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ON RESTRICTIONS OF INDECOMPOSABLES
OF TAME ALGEBRAS
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Abstract. We continue the study of ditalgebras, an acronym for “differential tensor
algebras”, and of their categories of modules. We examine extension/restriction inter-
actions between module categories over a ditalgebra and a proper subditalgebra. As an
application, we prove a result on representations of finite-dimensional tame algebras Λ
over an algebraically closed field, which gives information on the extension/restriction
interaction between module categories of some special algebras Λ0, called convex in Λ.

1. Introduction. In the representation theory of finite-dimensional al-
gebras, the notions of tame and wild representation type play a central role.
An algebra is called wild if the question of classifying its indecomposable
modules contains the problem of finding a normal form for pairs of square
matrices over a field under simultaneous conjugation by a non-singular ma-
trix. It is tame if the pairwise non-isomorphic indecomposable modules in
each dimension can be parametrized by a finite number of parameters.

Matrix reduction techniques have been successfully used to enrich the
representation theory of algebras, notably in the proof of fundamental re-
sults such as Drozd’s tame and wild theorem (which states that, over an
algebraically closed field, any finite-dimensional algebra is either tame or
wild, but not both, see [9]) and Crawley-Boevey’s theorems on tame alge-
bras (see [7] and [8]). These techniques were introduced by the Kiev School
in the representation theory of algebras (see [10]), in an attempt to formalize
and generalize matrix problems methods. Here we follow the formulation of
this methodology described in [6], which uses the language of ditalgebras,
and we use these lecture notes as a general reference for this work. We refer
to Chapter XIX of [11] for background on tame and wild finite-dimensional
algebras.

Throughout this paper, we have a fixed base field k. All our algebras
are associative k-algebras with unit element, Λ-Mod denotes the category of
(left) Λ-modules, and Λ-mod denotes the full subcategory of Λ-Mod formed
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by the finite-dimensional Λ-modules. Right Λ-modules are identified with
left modules over the opposite algebra Λop. The functor D = Homk(−, k) :
Λ-Mod → Λop-Mod restricts to a duality D : Λ-mod → Λop-mod with
D2 ∼= Id.

Consider the following well known situation (see for instance [1, I.6] and,
for the corresponding situation in the context of categories, [2] and [3]). Let
Λ be a finite-dimensional algebra and take any idempotent e0 of Λ. If we set
Λ0 := e0Λe0, we have the standard restriction functor ρ : Λ-Mod→ Λ0-Mod,
where ρ(M) = e0M for any M ∈ Λ-Mod. It has a left adjoint functor
tens = Λe0 ⊗Λ0− and a right adjoint functor hom = HomΛ0(e0Λ,−).

The functors tens and hom are both full and faithful, and they are dual
to each other. More precisely, the following square commutes up to isomor-
phism:

Λ-Mod D−−→ Λop-Mod

tens

x
xhom

Λ0-Mod D0−−→ Λop
0 -Mod

where D := Homk(−, k) and D0 is the corresponding functor for Λ0. Indeed,
if M ∈ Λ0-Mod, we have a natural isomorphism

homD0(M) = HomΛop
0

(e0Λop,Homk(M,k)) ∼= Homk(M ⊗Λop
0
e0Λ

op, k)
∼= Homk(Λe0 ⊗Λ0 M,k) = D tens(M)

determined by the isomorphism Λe0 ⊗Λ0 M
∼= M ⊗Λop

0
e0Λ

op of left Λ-
modules, which is natural in M .

In this work, we will assume furthermore that Λ0 is a convex algebra in
Λ in the following sense. The notation in the following definitions will be
kept throughout this paper.

Definition 1.1. Let Λ be a finite-dimensional basic algebra over the
field k and assume that there is a semisimple subalgebra S of Λ such that
Λ admits the S-S-bimodule decomposition Λ = S ⊕ radΛ. Consider a de-
composition 1 =

∑
e∈E e of the unit element as a sum of central primitive

orthogonal idempotents of S and let E0 be a non-empty subset of E. Then
E0 is called:

• convex if e′′Λe′Λe 6= 0 with e′′, e ∈ E0 and e′ ∈ E implies e′ ∈ E0;
• final if e′Λe 6= 0 with e′ ∈ E and e ∈ E0 implies e′ ∈ E0;
• cofinal if e′Λe 6= 0 with e ∈ E and e′ ∈ E0 implies e ∈ E0.

Notice that E0 is convex whenever it is final or cofinal. Given a convex subset
E0 of E, we are interested in the algebra Λ0 := e0Λe0, where e0 :=

∑
e∈E0

e,
and we want to establish some relations between the categories Λ-mod and
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Λ0-mod. Notice that Λ0 is also a basic finite-dimensional algebra which
splits over its radical: Λ0 = S0 ⊕ radΛ0, where S0 = e0Se0 and radΛ0 =
e0(radΛ)e0.

The algebra Λ0 is called convex in Λ if E0 is a convex subset of E; and
Λ0 is final (resp. cofinal) in Λ if E0 is final (resp. cofinal) in E.

Given a convex algebra Λ0 in Λ, the morphism ψ : Λ → Λ0 given by
ψ(λ) = e0λe0 for λ ∈ Λ is a morphism of algebras. This yields natural
structures of a Λ0-Λ-bimodule and of a Λ-Λ0-bimodule on Λ0. Hence, we
have the following two natural new types of “restriction functor”.

Definition 1.2. Given a convex algebra Λ0 in Λ, we have the functors

res := Λ0 ⊗Λ − : Λ-Mod→ Λ0-Mod,
res′ := HomΛ(Λ0,−) : Λ-Mod→ Λ0-Mod.

In Section 2, we will collect some basic properties of res. The correspond-
ing basic properties of res′ are given in Section 7. Although res (resp. res′)
coincides with the standard restriction functor ρ in case Λ0 is a cofinal (resp.
final) algebra in Λ, in general it does not.

As an application of our study of the extension/restriction interactions
for modules over ditalgebras developed in Sections 3 and 4, we will prove in
Section 6 the following result.

Theorem 1.3. Assume that Λ is a basic finite-dimensional tame algebra
over an algebraically closed field k, and consider a decomposition of the unit
1 =

∑
e∈E e as a sum of primitive orthogonal idempotents of Λ. Consider

a convex subset E0 of E and the associated convex algebra Λ0. Then, for
any d ∈ N, there is a finite family I0(d) of indecomposable Λ0-modules such
that, for any indecomposable Λ-module M with dimkM ≤ d and such that
M does not admit a minimal projective presentation with direct summands
of the form Λe with e ∈ E0, the module res(M) is isomorphic to a direct
sum of modules in I0(d).

The passage from ditalgebras to algebras is discussed in Section 5. In the
final Section 7, we present the dual formulation of our results for algebras.

2. Convex algebras and restrictions

Lemma 2.1. Assume that the algebra Λ0 is convex in Λ, and denote by
P(Λ) and P(Λ0) the categories of morphisms between projective Λ-modules
and projective Λ0-modules, respectively. Then the functor res preserves pro-
jectives, and hence induces a functor Res : P(Λ) → P(Λ0) such that the
following square commutes up to isomorphism:
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P(Λ) Cok−−→ Λ-Mod

Res

y
yres

P(Λ0) Cok0−−→ Λ0-Mod

Here, Cok and Cok0 are the corresponding cokernel functors.

Proof. First notice that the isomorphism Λ0 ⊗Λ Λ → Λ0 of Λ0-Λ-bi-
modules restricts to isomorphisms Λ0⊗Λ Λei → Λ0ei of Λ0-modules for any
ei ∈ E. Here, Λ0ei = 0 whenever ei 6∈ E0. Thus, the functor res preserves pro-
jectives, because it preserves direct sums. Then, given an object φ : P1 → P0

in P(Λ), we can consider the object Res(φ) := 1Λ0 ⊗ φ : Λ0 ⊗Λ P1 →
Λ0 ⊗Λ P0 in P(Λ0). Given a morphism (u, v) : φ → φ′ in P(Λ), the rule
Res(u, v) = (resu, res v) clearly defines a functor. Since res is right exact,
for any φ ∈ P(Λ) there is an isomorphism ηφ : Cok0 Resφ→ res Cokφ. It is
natural in the variable φ.

Write J := radΛ. Then, as usual, we denote by P1(Λ) the full subcat-
egory of P(Λ) whose objects are the morphisms α : P → Q with image
contained in JQ.

Lemma 2.2. If Λ0 is a convex algebra in Λ, we have Res(P1(Λ)) ⊆
P1(Λ0), and therefore res preserves projective covers.

Proof. This follows from the observation that any morphism φ : M → N
in Λ-Mod which factors through JN is mapped by res to a morphism resφ :
resM → resN factoring through J0 resN , where J0 = e0Je0 = radΛ0.

Lemma 2.3. If Λ0 is a cofinal algebra in Λ, then res is isomorphic to the
standard restriction functor ρ : Λ-Mod→ Λ0-Mod.

Proof. If Λ0 is cofinal in Λ, we have Λ0 = e0Λe0 = e0Λ, an equality of
right Λ-modules. Hence, given M ∈ Λ-Mod, we have Λ0 ⊗ΛM ∼= e0Λ⊗ΛM
∼= e0M , a natural isomorphism in the variable M .

Remark 2.4. Given a convex algebra Λ0 in the finite-dimensional al-
gebra Λ, it is not always true that the functor res is isomorphic to the
standard restriction functor ρ : Λ-Mod → Λ0-Mod. Indeed, res annihilates
every indecomposable projective Λei with ei ∈ E \ E0.

The functor res does not preserve, in general, minimal projective pre-
sentations. For example, if Λ is the path algebra of the quiver 1 → 2 and
Λ0 is defined by the idempotent e2 corresponding to the vertex 2, then the
minimal projective presentation of the simple Λ-module S1 corresponding
to the vertex 1 is not preserved by res.

Lemma 2.5. Let Λ0 be a convex algebra in Λ. Then the functor tens =
Λe0 ⊗Λ0 − : Λ0-Mod → Λ-Mod preserves projectives and induces a functor
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Tens : P(Λ0) → P(Λ) such that the following diagram commutes up to
isomorphism:

P(Λ) Cok−−→ Λ-Mod

Tens

x
xtens

P(Λ0) Cok0−−→ Λ0-Mod

Moreover,
res tens ∼= 1Λ0-Mod

and so, given M ∈ Λ-Mod, we have M ∼= tens res(M) if and only if M ∼=
tens(M ′) for some M ′ ∈ Λ0-Mod.

Proof. The functor tens preserves projectives. Indeed, a typical projec-
tive Λ0-module is a direct sum of Λ0-modules of the form Λ0ei for some
idempotent ei of E0. But Λe0⊗Λ0Λ0ei ∼= Λei and Λe0⊗Λ0− preserves direct
sums. Thus, Λe0 ⊗Λ0 − induces a functor

Tens : P(Λ0)→ P(Λ)

such that Tens(φ) = 1 ⊗ φ for any object φ : P → Q of P(Λ0), and
Tens(u, v) = (1 ⊗ u, 1 ⊗ v) for any morphism (u, v) : φ → φ′ in P(Λ0).
From the fact that Λe0 ⊗Λ0 − is right exact, we get, for each φ ∈ P(Λ0),
an isomorphism ηφ : Cok(1⊗ φ)→ Λe0 ⊗Λ0 Cok0 φ. It is easy to verify that
η : Cok Tens→ tens Cok0 is a natural isomorphism.

Now, notice that Λ0 ⊗Λ Λe0 ∼= Λ0, hence, for M ∈ Λ0-Mod, we have the
isomorphisms of Λ0-modules Λ0⊗ΛΛe0⊗Λ0 M

∼= Λ0⊗Λ0 M
∼= M , which are

natural in the variable M .

Lemma 2.6. Given a convex algebra Λ0 in Λ and M ∈ Λ-Mod, we have
M ∼= tens(res(M)) if and only if the projectives in the minimal projective
presentation of M are direct sums of modules of the form Λei with ei ∈ E0.

Proof. In general, for arbitrary algebras Λ0 = e0Λe0 with e0 any idem-
potent of Λ, we know from the argument in the proof of [1, I.6.8] that a
Λ-module M ∈ Λ-Mod is of the form M ∼= tens(N) for some N ∈ Λ0-Mod
if and only if there is an exact sequence P1 → P0 → M → 0, where P1

and P0 are direct sums of summands of Λe0. Then, for a convex algebra Λ0

in Λ, having in mind 2.5, the fact that minimal presentations of M arise as
direct summands in any projective presentation of M , and the uniqueness of
decompositions in finite-dimensional indecomposables, we can easily derive
our statement.

3. Subditalgebras and reduction functors. Let us recall from [6]
the notion of a proper subditalgebra.
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Definition 3.1. Let A = (T, δ) be any ditalgebra with layer (R,W ).
Assume we have R-R-bimodule decompositions W0 = W ′0 ⊕W ′′0 and W1 =
W ′1⊕W ′′1 . Consider the subalgebra T ′ of T generated by R and W ′ = W ′0⊕
W ′1. Then T ′ is freely generated by R and W ′ (see [6, 1.3]). Let us write A′ :=
[T ′]0, which is freely generated by the pair (R,W ′0), and assume furthermore
that δ(W ′0) ⊆ A′W ′1A

′ and δ(W ′1) ⊆ A′W ′1A
′W ′1A

′. Then the differential
δ on T restricts to a differential δ′ on the t-algebra T ′ and we obtain a
new ditalgebra A′ = (T ′, δ′) with layer (R,W ′). A layered ditalgebra A′ is
called a proper subditalgebra of A if it is obtained from an R-R-bimodule
decomposition of W as just described.

The inclusion r : T ′ → T yields a morphism of ditalgebras r : A′ → A,
and hence a restriction functor

RAA′ := Fr : A-Mod→ A′-Mod.

The projection π : A = [T ]0 → [T ′]0 = A′ yields an extension functor

EAA′ := Fπ : A′-Mod→ A-Mod.

Definition 3.2. Let A = (T, δ) be a ditalgebra with layer (R,W ). Then
an algebra B is called a proper subalgebra of A if B = [T ′]0 for some proper
subditalgebra A′ = (T ′, δ′) of A associated to R-R-bimodule decompositions
W0 = W ′0 ⊕W ′′0 and W1 = W ′1 ⊕W ′′1 , where W ′1 = 0.

Remark 3.3. With the notation of the previous definitions, notice that
we can identify the category B-Mod with A′-Mod, and the algebra EndB(X)
with EndA′(X) for any A′-module X. Assume that X is an admissible B-
module (that is, an admissible A′-module X, as in [6, 12.4]). Thus, we have
a splitting EndB(X)op = S⊕P and, in this case, the construction A 7→ AX ,
described in [6, 12.7–12.9], has the following simple form: WX = WX

0 ⊕WX
1 ,

where WX
0 = X∗ ⊗B BW ′′0B ⊗B X and WX

1 = (X∗ ⊗B BW1B ⊗B X) ⊕
P ∗. Then, by definition, AX = (TX , δX), where TX = TS(WX) and the
differential δX is determined, for w ∈ BW ′′0B ∪BW1B, ν ∈ X∗ and x ∈ X,
by the formula

δX(ν ⊗ w ⊗ x) = λ(ν)⊗ w ⊗ x+ σν,x(δ(w)) + (−1)degw+1ν ⊗ w ⊗ ρ(x),

where λ : X∗ → P ∗ ⊗S X∗ and ρ : X → X ⊗S P ∗ are the morphisms
defined in [6, 11.10] and σν,x : T → TX is the linear map defined in [6, 12.8].
Moreover, for γ ∈ P ∗, by definition, δX(γ) = µ(γ), where µ : P ∗ → P ∗⊗SP ∗
is the comultiplication morphism, as in [6, 11.7]. The ditalgebraAX has layer
(S,WX) and there is an associated functor (see [6, 12.10])

FX : AX -Mod→ A-Mod.

Remark 3.4. Suppose that A′ is a proper subditalgebra of the layered
ditalgebra A and that B is a proper subalgebra of A′. Then B is a proper
subalgebra of A.
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Proof. Assume that A = (T, δ) has layer (R,W ). Suppose that A′ =
(T ′, δ′) is the proper subditalgebra of A associated to R-R-bimodule decom-
positions W0 = W ′0 ⊕W ′′0 and W1 = W ′1 ⊕W ′′1 . In particular, δ′ is just the
restriction of δ to T ′. Since B is a proper subalgebra of A′, it is associated to
R-R-bimodule decompositions W ′0 = V ′0⊕V ′′0 and W ′1 = V ′1⊕V ′′1 with V ′1 = 0.
Then B is the proper subalgebra of A associated to the R-R-bimodule de-
compositions W0 = V ′0 ⊕ (V ′′0 ⊕ W ′′0 ) and W1 = V ′1 ⊕ (V ′′1 ⊕ W ′′1 ), where
V ′1 = 0.

Lemma 3.5. Assume that A′ is a proper subditalgebra of the layered
ditalgebra A and that B is a proper subalgebra of the layered ditalgebra
A′ (hence of A too). Therefore, according to the above remarks, for any
admissible B-module X, we can consider the associated functors

AX-Mod FX−−→ A-Mod and A′X-Mod F ′X−−→ A′-Mod
In this case, A′X is a proper subditalgebra of AX and we have a commutative
diagram

AX-Mod FX−−→ A-Mod

RA
X

A′X

y
yRAA′

A′X-Mod F ′X−−→ A′-Mod

where RA
X

A′X and RAA′ denote the corresponding restriction functors. More-
over, for any M ∈ A′X-Mod, we have FXEA

X

A′X
(M) = EAA′F

′X(M).

Proof. Here, A = [T ]0, A′ = [T ′]0, AX = [TX ]0 and A′X = [T ′X ]0. We
use the notation introduced in the previous remarks. Then

AX = (TS(WX
0 ⊕WX

1 ), δX) and A′X = (TS(W ′X0 ⊕W ′X1 ), δ′X).

Thus, AX has layer

(S, [X∗ ⊗B B(V ′′0 ⊕W ′′0 )B ⊗B X]⊕ [X∗ ⊗B B(V ′′1 ⊕W ′′1 )B ⊗B X]⊕ P ∗),
while A′X has layer

(S, [X∗ ⊗B BV ′′0 B ⊗B X]⊕ [X∗ ⊗B BV ′′1 B ⊗B X]⊕ P ∗).
We want to see that δ′X is the restriction of δX . For this, take ν ∈ X∗,
w ∈ V ′′0 ∪V ′′1 and x ∈ X, and let us show that δ′X(ν⊗w⊗x) = δX(ν⊗w⊗x).
It is clear that the linear map σν,x : T → TX defined in [6, 12.8] restricts
to the corresponding linear map σ′ν,x : T ′ → T ′X . Since A′ is a proper
subditalgebra of A, we also know that δ′(w) = δ(w). Thus, the expressions

δX(ν ⊗ w ⊗ x) = λ(ν)⊗ w ⊗ x+ σν,x(δ(w)) + (−1)degw+1ν ⊗ w ⊗ ρ(x)

and

δ′X(ν ⊗ w ⊗ x) = λ(ν)⊗ w ⊗ x+ σ′ν,x(δ′(w)) + (−1)degw+1ν ⊗ w ⊗ ρ(x)
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coincide. Finally, δ′X(γ) = µ(γ) = δX(γ) for γ ∈ P ∗ . Therefore, A′X is a
proper subditalgebra of AX .

Now we show that RAA′F
X = F ′XRA

X

A′X . Take M ∈ AX -Mod and recall,
from [6, 12.10], that FX(M) has underlying B-module X ⊗S M and the
action of A on FX(M) is determined by the formula

w · (x⊗m) =
∑
i∈I

xi ⊗ (νi ⊗ w ⊗ x) ∗m,

where (xi, νi)i∈I is a fixed dual basis of XS and ∗ denotes the left action of
TX on M , w ∈ BV ′′0 B ∪BW ′′0B, x ∈ X and m ∈M . Then RAA′F

X(M) has
underlying B-module X ⊗S M where A′ acts via the same formula given
above for w ∈ BV ′′0 B. Now, the result of the action of a typical generator
ν⊗w⊗x ofW ′X0 onm ∈ RAXA′X (M) is again (ν⊗w⊗x)∗m. Thus, F ′XRA

X

A′X (M)
has underlying B-module X ⊗S M and action ·′ given by

w ·′ (x⊗m) =
∑
i∈I

xi ⊗ (νi ⊗ w ⊗ x) ∗m = w · (x⊗m).

Hence RAA′F
X(M) = F ′XRA

X

A′X (M). Given f = (f0, f1) ∈ HomAX (M,N),
we find that (FX(f))0[x ⊗ m] = x ⊗ f0(m) +

∑
j∈J xpj ⊗ f1(γj)[m] and

(FX(f))1(w)[x⊗m] =
∑

i∈I xi ⊗ f1(νi ⊗ w ⊗ x)[m], where x ∈ X, m ∈ M
and w ∈W1. Here, (pj , γj)j∈J is a fixed dual basis of PS .

Now, [RAA′F
X(f)]0[x ⊗ m] and [RAA′F

X(f)]1(w)[x ⊗ m] have the same
recipe as (FX(f))0[x ⊗m] and (FX(f))1(w)[x ⊗m] above when evaluated
at any w ∈ W ′1. Also, [F ′XRA

X

A′X (f)]0[x ⊗m] and [F ′XRA
X

A′X (f)]1(w)[x ⊗m]
have the same recipes. Thus, RAA′F

X(f) = F ′XRA
X

A′X (f) and the square in
the statement of the lemma commutes.

Finally, take M ∈A′X -Mod; we will see that FXEA
X

A′X
(M)=EAA′F

′X(M).
Recall that EAA′ = Fπ : A′-Mod → A-Mod is induced by the projection

morphism of algebras π : A → A′. Thus, for N ∈ A′-Mod, the A-module
EAA′(N) has underlying R-module N and the action of A on n ∈ N is
determined by w ∗ n = wn if w ∈W ′0, and w ∗ n = 0 if w ∈W ′′0 .

Now, FXEA
X

A′X
(M) has underlying B-module X ⊗SM and the action of

w ∈ BV ′′0 B∪BW ′′0B on X⊗SM (recall that A is freely generated by B and
BV ′′0 B +BW ′′0B) is given by

w · (x⊗m) =
∑
i∈I

xi ⊗ (νi ⊗ w ⊗ x) ∗m,

where ∗ is the action of WX
0 on EA

X

A′X
(M). Thus,

w · (x⊗m) =
∑
i∈I

xi ⊗ (νi ⊗ w ⊗ x) ~m if w ∈ BV ′′0 B,
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and w · (x ⊗ m) = 0 if w ∈ BW ′′0B, where ~ denotes the action of A′X

on m. Moreover, F ′X(M) has underlying B-module X⊗SM and the action
of w ∈ BV ′′0 B on X ⊗S M is given by

w � (x⊗m) =
∑
i∈I

xi ⊗ (νi ⊗ w ⊗ x) ~m.

Next, the action of BV ′′0 B ∪BW ′′0B on EAA′F
′X(M) is given by

w � (x⊗m) =
∑
i∈I

xi ⊗ (νi ⊗ w ⊗ x) ~m if w ∈ BV ′′0 B,

and w � (x ⊗m) = 0 if w ∈ BW ′′0B. Hence, the action · coincides with �
and we are done.

Lemma 3.6. Assume that A′ = (T ′, δ′) is a proper subditalgebra of the
layered ditalgebra A = (T, δ). With the notation of 3.1, assume that the
ditalgebra A′a is obtained from A′ by absorption of the bimodule V ′0, as in
[6, 8.20], where W ′0 = V ′0 ⊕ V ′′0 is a given R-R-bimodule decomposition and
δ(V ′0) = 0. Consider also the ditalgebra Aa obtained from A by absorption
of the same bimodule V ′0. Then A′a is a proper subditalgebra of Aa and there
is a commutative diagram

Aa-Mod Fa−−→ A-Mod

RA
a

A′a

y
yRAA′

A′a-Mod F ′a−−→ A′-Mod

where F a and F ′a denote the associated reduction functors. Moreover, for
any M ∈ A′a-Mod, we have F aEA

a

A′a(M) = EAA′F
′a(M).

Proof. We are considering the R-R-bimodule decompositionsW0 = W ′0⊕
W ′′0 and W1 = W ′1⊕W ′′1 , which define A′ and its layer (R,W ′). Thus, W0 =
V ′0 ⊕ V ′′0 ⊕W ′′0 and Aa has layer (Ra,W a), where Ra is the subalgebra of T
freely generated by R and V ′0 , and we have W a

0 = Ra(V ′′0 ⊕W ′′0 )Ra and W a
1 =

RaW1R
a. Likewise, A′a has layer (Ra,W ′a), where W ′a0 = RaV ′′0 R

a and
W ′a1 = RaW ′1R

a. Then W a
0 = W ′a0 ⊕RaW ′′0Ra and W a

1 = W ′a1 ⊕RaW ′′1Ra. By
definition, Aa = (T a, δa) = (T, δ) and A′a = (T ′a, δ′a) = (T ′, δ′). Therefore,
δ′a is the restriction of δa, and A′a is a proper subditalgebra of Aa. Here, the
equality RAA′F

a = F ′aRA
a

A′a is clear because all these functors are identity
functors. The projection algebra morphism Aa = [T a]0 → [T ′a]0 = A′a

coincides with the projection morphism A = [T ]0 → [T ′]0 = A′. Thus,
EAA′ = EA

a

A′a and the last formula of the lemma holds trivially.

Lemma 3.7. Assume that A′ is a proper subditalgebra of the layered
ditalgebra A. Assume that the ditalgebras A′d and Ad are obtained from
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A′ and A, respectively, by deletion of the same idempotent (as in [6, 8.17]).
Then A′d is a proper subditalgebra of Ad and there is a commutative diagram

Ad-Mod F d−−→ A-Mod

RA
d

A′d

y
yRAA′

A′d-Mod F ′d−−→ A′-Mod

where F d and F ′d denote the associated reduction functors. Moreover, for
any M ∈ A′d-Mod, we have F dEA

d

A′d
(M) = EAA′F

′d(M).

Proof. Adopt the notation of 3.1 and let e be the idempotent in question.
Recall that if A has layer (R,W ), then Ad has layer (eRe, eW0e ⊕ eW1e).
Likewise, if A′ has layer (R,W ′), then A′d has layer (eRe, eW ′0e ⊕ eW ′1e).
We have projection morphisms of ditalgebras η : A → Ad and η′ : A′ → A′d.
Moreover, if we consider the inclusion morphisms r : A′ → A and rd : A′d
→ Ad, we have the equality ηr = rdη′. Hence, RAA′F

d = FrFη = Fη′Frd =
F ′dRA

d

A′d . We can also consider the morphisms of algebras η0 : A → Ad

and η′0 : A′ → A′d obtained by restriction from η and η′, respectively,
and the canonical projections of algebras π : A → A′ and πd : Ad → A′d

which satisfy the equality η′0π = πdη0. Considering the induced functors be-
tween the categories of modules over the corresponding algebras, we obtain
F dEA

d

A′d
(M) = EAA′F

′d(M) for any M ∈ A′d-Mod.

Lemma 3.8. Assume that A′ is a proper subditalgebra of the layered
ditalgebra A. Assume that the ditalgebras A′r and Ar are obtained from A′
and A, respectively, by regularization of the same bimodule (as in [6, 8.19]).
Then A′r is a proper subditalgebra of Ar and there is a commutative diagram

Ar-Mod F r−−→ A-Mod

RA
r

A′r

y
yRAA′

A′r-Mod F ′r−−→ A′-Mod

where F r and F ′r denote the associated reduction functors. Moreover, for
any M ∈ A′r-Mod, we have F rEA

r

A′r(M) = EAA′F
′r(M).

Proof. Adopt the notation of 3.1 and denote by V ′0 the bimodule in
question. Thus, W0 = W ′0 ⊕W ′′0 and W1 = W ′1 ⊕W ′′1 are the R-R-bimodule
decompositions which define A′. Moreover, we also have R-R-bimodule de-
compositions W ′0 = V ′0 ⊕ V ′′0 and W ′1 = δ′(V ′0)⊕ V ′′1 . Recall that A has layer
(R,W ) and Ar has layer (R, (V ′′0 ⊕ W ′′0 ) ⊕ (V ′′1 ⊕ W ′′1 )). Likewise, A′ has
layer (R,W ′) and A′r has layer (R, V ′′0 ⊕ V ′′1 ). Since δr and δ′r are induced
by δ and δ′, respectively, and δ′ is the restriction of δ, it follows that δ′r is
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the restriction of δr and A′r is a proper subditalgebra of Ar. The canonical
projection morphisms of ditalgebras η : A → Ar and η′ : A′ → A′r, and
the inclusion morphisms s : A′ → A and sr : A′r → Ar, satisfy the equality
ηs = srη′. Hence, RAA′F

r = FsFη = Fη′Fsr = F ′rRA
r

A′r . We can also consider
the morphisms of algebras η0 : A → Ar and η′0 : A′ → A′r obtained by
restriction from η and η′, respectively, and the canonical projections of alge-
bras π : A → A′ and πr : Ar → A′r, which satisfy the equality η′0π = πrη0.
Considering the induced functors between the categories of modules over
the corresponding algebras, we obtain F rEA

r

A′r(M) = EAA′F
′r(M) for any

M ∈ A′r-Mod.

Proposition 3.9. Assume that A′ is a proper subditalgebra of the lay-
ered ditalgebra A and that B is a proper subalgebra of the layered ditalgebra
A′ (hence of A too). From 3.5, for any admissible B-module X, A′X is a
proper subditalgebra of AX and we have a commutative diagram

AX-Mod FX−−→ A-Mod

RA
X

A′X

y
yRAA′

A′X-Mod F ′X−−→ A′-Mod

Assume that A is a Roiter ditalgebra and that A′ admits a triangular layer.
Then, for any M ∈ A-Mod with RAA′(M) ∼= F ′X(N ′) for some N ′ ∈
A′X-Mod, there is N ∈ AX-Mod such that FX(N) ∼= M . If X is complete,
then also RA

X

A′X (N) ∼= N ′.

Proof. From [6, 16.1], we know that for any S-module N ′ such that there
is L ∈ A-Mod with underlying B-module structure equal to the canonical B-
module X⊗SN ′, there is a unique N ∈ AX -Mod with underlying S-module
N ′ such that FX(N) = L. We will deduce the proposition from this fact.

Assume that M ∈ A-Mod is such that RAA′(M) ∼= F ′X(N ′) for some N ′ ∈
A′X -Mod. Consider an isomorphism f = (f0, f1) : RAA′(M) → F ′X(N ′).
We know that A is a Roiter ditalgebra and that A′ admits a triangular
layer. From [6, 12.3], A′ is a Roiter ditalgebra and f0 : M → X ⊗S N ′ is
an isomorphism of B-modules (recall that δ′(B) = 0). Thus, we can copy
the A-module structure of M onto the B-module X ⊗S N ′ with the help
of the morphism f0 of B-modules, and obtain a new A-module L. Hence,
a ·(x⊗n) = f0(a(f0)−1(x⊗n)) for any a ∈ A, x ∈ X and n ∈ N ′. Therefore,
a·(x⊗n) = ax⊗n for a ∈ B, which means that the underlying B-module of L
is just X⊗SN ′. From the fact stated above, there is a unique N ∈ AX -Mod
such that FX(N) = L ∼= M .

Finally, if X is a complete admissible B-module, we know from [6, 13.5]
that F ′X is full and faithful. Thus F ′X reflects isomorphisms and, from
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FX(N) ∼= M , we get F ′X(N ′) ∼= RAA′(M) ∼= RAA′F
X(N) ∼= F ′XRA

X

A′X (N)
and we can derive our last claim.

Lemma 3.10. Assume that A′ is an initial subditalgebra of the triangular
ditalgebra A, as in [6, 14.8]. From [6, 14.9], we know that A′ is triangular.
Then the following statements hold.

(1) Suppose that A′z and Az are obtained from A′ and A for z∈{a, d, r}
as in 3.6–3.8, respectively. Then A′z is an initial subditalgebra of the
triangular ditalgebra Az.

(2) Assume that B is an initial subalgebra of the triangular ditalgebra A′.
Suppose that X is a triangular admissible B-module (see [6, 14.6],
having in mind that we are looking at a splitting EndB(X)op =
S ⊕ P ). Then A′X is an initial subditalgebra of the triangular di-
talgebra AX .

Proof. This follows in all cases by inspection of the bimodule filtrations
of the layer. The bimodule filtrations of the layer of Aa are described in [6,
8.20], and the corresponding filtrations for Ad and Ar can be derived from
those described in [6, 8.12]. In the remaining case, we have to look carefully
at the description of the bimodule filtrations of the layer of AX given in
[6, 14.10]. Here, if we assume that A has layer (R,W ), that A′ has layer
(R,W ′), and that B is identified with the initial subditalgebra A′′ of A′ and
has layer (R, V ′), then the triangular filtration of W0 has the form

0 = W 0
0 ⊆W 1

0 ⊆ · · · ⊆W
`′′0
0 = V ′0 ⊆ · · · ⊆W

`′0
0 = W ′0 ⊆ · · · ⊆W

`0
0 = W0.

Thus, the triangular filtration {[W ′X0 ]m}m of the bimodule W ′X0 is initial in
the triangular filtration {[WX

0 ]n}n of WX
0 , with [W ′X0 ]m = [WX

0 ]m for all
m ≤ 2`X(`′0 − `′′0 + 1). The situation for triangular filtrations in degree one
is similar.

4. Main result for ditalgebras. In this section, the ground field k
is assumed to be algebraically closed. We shall prove the following theorem
for modules over a seminested tame ditalgebra with an initial subditalgebra
(see [6, 23.5]).

Theorem 4.1. Assume that A′ is an initial subditalgebra of the semi-
nested tame ditalgebra A over the algebraically closed field k. Then, for any
d ∈ N, there is a finite family I(d) of indecomposable A′-modules such that,
for any indecomposable A-module M with dimkM ≤ d and M 6∼= EAA′(N) in
A-Mod for any N ∈ A′-Mod, the module RAA′(M) is isomorphic in A′-Mod
to a direct sum of modules in I(d).

Recall that, given a seminested ditalgebra A and a fixed vertex v of A, a
module N ∈ A-Mod is called concentrated at v if suppN = {v} and αN = 0
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for any solid arrow α of A. We recall from [6, 28.8] the following theorem
(which was stated in [9] and proved in detail in [5]).

Theorem 4.2. Assume A is a seminested tame ditalgebra over the al-
gebraically closed field k. Assume that d ∈ N and v is a marked vertex
of A, say with marked loop z. Then there is a finite subset S(d, v) of k such
that for any indecomposable M ∈ A-Mod with dimkM ≤ d and such that
Mv 6= 0 and specM(z) 6⊆ S(d, v), there is N ∈ A-mod concentrated at v
with N ∼= M .

We can derive the following consequence, which will play a fundamental
role in the proof of our main result.

Theorem 4.3. Assume that A′ is a proper minimal subditalgebra of the
tame seminested ditalgebra A over the algebraically closed field k. Then,
for any d ∈ N, there is a finite family I(d) of indecomposable A′-modules
such that, for any indecomposable M ∈ A-Mod with dimkM ≤ d and M 6∼=
EAA′(N) in A-Mod for any N ∈ A′-Mod, the module RAA′(M) is isomorphic
in A′-Mod to a direct sum of modules in I(d).

Proof. Consider all the marked vertices v1, . . . , vt of A′. Given d ∈ N, we
can apply 4.2 to each of these marked vertices v1, . . . , vt of A and obtain the
corresponding sets of scalars S(d, vi) for i ∈ [1, t]. For each i ∈ [1, t], consider
the family I(d, vi) := {Jn(λ, vi) | n ≤ d and λ ∈ S(d, vi)} of A′-modules.
Consider also the non-marked points vt+1, . . . , vn of A′ and the correspond-
ing one-dimensional A′-modules St+1, . . . , Sn. Then we have the finite fam-
ily of indecomposable A′-modules I(d) := (

⋃t
i=1 I(d, vi)) ∪ {St+1, . . . , Sn}.

If M ∈ A-Mod is indecomposable with dimkM ≤ d and not isomorphic to
any A-module concentrated at any vertex vi, then RAA′(M) is isomorphic
to a direct sum of A′-modules in the family I(d). It remains to notice that
M 6∼= EAA′(N) for any N ∈ A′-Mod implies that M is not isomorphic to any
A-module concentrated at any vi. Indeed, if M ∼= M ′ with M ′ concentrated
at some vi, then M ∼= M ′ ∼= EAA′R

A
A′(M

′).

Remark 4.4. Given a seminested ditalgebra A over our algebraically
closed field k, we shall consider the five basic operations A 7→ Az, where z ∈
{d, a, r, e, u}, called deletion of idempotents as in [6, 23.14], regularization of
a solid arrow as in [6, 23.15], absorption of a loop as in [6, 23.16], reduction
of an edge as in [6, 23.18] and unravelling of a loop as in [6, 23.23], and their
corresponding reduction functors F z : Az-Mod→ A-Mod.

Assume that A′ is an initial subditalgebra of a seminested ditalgebra A.
Then A′ is a seminested ditalgebra too. Thus, if we can perform a basic
operation A′ 7→ A′z for z ∈ {d, a, r, e, u}, we can also perform the basic op-
eration A 7→ Az, where we respectively delete the same idempotent, absorb
the same loop, regularize the same arrow, reduce the same edge or unravel
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the same loop as before. In this case, we shall say that A′z and Az are
simultaneously obtained from A′ and A by a basic operation of type z.

The only delicate point in the last observation occurs in the case of
the edge reduction A′ 7→ A′e, where we reduce an edge, say α, of A′, which
requires, in order that A′e is indeed a seminested ditalgebra, that the proper
subalgebra B of A′ which supports the edge α is an initial subalgebra of A′.
Here, since A′ is an initial subditalgebra of A, we see that B is also an
initial subalgebra of A, and we can perform the operation A 7→ Ae within
the context of seminested ditalgebras.

Lemma 4.5. Suppose that A′ is an initial subditalgebra of the seminested
ditalgebra A. Assume that the ditalgebras A′z and Az are simultaneously
obtained from the seminested ditalgebras A′ and A, respectively, by one of the
five basic operations z ∈ {d, a, r, e, u}. Consider the corresponding reduction
functors

Az-Mod F z−−→ A-Mod and A′z-Mod F ′z−−→ A′-Mod.

Then, for any M ∈A-Mod with RAA′(M)∼=F ′z(N ′) for some N ′∈A′z-Mod,
there is N ∈ Az-Mod such that F z(N) ∼= M and RA

z

A′z(N) ∼= N ′.

Proof. For z ∈ {u, e}, this was proved in 3.9. For z ∈ {r, a} it fol-
lows from the fact that F z is an equivalence. For z = d, denote by e the
idempotent such that 1 − e is to be eliminated. Then M ∈ A-Mod with
RAA′(M) ∼= F ′d(N ′) for some N ′ ∈ A′d-Mod implies that eM = eRAA′(M) =
RAA′(M) = M . Hence, M ∼= F d(N) for some N ∈ Ad-Mod.

Proof of Theorem 4.1. Since A is seminested and A′ is an initial subdi-
talgebra of A, we infer that A′ is also a seminested ditalgebra. From Drozd’s
theorem, any seminested ditalgebra A is tame if and only if it is not wild.
From [6, 22.13], since A is a tame seminested ditalgebra, so is A′. Fix any
d ∈ N. From [6, 28.22], there is a finite sequence of basic operations

A′ 7→ A′z1 7→ A′z1z2 7→ · · · 7→ A′z1···zt ,

where z1, . . . , zt ∈ {d, a, r, e, u} and A′z1···zt is a minimal ditalgebra. More-
over, if we consider the associated reduction functors

F ′zi : A′z1···zi−1zi-Mod→ A′z1···zi−1-Mod

for i ∈ [1, t], then the composition functor

F ′ := F ′z1F ′z2 · · ·F ′zt : A′z1···zt-Mod→ A′-Mod

has the property that, for any M ′ ∈ A′-Mod with dimkM
′ ≤ d, there is

some N ′ ∈ A′z1···zt-Mod with F ′(N ′) ∼= M ′.
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From 3.10 and 4.4, we can consider simultaneously the finite sequence of
basic operations

A 7→ Az1 7→ Az1z2 7→ · · · 7→ Az1···zt ,
and the associated reduction functors

F zi : Az1···zi−1zi-Mod→ Az1···zi−1-Mod,

where, for each i ∈ [1, t], the ditalgebra A′z1···zi = (T ′z1···zi , δ′z1···zi) is an
initial subditalgebra of the seminested ditalgebra Az1···zi = (T z1···zi , δz1···zi)
for i ∈ [1, t]. We shall also consider the composition functor

F := F z1 · · ·F zt : Az1···zt-Mod→ A-Mod.

As before, we use the notation A′z1···zi = [T ′z1···zi ]0 and Az1···zi = [T z1···zi ]0
for i ∈ [1, t]. We introduce the short notation for the extension functors

Ei := EA
z1···zi

A′z1···zi : A′z1···zi-Mod→ Az1···zi-Mod,

and for the restriction functors

Ri := RA
z1···zi
A′z1···zi : Az1···zi-Mod→ A′z1···zi-Mod,

for i ∈ [1, t]. Set

R0 := RAA′ : A-Mod→ A′-Mod and E0 := EAA′ : A′-Mod→ A-Mod.

Then, from the previous section applied to the basic reductions (which are
particular cases of those considered before), we have:

1. F ′ziRi = Ri−1F
zi for i ∈ [1, t];

2. F ziEi(N ′) = Ei−1F
′zi(N ′) for N ′ ∈ A′z1···zi-Mod and i ∈ [1, t].

Therefore, R0F =F ′Rt and FEt(N ′)=E0F
′(N ′) for any N ′ ∈ A′z1···zt-Mod.

Since A is a tame ditalgebra, so is Az1···zt (see [6, 22.8] and [6, 22.10]).
From 4.3, there is a finite family It(d) of indecomposable A′z1···zt-modules
such that, for any indecomposable Az1···zt-module M ′ with dimkM

′ ≤ d
and M ′ 6∼= Et(N ′′), and for any N ′′ ∈ A′z1···zt-Mod, the module Rt(M ′) is
isomorphic to a direct sum of indecomposables in It(d).

Consider the finite family I(d) of indecomposableA′-modules of the form
F ′(N ′) for some N ′ ∈ It(d). Take an indecomposable M ∈ A-Mod with
dimkM ≤ d and M 6∼= E0(M ′) for any M ′ ∈ A′-Mod. Since dimk R0(M) =
dimkM ≤ d, there is an A′z1···zt-module N ′ with F ′(N ′) ∼= R0(M). From
4.5, there is N ∈ Az1···zt-Mod such that F (N) ∼= M and Rt(N) ∼= N ′. Since
M is indecomposable, so is N . Assume that N ∼= Et(N ′′) for some N ′′ ∈
A′z1···zt-Mod; then M ∼= F (N) ∼= FEt(N ′′) = E0F

′(N ′′). This contradicts
the hypothesis on M , thus N 6∼= Et(N ′′) for any N ′′ ∈ A′z1···zt-Mod. But
dimkN ≤ dimk F (N) = dimkM ≤ d (see [6, 28.2]). Therefore, Rt(N) ∼=⊕`

i=1N
′
i , with N ′i ∈ It(d). It follows that R0(M) ∼= R0F (N) = F ′Rt(N) ∼=⊕`

i=1 F
′(N ′i) with F ′(N ′i) ∈ I(d). This finishes the proof of the theorem.
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5. Convex algebras and Drozd’s ditalgebras

Definition 5.1. Let A be a seminested ditalgebra with layer (R,W )
and a set P of points. Then a proper subditalgebra A′ of A, say associated
to the R-R-bimodule decompositions W0 = W ′0 ⊕W ′′0 and W1 = W ′1 ⊕W ′′1 ,
is called convex if there is a subset P0 of P such that

eW ′0e = W ′0 and eW ′1e = W ′1, where e =
∑
x∈P0

ex.

Remark 5.2. Assume that A′ is a convex subditalgebra of the sem-
inested ditalgebra A. Suppose that A has layer (R,W ) and a set P of points,
and that the convex subditalgebra A′ is associated to the R-R-bimodule de-
compositions W0 = W ′0 ⊕W ′′0 and W1 = W ′1 ⊕W ′′1 , and to the subset P0

of P. Consider the central orthogonal idempotents

e :=
∑
x∈P0

ex and f := 1− e =
∑

x∈P\P0

ex

of R. By assumption, the ditalgebra A′ has layer (R,W ′), and we have
the decomposition of R-R-bimodules W ′ = W ′0 ⊕W ′1 with W ′0 = eW ′0e and
W ′1 = eW ′1e. Then R ∼= Re×Rf , where Re := eRe and Rf = fRf . Moreover,
we have isomorphisms of R-R-bimodules: W ′0 ∼= W e

0 × 0, where W e
0 denotes

the Re-Re-bimodule obtained from W ′0 by restriction and 0 is the trivial
Rf -Rf -bimodule; and W ′1 ∼= W e

1 ×0, where W e
1 denotes the Re-Re-bimodule

obtained from W ′1 by restriction and 0 is the trivial Rf -Rf -bimodule. Then
we have an isomorphism of graded t-algebras TR(W ′) ∼= TRe(W e)× TRf (0),
whereW e = W e

0⊕W e
1 (see [6, 10.1]). We already have the differential δ′ ofA′,

defined on the t-algebra T ′ ∼= TR(W ′) by restriction of the differential δ of A.
For i ∈ {0, 1}, notice that whenever the R-bimodule Wi is freely generated
by the set Bi of arrows, the R-bimodule W ′i = eWie is freely generated
by the subset B′i of Bi formed by the arrows starting and ending at points
of P0. Thus, A′ is a seminested ditalgebra. Moreover, the Re-bimodule W e

i is
freely generated by the same set B′i of arrows. Then we can also consider the
differential δe defined on each arrow α of the t-algebra T e := TRe(W e) by
the same formal expression for δ′(α). Thus, we can consider the seminested
ditalgebra Ae = (T e, δe), with points Pe = P0 and with the same arrows
as A′. If we consider the minimal ditalgebra Af = (TRf (0), 0), then it is now
clear that A′ is a product of ditalgebras, A′ ∼= Ae ×Af , as in [6, 10.2].

Lemma 5.3. Let Λ be a basic finite-dimensional algebra over the alge-
braically closed field k and let Λ0 be a convex algebra in Λ. Consider the
Drozd ditalgebra D = DΛ of Λ (as in [6, 23.25]). Then there is a convex
subditalgebra D′ of D and a functor Ξ ′ : D′-Mod → P1(Λ0) such that the
following square commutes up to isomorphism:
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D-Mod ΞΛ−−→ P1(Λ)

RDD′

y
yRes

D′-Mod Ξ′−−→ P1(Λ0)

Here, ΞΛ denotes the usual equivalence of [6, 19.8].

Proof. By assumption, there is a semisimple subalgebra S of Λ such that
Λ admits the S-S-bimodule decomposition Λ = S ⊕ P , where P = radΛ.
Consider a decomposition 1 =

∑
i∈I ei of the unit element as a sum of central

primitive orthogonal idempotents of S. Consider the set E := {ei | i ∈ I}
of idempotents and the convex subset E0 := {ei | i ∈ I0} of E such that
Λ0 = e0Λe0, with e0 =

∑
i∈I0 ei.

Let us recall, from [6, 23.25], the description of the bigraph of the nested
ditalgebra D. We consider a special dual basis (pj , γpj )j∈J of the right S-
module P (as constructed in [6, 23.11]). Thus, {pj}j∈J and {γpj}j∈J are
vector space bases for P and P ∗, respectively. Consider also the structural
constants cti,j of the product of Λ restricted to P . Hence, pspr =

∑
t c
t
s,rpt

for any basic elements pr and ps of P . Then R = RΛ is a trivial algebra,
with canonical decomposition 1 = (

∑
i∈I e

′
i) + (

∑
i∈I e

′′
i ), where e′i =

(
ei 0
0 0

)
and e′′i =

(
0 0
0 ei

)
. Thus, the bigraph of D has 2|I| points associated to these

idempotents, which we denote by the same symbols. For each basic element
p ∈ ejPei, we have the basic element γp ∈ eiP ∗ej such that γp(q) = δp,q (the
Kronecker delta of the basic elements p, q ∈ P ). Every such basic element p
determines: a solid arrow αp :=

(
0 0
γp 0

)
of D from e′j to e′′i ; a dotted arrow

v′p :=
(
γp 0
0 0

)
of D from e′j to e′i; and a dotted arrow v′′p :=

(
0 0
0 γp

)
of D from

e′′j to e′′i . These are all the arrows of D. The values of the differential δΛ of
D on these arrows are given by

δΛ(αp) =
∑
r,s,t

cts,rδp,ptv
′′
prαps −

∑
r,s,t

cts,rδp,ptαprv
′
ps ,

δΛ(v′p) =
∑
r,s,t

cts,rδp,ptv
′
prv
′
ps , δΛ(v′′p) =

∑
r,s,t

cts,rδp,ptv
′′
prv
′′
ps .

Equivalently,

δΛ(αpt) =
∑
r,s

cts,rv
′′
prαps −

∑
r,s

cts,rαprv
′
ps ,

δΛ(v′pt) =
∑
r,s

cts,rv
′
prv
′
ps , δΛ(v′′pt) =

∑
r,s

cts,rv
′′
prv
′′
ps .

Now, consider the convex proper subditalgebra D′ of D determined by
the set of idempotents E•0 := {e′i | i ∈ I0} ∪ {e′′i | i ∈ I0}. Then consider the
idempotent e :=

∑
i∈I0 e

′
i +
∑

i∈I0 e
′′
i of R = RΛ, and the R-R-subbimodules
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W ′0 := eW0e of W0 = WΛ
0 and W ′1 := eW1e of W1 = WΛ

1 . If we consider
the idempotent f := 1− e of R, we have the R-R-bimodule decompositions
W0 = W ′0 ⊕W ′′0 and W1 = W ′1 ⊕W ′′1 , where W ′′0 := fW0f ⊕ eW0f ⊕ fW0e
and W ′′1 := fW1f ⊕ eW1f ⊕ fW1e. In order to show that D′ is the proper
subditalgebra associated to these bimodule decompositions, we just have to
check that δ(W ′0) ⊆ D′W ′1D′ and δ(W ′1) ⊆ D′W ′1D′W ′1D′, where D′ denotes
the subalgebra of D = [T ]0 generated by R and W ′0. If αpt is a typical
solid arrow of D′, which is a typical solid arrow of D between idempotents
of E•0 , thus pt ∈ ePe, we want to see that δΛ(αpt) =

∑
r,s c

t
s,rv
′′
prαps −∑

r,s c
t
s,rαprv

′
ps ∈ D′W ′1D

′. Indeed, cts,r 6= 0 means that the basic element
pt appears with non-zero coefficient in the expression of the product pspr
in terms of basic elements of P . From the convexity of E0, since pspr 6= 0,
we know that ps and pr, which start and end at idempotents in E0, have
to connect at an idempotent of E0 too (recall that each basic element pr is
directed, as in [6, 23.1]). Thus, v′′pr is a dashed arrow of W ′1 and αps is a solid
arrow of W ′0. Similarly, αpr is a solid arrow of W ′0 and v′ps is a dashed arrow
of W ′1. The fact that δΛ(v′pt) =

∑
r,s c

t
s,rv
′
prv
′
ps and δΛ(v′′pt) =

∑
r,s c

t
s,rv
′′
prv
′′
ps

live in D′W ′1D
′W ′1D

′ is verified similarly. This shows that D′ is indeed a
convex subditalgebra of D.

Now, let us construct the functor Ξ ′ : D′-Mod → P1(Λ0). According to
5.2, there is an isomorphism of ditalgebras D′ ∼= De×Df . As a consequence,
for instance from [6, 16.3], we have an equivalence

De-Mod×Df -Mod→ D′-Mod,

and hence a projection functor H : D′-Mod→ De-Mod. Given M ∈ D′-Mod,
we have H(M) = eM , and given g ∈ HomD′(M,N), we have H(g) =
(H(g)0, H(g)1) with H(g)0(em) = eg0(m) and H(g)1(v)(em) = g1(v)(em)
for v ∈W e

1 = eW1e and m ∈ eM .
Moreover, if we consider the Drozd nested ditalgebra DΛ0 of the alge-

bra Λ0, there is a very natural isomorphism of nested ditalgebras De ∼= DΛ0

determined by the isomorphisms

Re = eRΛe = e

(
S 0
0 S

)
e ∼=

(
S0 0
0 S0

)
= RΛ0 ,

W e
0 = eWΛ

0 e = e

(
0 0
P ∗ 0

)
e ∼=

(
0 0
P ∗0 0

)
= (W0)Λ0 ,

W e
1 = eWΛ

1 e = e

(
P ∗ 0
0 P ∗

)
e ∼=

(
P ∗0 0
0 P ∗0

)
= (W1)Λ0 .

Here, the last two isomorphisms are determined by the canonical isomor-
phism of S0-S0-bimodules e0P ∗e0 ∼= P ∗0 , where the first dual is taken over
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the algebra S and the second over S0. By construction, our special dual basis
(pj , γpj )j∈J of the S-S-bimodule P contains a special dual basis (pj , γpj )j∈J0

of the S0-S0-bimodule P0 = e0Pe0. More precisely, {pj | j ∈ J0} is a k-basis
for P0 and {γpj | j ∈ J0} is a k-basis for e0P ∗e0, which we shall identify
with P ∗0 . Then the given isomorphisms map each solid arrow αp of De to
the solid arrow αp of DΛ0 , and similarly for dashed arrows. The non-zero
structural constants of the product of basic elements pr, ps of e0Pe0 coincide
with those of the same basic elements considered in P . This means that the
differentials δe and δΛ0 coincide on the arrows. Thus, we have an isomor-
phism ϕ : DΛ0 → De of nested ditalgebras, and therefore an isomorphism of
categories Fϕ : De-Mod→ DΛ0-Mod.

Now, we can define the functor Ξ ′ to be the composition

D′-Mod H−→ De-Mod
Fϕ−−→ DΛ0-Mod

ΞΛ0−−→ P1(Λ0).

It remains to show that the square of functors in the statement of
our lemma commutes up to isomorphism. Recall that any D-module M
determines a triple (M1,M2, ψM ), where M1,M2 ∈ S-Mod and ψM is a
morphism in HomS-S(P ∗,Homk(M1,M2)), and conversely. By definition,
ΞΛ(M) : Λ ⊗S M1 → Λ ⊗S M2 is the object in P1(Λ) such that, for λ ∈ Λ
and m1 ∈ M1, we have ΞΛ(M)(λ ⊗m1) =

∑
j∈J λpj ⊗ ψM (γpj )[m1]. Thus,

ResΞΛ(M) = 1Λ0 ⊗ΞΛ(M) : Λ0 ⊗Λ Λ⊗S M1 → Λ0 ⊗Λ Λ⊗S M2.
For m ∈M1, λ ∈ Λ and λ0 ∈ Λ0, we have

λ0 ⊗ λ⊗m1 = λ0e0λe0 ⊗ 1⊗m1 = λ0 ⊗ e0λe0 ⊗m1 = λ0 ⊗ e0λe0 ⊗ e0m1.

Then

ResΞΛ(M)(λ0 ⊗ λ⊗m1) = ResΞΛ(M)(λ0 ⊗ e0λe0 ⊗ e0m1)

= λ0 ⊗
∑
j∈J

e0λe0pj ⊗ ψM (γpj )[e0m1]

=
∑
j∈J0

λ0 ⊗ e0λe0pj ⊗ ψM (γpj )[e0m1],

where the non-zero terms λ0 ⊗ e0λe0pj ⊗ e0ψM (γpj )[m1] of the sum over J
correspond to indices j ∈ J with e0pje0 6= 0, which means indices j ∈ J0.

Let us examine the other composition. The DΛ0-module FϕHRDD′(M) =
eM has associated triple (e0M1, e0M2, ψeM ), where

ψeM ∈ HomS0-S0(P ∗0 ,Homk(e0M1, e0M2))
∼= HomS0-S0(e0P ∗e0,Homk(M1,M2))

is the restriction of ψM . Then ΞΛ0FϕHR
D
D′(M) : Λ0 ⊗S0 e0M1 → Λ0 ⊗S0

e0M2 acts as λ0 ⊗ e0m1 7→
∑

j∈J0
λ0pj ⊗ ψeM (γpj )[e0m1] and we obtain the
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following isomorphism in P1(Λ0):

Λ0 ⊗Λ Λ⊗S M1
ResΞΛ(M)−−−−−−−−→ Λ0 ⊗Λ Λ⊗S M2

↓ ∼= ↓ ∼=
Λ0 ⊗S0 e0M1

ΞΛ0
FϕHRDD′ (M)

−−−−−−−−−−−−→ Λ0 ⊗S0 e0M2

We have exhibited an isomorphism ηM : ResΞΛ(M)→ ΞΛ0FϕHR
D
D′(M). It

is not hard to see that it is natural in M .

Lemma 5.4. Given a convex subditalgebra A′ of a seminested dital-
gebra A, we can modify the triangular filtrations of A, obtaining a different
seminested ditalgebra A with the same underlying layered ditalgebra A, such
that A′ is an initial convex subditalgebra of A. Thus, A and A coincide as
ditalgebras and share the same layer (and the same basis of their layer), but
the heights of their arrows are different. We have A-Mod = A-Mod; as we
shall see later, sometimes it is possible and convenient to replace A by A.

Proof. We use the notation of 5.1 and consider the R-bimodule filtrations

0 = W 0
t ⊆W 1

t ⊆ · · · ⊆W i
t ⊆ · · · ⊆W

`t−1
t ⊆W `t

t = Wt,

with t ∈ {0, 1}, given by the triangularity of A (see [6, 5.1]). Now, consider
the ditalgebra A = (T, δ) with the same layer (R,W ) as A = (T, δ), but
with new R-bimodule filtrations of length 2`0 for W0 and of length 2`1 for
W1, given, for t ∈ {0, 1}, by

W
i
t = eW i

t e for i ∈ [0, `t],

W
`t+i
t = eWte⊕ Cit , where Cit = eW i

t f ⊕ fW i
t f ⊕ fW i

t e, for i ∈ [1, `t];

here f denotes the idempotent 1− e of R. It remains to show that these are
triangular filtrations of the layer, as in [6, 5.1]. Denote by Ai the subalgebra
of A generated by R and W

i
0 for i ∈ [0, 2`0]. We want to show that

δ(W i+1
0 ) ⊆ AiW1Ai for i ∈ [0, 2`0 − 1],

δ(W i+1
1 ) ⊆ AW i

1AW
i
1A for all i ∈ [0, 2`1 − 1].

Denote by Ai the subalgebra of A generated by R and W i
0 for i ∈ [0, `0].

Then, for i ∈ [0, `0 − 1], we have δ(W ′0) ⊆ A′W ′1A
′ ⊆ A`0+iW1A`0+i and

δ(Ci+1
0 )⊆AiW1Ai⊆A`0+iW1A`0+i, therefore δ(W `0+i+1

0 ) ⊆ A`0+iW1A`0+i.
For i ∈ [0, `1 − 1], we have δ(W ′1) ⊆ A′W ′1A

′W ′1A
′ ⊆ AW

`1+i
1 AW

`1+i
1 A

and δ(Ci+1
1 ) ⊆ AW i

1AW
i
1A ⊆ AW

`1+i
1 AW

`1+i
1 A. Therefore, we also have

δ(W `1+i+1
1 ) ⊆ AW `1+i

1 AW
`1+i
1 A.

For i ∈ [0, `0−1], we have δ(W i+1
0 ) ⊆ eAiW1Aie∩A′W ′1A′, but there is an

R-bimodule decomposition eAiW1Aie = eAiW
′
1Aie⊕H0 with H0 ∩A′W ′1A′

= 0. Hence, δ(W i+1
0 ) ⊆ AiW ′1Ai.
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For i ∈ [0, `1− 1], we have δ(W i+1
1 ) ⊆ eAW i

1AW
i
1Ae∩A′W ′1A′W ′1A′, but

there is an R-bimodule decomposition eAW i
1AW

i
1Ae = eA′W

i
1A
′W

i
1A
′e⊕H1

with H1 ∩A′W ′1A′W ′1A′ = 0. Hence, δ(W i+1
1 ) ⊆ A′W i

1A
′W

i
1A
′.

6. Main result for algebras

Theorem 6.1. Assume that Λ is a basic finite-dimensional tame algebra
over an algebraically closed field k. Suppose that Λ0 is a convex algebra in Λ.
Then, for any d ∈ N, there is a finite family I0(d) of indecomposable Λ0-
modules such that, for any indecomposable Λ-module M with dimkM ≤ d
and M 6∼= tens(res(M)), the module res(M) is isomorphic to a direct sum of
modules in I0(d).

Proof. Fix d ∈ N. The functor Res considered in 2.1 restricts to a functor
Res : P1(Λ) → P1(Λ0) and the following diagram commutes up to isomor-
phism:

D-Mod ΞΛ−−→ P1(Λ) Cok−−→ Λ-Mod

RDD′

y Res

y
yres

D′-Mod Ξ′−−→ P1(Λ0) Cok0−−→ Λ0-Mod

where D was defined in 5.4 and its initial subditalgebra D′ was constructed
in 5.3. Since Λ is tame, from [6, 27.14], so is its Drozd ditalgebra D, and
so is D too (recall that D-Mod = D-Mod). Then we can apply 4.1 to the
number d′ := (1 + dimk Λ)d ∈ N to obtain a finite family I ′(d′) of indecom-
posable D′-modules such that for any indecomposable D-module H with
dimkH ≤ d′ and H 6∼= EDD′(H

′), and any H ′ ∈ D′-Mod, the module RDD′(H)
is isomorphic to a direct sum of indecomposables in I ′(d′). Having in mind
the construction of D′ and Ξ ′ in the proof of 5.3, hence the fact that D′-Mod
is equivalent to the product category De-Mod × Df -Mod, we can consider
the subfamily I ′′(d′) of I ′(d′) obtained by excluding all the indecomposables
from Df -Mod, as well as all the indecomposables N ′ ∈ De-Mod such that
ΞΛ0(N ′) has the form Q→ 0. Then I(d) := Cok0Ξ

′I ′′(d′) is a finite family
of indecomposable Λ0-modules.

Take any indecomposable Λ-module M with dimkM ≤ d and M 6∼=
tens(res(M)) and let us show that res(M) is isomorphic to a direct sum
of Λ0-modules in I(d). Consider a minimal projective presentation Q′ →
Q → M → 0 of M . Then, there is an N ∈ D-Mod = D-Mod such that
ΞΛ(N) ∼= (Q′ → Q) and CokΞΛ(N) ∼= M . Since M is indecomposable, so
is N .

Now, from [6, 22.19 and 27.13], if P denotes the radical of Λ,

dimkN = `Λ(Q/PQ) + `Λ(Q′/PQ′) ≤ dimkM · (1 + dimk Λ) ≤ d′.
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Suppose N ∼= EDD′(N
′) for some N ′ ∈ D′-Mod. As D′ ∼= De × Df ,

we can consider the projection morphisms πe : D′ → De and πf : D′
→ Df . The induced functors F e : De-Mod → D′-Mod and F f : Df -Mod
→ D′-Mod determine an equivalence of categories

De-Mod×Df -Mod F e⊕F f−−−−→ D′-Mod

(see [6, 10.3]). There is an isomorphism N ′ ∼= F e(N e)⊕F f (Nf ) in D′-Mod,
for some N e ∈ De-Mod and Nf ∈ Df -Mod, which is preserved by the
functor EDD′ . Then N ∼= EDD′(N

′) ∼= EDD′F
e(N e) ⊕ EDD′F f (Nf ), and since

N is indecomposable, we have N e = 0 or Nf = 0. If Nf 6= 0, then
N e = 0 and Nf is indecomposable. In order to justify this last state-
ment, assume Nf decomposes non-trivially; then it does so in Df -Mod,
hence F d(Nf ) has a non-trivial decomposition in D′-Mod, which is pre-
served by EDD′ , contradicting again the indecomposability of N . Since D has
no marked points, Nf is a one-dimensional module of Df , thus F f (Nf )
is a one-dimensional module corresponding to a point of D′ not in De.
Then its extension N ∼= EDD′F

f (Nf ) is again such a one-dimensional D-
module, corresponding to a point not in E•0 . Its image under ΞΛ has the
form Λ⊗S N1 → Λ⊗S N2, where either N1 = 0 or N2 = 0. If Λ⊗S N2 = 0,
then M ∼= CokΞΛ(N) = 0, a contradiction. Thus, Λ ⊗S N2 6= 0, and
M ∼= CokΞΛ(N) ∼= Λ ⊗S N2

∼= Λei with ei ∈ E \ E0, thus resM = 0.
Therefore, we can assume that Nf = 0, and hence N ∼= EDD′F

e(N e).

We claim that, for any N e ∈ De-Mod,

ΞΛE
D
D′F

e(N e) ∼= TensΞΛ0(N e).

To verify this claim, notice first that e0(EDD′F
e(N e))1 = (EDD′F

e(N e))1, so
we have isomorphisms

Λe0 ⊗Λ0 Λ0 ⊗S0 N
e
i

ηi−→ Λ⊗S (EDD′F
e(N e))i

for i ∈ {1, 2}, given by ηi(λ⊗λ0⊗n) = λλ0⊗n, where λ ∈ Λe0, λ0 ∈ Λ0 and
n ∈ N e

i . Here, (N e
1 , N

e
2 , ψ

e) and ((EDD′F
e(N e))1, (EDD′F

e(N e))2, ψ) are the
triples corresponding to the De-module N e and the D-module EDD′F

e(N e),
respectively. As before, we can identify e0P ∗e0 with P ∗0 , and De with DΛ0 .
Observe that γpj ∈ P ∗ \P ∗0 implies that αpj is an arrow of D not in D′; then,
for n ∈ (EDD′F

e(N e))1, we have ψ(γpj )[n] =
( 0 0
γpj 0

)
n = αpjn = 0; while, for

γpj ∈ P ∗0 , ψ(γpj )[n] =
( 0 0
γpj 0

)
n = ψe(γpj )[n]. Then the following diagram

commutes:
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Λe0 ⊗Λ0 Λ0 ⊗S0 N
e
1

1⊗ΞΛ0
(Ne)

−−−−−−−→ Λe0 ⊗Λ0 Λ0 ⊗S0 N
e
2

η1

y
yη2

Λ⊗S (EDD′F
e(N e))1

ΞΛE
D
D′F

e(Ne)
−−−−−−−−−→ Λ⊗S (EDD′F

e(N e))2

Indeed, for λ ∈ Λe0, λ0 ∈ Λ0 and n ∈ N e
1 , we have

η2(1⊗ΞΛ0(N e))[λ⊗ λ0 ⊗ n] = η2

(
λ⊗

∑
j∈J0

λ0pj ⊗ ψe(γpj )[n]
)

=
∑
j∈J0

λλ0pj ⊗ ψe(γpj )[n]

=
∑
j∈J

λλ0pj ⊗ ψ(γpj )[n]

= ΞΛE
D
D′F

e(N e)[λλ0 ⊗ n]

= ΞΛE
D
D′F

e(N e)η1[λ⊗ λ0 ⊗ n].

Thus, ΞΛEDD′F
e(N e) ∼= TensΞΛ0(N e).

Apply this claim to our previously fixed N e to obtain

ΞΛ(N) ∼= ΞΛE
D
D′F

e(N e) ∼= TensΞΛ0(N e).

Therefore, using 2.5, we obtain

M ∼= CokΞΛ(N) ∼= Cok TensΞΛ(N e) ∼= tens CokΞΛ(N e),

which is a contradiction (recall the last statement of 2.5). Hence, N 6∼=
EDD′(N

′) for any N ′ ∈ D′-Mod, and RDD′(N) ∼=
⊕

iNi for some indecompos-
able D′-modules Ni ∈ I ′(d′). From 5.3, it follows that

res(M) ∼= res CokΞΛ(N) ∼= Cok ResΞΛ(N) ∼= CokΞ ′RDD′(N)
∼=
⊕
i

CokΞ ′(Ni),

a direct sum of modules in I(d), and we are done.

Now, clearly, Theorem 1.3 follows from 6.1 and 2.6.

7. Dual results. The dual results concern, given a convex algebra Λ0

in Λ, the restriction functor res′ = HomΛ(Λ0,−) : Λ-Mod→ Λ0-Mod.

Lemma 7.1. Assume that the algebra Λ0 is convex in Λ, and denote by
Q(Λ) and Q(Λ0) the categories of morphisms between injective Λ-modules
and injective Λ0-modules, respectively. The functor res′ preserves injectives,
and hence induces a functor Res′ : Q(Λ) → Q(Λ0) such that the following
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square commutes up to isomorphism:

Q(Λ) Ker−−→ Λ-Mod

Res′

y
yres′

Q(Λ0) Ker0−−→ Λ0-Mod

Here, Ker and Ker0 are the corresponding kernel functors.

Proof. Given an idempotent ei ∈ E, we have the isomorphisms

res′(D(eiΛ)) = HomΛ(Λ0, D(eiΛ)) = HomΛ(Λ0,Homk(eiΛ, k))
∼= Homk(eiΛ⊗Λ Λ0, k) ∼= Homk(eiΛ0, k) ∼= D0(eiΛ0),

where the injective Λ0-module D0(eiΛ0) is zero when ei ∈ E \ E0. This
implies that the functor res′ preserves injectives. Indeed, any injective Λ-
module Q has the form Q ∼=

⊕
i∈I D(eiΛ) for some family {ei}i∈I of idem-

potents of E, and so the inclusion morphism
⊕

i∈I D(eiΛ) →
∏
i∈I D(eiΛ)

splits. Therefore, the induced monomorphism

HomΛ

(
Λ0,
⊕
i∈I

D(eiΛ)
)
→ HomΛ

(
Λ0,
∏
i∈I

D(eiΛ)
)
∼=
∏
i∈I

HomΛ(Λ0, D(eiΛ)),

which has an injective codomain, also splits. It follows that the Λ0-module
res′(Q) ∼= res′(

⊕
i∈I D(eiΛ)) is injective.

Now, given an object φ : Q1 → Q0 in Q(Λ), we can consider the object
Res′(φ) := φ∗ : HomΛ(Λ0, Q1) → HomΛ(Λ0, Q0) in Q(Λ0). Given a mor-
phism (u, v) : φ → φ′ in Q(Λ), the rule Res′(u, v) = (res′ u, res′ v) clearly
defines a functor. Since res′ is left exact, for any φ ∈ Q(Λ) there is an
isomorphism ηφ : Ker0 Res′ φ→ res′Kerφ, natural in the variable φ.

Lemma 7.2. If Λ0 is a final algebra in Λ, then res′ is isomorphic to the
standard restriction functor ρ : Λ-Mod→ Λ0-Mod.

Proof. If Λ0 is final in Λ, we have Λ0 = e0Λe0 = Λe0, an equality
of left Λ-modules. Hence, given M ∈ Λ-Mod, we have HomΛ(Λ0,M) =
HomΛ(Λe0,M) ∼= e0M , a natural isomorphism in the variable M .

Lemma 7.3. Let Λ0 be a convex algebra in Λ. Consider the functor
hom = HomΛ0(e0Λ,−) : Λ0-Mod→ Λ-Mod. Then

res′ hom ∼= 1Λ0-Mod,

and hence, given M ∈ Λ-Mod, we have M ∼= hom res′(M) if and only if
M ∼= hom(M ′) for some M ′ ∈ Λ0-Mod.

Proof. Notice that e0Λ ⊗Λ Λ0
∼= Λ0. Hence, for M ∈ Λ0-Mod, we have

isomorphisms of Λ-modules res′ hom(M) = HomΛ(Λ0,HomΛ0(e0Λ,M)) ∼=
HomΛ0(e0Λ⊗Λ Λ0,M) ∼= HomΛ0(Λ0,M) ∼= M , which are natural in M .
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Lemma 7.4. Assume that Λ0 is a convex algebra in Λ. Then the functors
res and res′ are dual to each other in the sense that the following diagram
commutes up to isomorphism:

Λ-Mod D−−→ Λop-Mod

res

y
yres′

Λ0-Mod D0−−→ Λop
0 -Mod

where D = Homk(−, k) and D0 is the corresponding functor for Λ0.

Proof. If M ∈ Λ-Mod, we have a natural isomorphism

D0 res(M) = Homk(Λ0 ⊗ΛM,k) ∼= Homk(M ⊗Λop
0
Λop

0 , k)
∼= HomΛop(Λop

0 ,Homk(M,k)) = res′D(M)

determined by the isomorphism of left Λ0-modules Λ0⊗ΛM ∼= M ⊗Λop
0
Λop

0 ,
which is natural in M .

Now, we can state the following result dual to Theorem 6.1.

Theorem 7.5. Assume that Λ is a basic finite-dimensional tame algebra
over an algebraically closed field k. Suppose that Λ0 is a convex algebra in Λ.
Then, for any d ∈ N, there is a finite family I0(d) of indecomposable Λ0-
modules such that for any indecomposable Λ-module M with dimkM ≤ d
and M 6∼= hom(res′(M)), the module res′(M) is isomorphic to a direct sum
of modules in I0(d).

Proof. Apply first 6.1 to the algebra Λop
0 , convex in Λop, to obtain a

family I ′(d) of indecomposable modules in Λop
0 -mod such that for any inde-

composable Λop-module N with dimkN ≤ d and N 6∼= tens(res(N)), res(N)
is isomorphic to a direct sum of modules in I ′0(d). Denote by I(d) the family
of indecomposable Λ0-modules of the form D0(L) for some L in I ′0(d). Take
any indecomposable Λ-moduleM with dimkM ≤ d andM 6∼= hom(res′(M)).
If we had D(M) ∼= tens(res(D(M))), then, applying D, we obtain M ∼=
D2(M) ∼= D tens(res(D(M))) ∼= homD0 resD(M) ∼= hom res′D2(M) ∼=
hom res′(M), a contradiction. Hence, res(D(M)) is a direct sum of modules
in I ′0(d). It follows that D0 resD(M) ∼= res′D2(M) ∼= res′(M) is a direct
sum of modules in I0(d), as claimed.

Finally, using the statement dual to 2.6, we get the following.

Theorem 7.6. Assume that Λ is a basic finite-dimensional tame algebra
over an algebraically closed field k, and consider a decomposition 1 =

∑
e∈E e

into a sum of primitive orthogonal idempotents of Λ. Consider a convex
subset E0 of E and the associated convex algebra Λ0. Then, for any d ∈ N,
there is a finite family I0(d) of indecomposable Λ0-modules such that, for
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any indecomposable Λ-module M with dimkM ≤ d and such that M does
not admit a minimal injective copresentation with direct summands of the
form D(eΛ) with e ∈ E0, the module res′(M) is isomorphic to a direct sum
of indecomposables in I0(d).
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