWL A for all i € 0,26, — 1].

Denote by A; the subalgebra of A generated by R andl/Vé for i € [0, o).
Then, for i € [0,y — 1], we have 6(W}) C AWJA" C Ay+iW1Ag,+i and
§(CHYYC AWy A; € Agy s W1 Agy s, therefore S(W T ) € Ay s Wi Ag, 4.

For i € [0,4; — 1], we have §(W/) C AWIAW/A € AW AW A
and §(CiT) C AWJAW]A C AW?—HAW?HA. Therefore, we also have
6(W§1HH) - AW?HAW?HA.

For i € [0, {p—1], we have 5(W6+1) C eA;WhA;enA'W{ A" but there is an
R-bimodule decomposition eA;W1A;e = eA;,W{A;e ® Hy with Hyn A'W{A’

= 0. Hence, 5(Wé+1) C A, WA,
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For i € (0,4, — 1], we have §(W; ) C eAW[ AW Ae N A'W]A'W] A’ but
there is an R-bimodule decomposition eAWfAWfAe =eA' W&A’ Wi Ae®H,
with Hy N AW AW A" = 0. Hence, 5(W, ') C AW AW, A'. =

6. Main result for algebras

THEOREM 6.1. Assume that A is a basic finite-dimensional tame algebra
over an algebraically closed field k. Suppose that Ay is a conver algebra in A.
Then, for any d € N, there is a finite family Zo(d) of indecomposable Ay-
modules such that, for any indecomposable A-module M with dimy M < d
and M % tens(res(M)), the module res(M) is isomorphic to a direct sum of
modules in Zy(d).

Proof. Fix d € N. The functor Res considered in[2.1]restricts to a functor
Res : P1(A) — P(Ap) and the following diagram commutes up to isomor-
phism:

D-Mod =4 Pl4) <5 AMod

Rg, ‘ Res ‘/ l res

D-Mod == Pl(dg) 2% Ap-Mod

where D was defined in and its initial subditalgebra D’ was constructed
in Since A is tame, from [0, 27.14], so is its Drozd ditalgebra D, and
so is D too (recall that D-Mod = D-Mod). Then we can apply to the
number d' := (1 + dimy A)d € N to obtain a finite family Z’(d’) of indecom-
posable D’-modules such that for any indecomposable D-module H with
dimy, H < d and H % EE,(H’), and any H' € D'-Mod, the module RB,(H)
is isomorphic to a direct sum of indecomposables in Z’(d'). Having in mind
the construction of D" and =’ in the proof of hence the fact that D’-Mod
is equivalent to the product category D¢-Mod x Df-Mod, we can consider
the subfamily Z"(d') of Z'(d") obtained by excluding all the indecomposables
from Df-Mod, as well as all the indecomposables N’ € D¢-Mod such that
Z4,(N') has the form @ — 0. Then Z(d) := Cokg =Z'Z"(d') is a finite family
of indecomposable Ay-modules.

Take any indecomposable A-module M with dim; M < d and M 2
tens(res(M)) and let us show that res(M) is isomorphic to a direct sum
of Ag-modules in Z(d). Consider a minimal projective presentation Q' —
Q — M — 0 of M. Then, there is an N € D-Mod = D-Mod such that
ZA(N) 2 (Q' — Q) and Cok E4(N) = M. Since M is indecomposable, so
is N.

Now, from [6, 22.19 and 27.13], if P denotes the radical of A,

dimy, N = £4(Q/PQ) + £4(Q'/PQ") < dimy, M - (1 + dimy, A) < d’.
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Suppose N = EL,(N’) for some N’ € D'-Mod. As D' = D¢ x D/,
we can consider the projection morphisms 7€ : D' — D¢ and 7/ : D’
— Df. The induced functors F¢ : D¢-Mod — D’-Mod and F/ : Df-Mod
— D’'-Mod determine an equivalence of categories

e f
De-Mod x Df-Mod -2, D'_Mod

(see [6, 10.3]). There is an isomorphism N’ = F¢(N€) @ F/(N7) in D’-Mod,
for some N¢ € D°Mod and N/ € Df-Mod, which is preserved by the
functor EE,. Then N & EB,(N') = EL F¢(N°) @& EB, F/(N/), and since
N is indecomposable, we have N¢ = 0 or N/ = 0. If N/ # 0, then
N¢ = 0 and N/ is indecomposable. In order to justify this last state-
ment, assume N/ decomposes non-trivially; then it does so in Df-Mod,
hence F?(N') has a non-trivial decomposition in D’-Mod, which is pre-
served by EB,, contradicting again the indecomposability of N. Since D has
no marked points, N/ is a one-dimensional module of D/, thus F/(N/)
is a one-dimensional module corresponding to a point of D’ not in D¢.
Then its extension N = EB F F(NT) is again such a one-dimensional D-
module, corresponding to a point not in Ej. Its image under =, has the
form A ®g N1 — A ®g No, where either Ny =0 or No = 0. If A®g Ny =0,
then M = CokZ4(N) = 0, a contradiction. Thus, A ®g Ny # 0, and
M = Cok Zy(N) 2 A ®g Ny = Ae; with e; € E\ Ep, thus resM = 0.

Therefore, we can assume that N/ = 0, and hence N = EB, F¢(N¢).
We claim that, for any N¢ € D¢-Mod,

SAED F¢(N¢) 2 Tens S, (N¢).

To verify this claim, notice first that eo(Eg,Fe(Ne))l = (Eg,Fe(Ne))l, SO
we have isomorphisms

Aeg @4, Ao @5, NE L A @g (BB FE(NY));

for i € {1,2}, given by 7;,(A®@ A\g®@n) = Ao ®n, where X € Aeg, \g € Ap and
n € Nf. Here, (N¢, N§,9¢) and ((ED,F¢(N¢))1, (ED F¢(N¢))2, 1) are the
triples corresponding to the D°-module N¢ and the D-module Eg,Fe(N °),
respectively. As before, we can identify egP*eq with Fj, and D¢ with DAo,
Observe that v, € P*\ Py implies that o, is an arrow of D not in D’; then,
for n € (EgFe(Ne))l, we have ¥(7p,)[n] = (»ygj 8)n = ap,n = 0; while, for
Yp; € Fg5 (p,)n] = (72]. 8)71 = ¥°(p,)[n]. Then the following diagram
commutes:



RESTRICTIONS OF INDECOMPOSABLES 57

. 1®E4,(N°) .
Aeo XA /10 X5, Nl _— /180 XA /10 X5, N2

ZAED Fe(N°)

A@s (ERF(N)1  —2——= A@s(ERF(NY)):
Indeed, for A € Aeg, Ao € Ap and n € Ny, we have
2(1® Z2,(N)) A @ Ao @n] = n2 <>\ ® Y Aop; ® we(’ij)[nD
Jj€Jo

= Z )\)\opj ® we(')/pj)[n]

Jj€Jo

= Z Aopj @ P (p, )]

jedJ
= ZAED F¢(N®) Ao @ 1]
= ZAEB FC(N)m[A® Ao @ n).
Thus, S4ED, F¢(N¢) = Tens Z4,(N¢).
Apply this claim to our previously fixed N¢ to obtain
ZA(N) = ZAED F¢(N°) = Tens =4, (N©).
Therefore, using [2.5, we obtain
M = Cok Z4(N) = Cok Tens 54 (N°) = tens Cok Z4(N°),

which is a contradiction (recall the last statement of . Hence, N 2
EB,(N") for any N’ € D'-Mod, and RB,(N) = P, N; for some indecompos-
able D'-modules N; € Z'(d’). From it follows that

res(M) = res Cok Z4(N) = Cok Res 54 (V) = Cok E/Rg(N)

o~ EB Cok Z'(N;),

a direct sum of modules in Z(d), and we are done. =

Now, clearly, Theorem follows from and

7. Dual results. The dual results concern, given a convex algebra Ag
in A, the restriction functor res’ = Hom4(Ag, —) : A-Mod — Ap-Mod.

LEMMA 7.1. Assume that the algebra Agy is convex in A, and denote by
Q(A) and Q(Aoy) the categories of morphisms between injective A-modules
and injective Ag-modules, respectively. The functor res’ preserves injectives,
and hence induces a functor Res' : Q(A) — Q(Ag) such that the following
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square commutes up to isomorphism:

Q(d) =%

Res’ l ‘res’

Q(Ao) @ Ao—MOd
Here, Ker and Kerq are the corresponding kernel functors.

Proof. Given an idempotent e; € F, we have the isomorphisms
res’'(D(e;A)) = Homy (Ao, D(e;A)) = Hom(Ag, Homy(e; A, k))
=~ Homyg(e; A ®4 Ao, k) = Homy(e; Ao, k) = Do(e;Ao),
where the injective Ag-module Dy(e;Ag) is zero when e; € E \ Ey. This
implies that the functor res’ preserves injectives. Indeed, any injective A-
module @ has the form Q = @, ; D(e;A) for some family {e;}icr of idem-
potents of E, and so the inclusion morphism @, ; D(e;A) — [[;c; D(e;iA)
splits. Therefore, the induced monomorphism

Hom </10, @ D(eﬂl)) — Homy (/10, H D(eﬂl)) = H Homx(Ag, D(e;A)),
icl i€l icl

which has an injective codomain, also splits. It follows that the Ap-module
res’(Q) = res' (P, .y D(eiA)) is injective.

Now, given an object ¢ : Q1 — Qo in Q(A), we can consider the object
Res'(¢) := ¢« : Homu(Ag, Q1) — Homy(Ag, Qo) in Q(Ap). Given a mor-
phism (u,v) : ¢ — ¢ in Q(A), the rule Res'(u,v) = (res’ u,res’v) clearly
defines a functor. Since res’ is left exact, for any ¢ € Q(A) there is an
isomorphism 7, : Kerg Res’ ¢ — res’ Ker ¢, natural in the variable ¢. =

LEMMA 7.2. If Ag is a final algebra in A, then res’ is isomorphic to the
standard restriction functor p : A-Mod — Ag-Mod.

Proof. If Agy is final in A, we have Ay = egdeg = Aeg, an equality
of left A-modules. Hence, given M € A-Mod, we have Hom,(Ay, M) =
Hom/(Aeg, M) = egM, a natural isomorphism in the variable M. =

LEMMA 7.3. Let Ay be a convex algebra in A. Consider the functor
hom = Homy,(egA, —) : Ag-Mod — A-Mod. Then

res’ hom = 1 Ao-Mod s
and hence, given M € A-Mod, we have M = homres' (M) if and only if
M = hom(M') for some M' € Ag-Mod.

Proof. Notice that egA ®4 Ag = Ag. Hence, for M € Ag-Mod, we have
isomorphisms of A-modules res’hom(M) = Homx(Ag, Homg,(egd, M)) =
Homy,(egA ®4 Ao, M) = Homy, (A, M) = M, which are natural in M. =
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LEMMA 7.4. Assume that Ay is a convex algebra in A. Then the functors
res and res’ are dual to each other in the sense that the following diagram
commutes up to isomorphism:

AMod 25 A°P_Mod

res ‘/ ‘/ reS/

Ag-Mod 2% A% Mod

where D = Homy(—, k) and Dy is the corresponding functor for Ay.
Proof. If M € A-Mod, we have a natural isomorphism
Dores(M) = Homy (Ao @4 M, k) = Homy (M ® yov AP k)
&~ Hom gop (Ag”, Homy, (M, k)) = res’ D(M)

determined by the isomorphism of left Ag-modules Ag @1 M = M ® AcP AP,
which is natural in M. =

Now, we can state the following result dual to Theorem

THEOREM 7.5. Assume that A is a basic finite-dimensional tame algebra
over an algebraically closed field k. Suppose that Ag is a conver algebra in A.
Then, for any d € N, there is a finite family Zo(d) of indecomposable Ay-
modules such that for any indecomposable A-module M with dimi M < d
and M % hom(res'(M)), the module res' (M) is isomorphic to a direct sum
of modules in Zy(d).

Proof. Apply first to the algebra A", convex in A°, to obtain a
family 7’(d) of indecomposable modules in Ag°-mod such that for any inde-
composable A°P-module N with dimy N < d and N 2 tens(res(N)), res(V)
is isomorphic to a direct sum of modules in Z{,(d). Denote by Z(d) the family
of indecomposable Ap-modules of the form Dy(L) for some L in Z/,(d). Take
any indecomposable A-module M with dimy M < d and M % hom(res'(M)).
If we had D(M) = tens(res(D(M))), then, applying D, we obtain M =
D?*(M) = Dtens(res(D(M))) = hom Dgres D(M) = homres’ D?(M) =
homres' (M), a contradiction. Hence, res(D(M)) is a direct sum of modules
in Z}(d). Tt follows that Dgres D(M) = res’ D*(M) = res’(M) is a direct
sum of modules in Zy(d), as claimed. =

Finally, using the statement dual to we get the following.

THEOREM 7.6. Assume that A is a basic finite-dimensional tame algebra
over an algebraically closed field k, and consider a decomposition 1 =3 e
into a sum of primitive orthogonal idempotents of A. Consider a convex
subset Fy of E and the associated convex algebra Ag. Then, for any d € N,
there is a finite family Zo(d) of indecomposable Ag-modules such that, for
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any indecomposable A-module M with dimy M < d and such that M does
not admit a minimal injective copresentation with direct summands of the
form D(eA) with e € Ey, the module res' (M) is isomorphic to a direct sum
of indecomposables in Ly(d).
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