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DIFFERENTIAL INDEPENDENCE VIA AN ASSOCIATIVE
PRODUCT OF INFINITELY MANY LINEAR FUNCTIONALS

BY

TAKAHIRO HASEBE (Kyoto)

Abstract. We generalize the infinitesimal independence appearing in free probability
of type B in two directions: to higher order derivatives and other natural independences:
tensor, monotone and Boolean. Such generalized infinitesimal independences can be de-
fined by using associative products of infinitely many linear functionals, and therefore the
associated cumulants can be defined. These products can be seen as the usual natural
products of linear maps with values in formal power series.

1. Introduction. Free probability theory [24] was initiated by Voicu-
lescu to solve problems in operator algebras. Many concepts in probability
theory have analogues in free probability by replacing the concept of inde-
pendence of random variables with free independence. For instance, cumu-
lants which appear in probability theory are replaced by free cumulants in
free probability. There are other examples such as the central limit theorem
and infinitely divisible distributions [23].

In probability theory, a standard model of independent random vari-
ables is constructed by taking the direct product of probability spaces. In
the algebraic description, the usual independence is realized on the tensor
product of algebras equipped with the tensor product of states. By analogy,
free independent random variables can be realized in the free product of
algebras equipped with the free product of states [24]. An important point
is that the tensor and free products of states are associative; this property
enables us to define unique cumulants associated to free independence.

There are other associative products of states on the free product of al-
gebras (with or without unit): Boolean [4, 22], monotone or anti-monotone
[16, 18] products. Under natural conditions, Schürmann, Speicher, Ben
Ghorbal and Muraki [2, 18, 17, 19, 21] proved that an associative prod-
uct of states is necessarily one of the tensor, free, Boolean, monotone or
anti-monotone products. Among them, only monotone and anti-monotone
products are not symmetric, that is, independence of random variables X
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and Y does not imply independence of Y and X. This makes it impossible
to define cumulants in the usual sense (a unified treatment of cumulants in
the “usual sense” can be found in [15]). In [14] and [13], however, it is proved
that there exist uniquely defined cumulants in a generalized sense. We will
use this generalized framework later.

There are also several attempts to construct an associative product of
more than one state. A conditionally free (or c-free for simplicity) product
was introduced by Bożejko, Leinert and Speicher in [6, 5] as a product of
two states. This product is important since it interpolates free and Boolean
products, preserving the associative laws. Moreover, in [10] Franz found that
the c-free product also unifies monotone and anti-monotone products, not
preserving the associative laws (the reader is referred to [12] for details).
Then a c-monotone product of two states was introduced in [11] to unify
monotone and Boolean products. Furthermore, an ordered free product and
an indented product were defined in [12]; the former is defined for two states
and unifies free and monotone products, and the latter is defined for three
states unifying free, Boolean, monotone and anti-monotone products (and
also c-free and c-monotone products).

In this paper, we construct an associative product of infinitely many
linear functionals for a given natural independence. The idea of a product
of infinitely many states or linear functionals was proposed by Cabanal-
Duvillard and Ionescu in [7]. They constructed a product of infinitely many
states as an extension of the c-free product. This product, however, is not
associative.

The product defined in this paper extends the infinitesimal aspect of free
probability of type B. Free probability of type B was originally defined by
Biane, Goodman and Nica [3] to find a free probability associated to type
B non-crossing partitions. Later, in [1] Belinschi and Shlyakhtenko found
that free probability of type B appears as an infinitesimal property of free
probability. More precisely, let {ϕt}0≤t<ε be a family of states on an algebra
A for ε > 0. If Aj are free independent with respect to ϕt for all t, then free
probability of type B can be realized with respect to the pair (ϕ0, ϕ

′
0), where

ϕ′0 is defined by the linear functional X 7→ d
dtϕt(X)|t=0. Février and Nica

investigated combinatorial properties of infinitesimal free probability in [9].
We extend free probability of type B from two viewpoints: higher deriva-

tives and natural independence. This is the content of Section 2. This exten-
sion can be understood as an associative product of infinitely many linear
functionals. By using associativity, we define cumulants in Section 3. These
cumulants are obtained by formally differentiating the usual cumulants for
natural independence. In Section 4, we study two examples: one is formal
multi-variate Lévy processes, and the other is dual derivation systems intro-
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duced in [9]. Many results of Sections 2–4 can easily be extended to more
general settings. We will mention such generalizations in Section 5.

Note. The author has learned that Février also extended free proba-
bility of type B to higher order derivatives, independently of this paper. He
also clarified combinatorics of higher order derivatives; see [8].

2. Differential independence. In this section we extend the infinites-
imal realization of free probability of type B to higher derivatives, and also
extend free independence to other natural independences: tensor, monotone
and Boolean.

Throughout this paper, symbols such asA andAi always denote algebras
over C. We denote by A∗ the set of linear functionals from A to C, and by
A1 ∗ A2 the free product of A1 and A2 without identification of units. Let
? be any one of the natural products of linear functionals, i.e., a product

? : A∗1 ×A∗2 → (A1 ∗ A2)∗,

defined for arbitrary algebras A1 and A2, satisfying some natural conditions
in terms of category theory. Natural products were classified into five types:
tensor, free, Boolean, monotone and anti-monotone ones. It is known that
natural products of linear functionals preserve positivity, and therefore a
natural product of states is again a state.

Let CJtK be the unital ring of formal power series. We introduce CJtK-
valued linear maps to treat all the objects algebraically. First we consider a
natural product of CJtK-valued linear maps ϕt : A → CJtK which is defined
essentially in the same way as in the C-valued case. For instance, the concept
of joint moments is almost the same as for C-valued independence.

In this paper we do not discuss anti-monotone independence since what
we prove for monotone independence can easily be translated into anti-
monotone independence. This is so only within the scope of this paper and
we are not claiming that every property of anti-monotone independence
always translates into one of monotone independence.

Now we define CJtK-valued natural products of linear maps on the free
product of algebras. In the following definitions, (λ1, . . . , λn) is any alter-
nating sequence of 1 and 2 of arbitrary length n, that is, (λ1, λ2, . . .) =
(1, 2, 1, . . .) or (2, 1, 2, . . .). Moreover, Xk is any element in Aλk for 1≤ k≤ n.

Definition 2.1. The tensor product ϕt1 ⊗ ϕt2 on A1 ∗ A2 is defined by

ϕt1 ⊗ ϕt2(X1 · · ·Xn) = ϕt1

( −→∏
i:Xi∈A1

Xi

)
ϕt2

( −→∏
i:Xi∈A2

Xi

)
.

−→∏
j∈VXj denotes the ordered product Xj1 · · ·Xjk for V = {j1, . . . , jk},

j1 < · · · < jk.
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Definition 2.2. We assume that Ai is unital for i = 1, 2 and CJtK is
contained in the center of Ai, and moreover that the unit of Ai is the same
as the unit of CJtK. We assume that ϕt(1) = 1. Let A1 ∗CJtK A2 be the
amalgamated free product of algebras over CJtK. The free product ϕt1 ∗ ϕt2
on A1 ∗CJtK A2 is defined by the following rule:

ϕt1 ∗ ϕt2(X1 · · ·Xn) = 0 whenever ϕtλi(Xi) = 0 for all i.

Definition 2.3. The Boolean product ϕt1 � ϕt2 on A1 ∗ A2 is defined by

ϕt1 � ϕt2(X1 · · ·Xn) = ϕtλ1
(X1)ϕtλ2

(X2) · · ·ϕtλn(Xn).

Definition 2.4. The monotone product ϕt1 . ϕ
t
2 on A1 ∗ A2 is defined

by

ϕt1 . ϕ
t
2(X1 · · ·Xn) = ϕt1

( −→∏
Xi∈A1

Xi

)( ∏
Xi∈A2

ϕt2(Xi)
)
.

The tensor product can be defined on both A1 ∗ A2 and A1 ∗CJtK A2.
By contrast, the Boolean and monotone products cannot be defined on
A1 ∗CJtK A2. We defined the free product of CJtK-valued linear maps on
A1 ∗CJtK A2 under special assumptions on the algebras. It is however also
possible to define the free product on A1 ∗ A2 for arbitrary algebras Ai. To
do so, let Ãi be the unitization of Ai defined by Ãi = C⊕Ai. We consider
Ãi-valued formal power series CJt; ÃiK. Then CJtK is embedded into the
center of CJt; ÃiK. CJtK-valued linear maps on Ai can be naturally extended
to unit-preserving ones on CJt; ÃiK. Then we can define the free product
by Definition 2.2, and restrict it to A1 ∗ A2, to obtain the free product on
A1 ∗ A2.

We can define universal calculation rules [18] (1) for tensor, free, Boolean
and monotone products of CJtK-valued linear maps. Then we can easily
define independence as follows.

Definition 2.5. We fix an arbitrary natural independence. Let (A, ϕt)
be a pair of an algebra and a CJtK-valued linear map on A. Subalgebras
(Ai)i≥1 of A are called independent if for any elements Xk ∈ Aik and indices
i1 6= · · · 6= in, the universal calculation rule holds.

An important property of a natural product is the associative law.
A product ? : A∗1 × A∗2 → (A1 ∗ A2)∗ defined for any A1,A2 is said to
be associative if (ϕ1 ? ϕ2) ? ϕ3 = ϕ1 ? (ϕ2 ? ϕ3) under the natural identifica-
tion (A1 ∗ A2) ∗ A3

∼= A1 ∗ (A2 ∗ A3). Associativity can be defined for any
family of linear functionals as follows. Let (A∗)Λ be the set of functions from
a set Λ with values in A∗. In most cases we take Λ to be N = {0, 1, 2, . . .}.
We consider a pair (A, (ϕ(λ))λ∈Λ) of an algebra and a function in (A∗)Λ.

(1) Muraki called these rules quasi-universal calculation rules.
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A product ? : (A∗1)Λ × (A∗2)Λ → ((A1 ∗ A2)∗)Λ, defined for any A1,A2, is

said to be associative if ((ϕ(λ)
1 ) ? (ϕ(λ)

2 )) ? (ϕ(λ)
3 ) = (ϕ(λ)

1 ) ? ((ϕ(λ)
2 ) ? (ϕ(λ)

3 ))
under the natural isomorphism (A1 ∗ A2) ∗ A3

∼= A1 ∗ (A2 ∗ A3).
Associativity can also be defined for linear maps with values in a common

algebra. In particular, we often consider associative products defined for
linear maps with values in CJtK.

We have defined products of algebraic probability spaces (A, ϕt), where
ϕt are CJtK-valued linear maps. By the way, ϕt can be identified with an
infinite sequence (ϕ(n))n≥0 of linear functionals by

ϕt(X) = ϕ(0)(X) + ϕ(1)(X)t+ ϕ(2)(X)
t2

2!
+ · · · .

Formally, ϕ(n)(X) = dn

dtnϕ
t(X)

∣∣
t=0

. Let LiMap(A,CJtK) be the set of all
linear maps from A to CJtK. Then the map F : ϕt 7→ (ϕ(n))n≥0 is bijective
from LiMap(A,CJtK) to (A∗)N. Let ? be any one of the natural products of
CJtK-valued linear maps. We can define an associative product

(A1, (ϕ
(n)
1 )n≥0) ?D (A2, (ϕ

(n)
2 )n≥0) = (A1 ∗ A2, (ϕ(n))n≥0)

by
(ϕ(n))n≥0 := F

(
F−1((ϕ(n)

1 )n≥0) ? F−1((ϕ(n)
2 )n≥0)

)
.

By definition this product is associative. In the case of the tensor and free
products, we can replace A1 ∗ A2 by A1 ∗CJtK A2. The sequence (ϕ(n)) con-
tains information on infinitesimal properties of ϕt. Therefore, the following
terminology is reasonable.

Definition 2.6. We call ?D a differential product associated to a
natural product ?. More concretely, if ? = ⊗, ∗, �, ., we call the prod-
ucts ⊗D, ∗D, �D, .D respectively the differentially tensor product, differen-
tially free product, differentially Boolean product and differentially monotone
product.

We can also define a product up to the nth derivative. That is, let CJtKn
be the unital ring of power series with the relation tn+1 = 0. This ring can
be realized by upper triangular matrices of the form

Gn :=


A ∈Mn+1(C);A =



a0 a1 a2 . . . an

0 a0 a1 . . . an−1

...
...

. . . . . .
...

0 0 . . . a0 a1

0 0 . . . 0 a0




.

G1 is used in free probability of type B (see [3]). Let LiMap(A,CJtKn) be
the set of linear maps from A to CJtKn. Then each ϕt ∈ LiMap(A,CJtKn) is
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of the form

ϕt(X) =
n∑
k=0

ϕ(k)(X)
tk

k!
.

We can define natural products of CJtKn-valued linear maps analogously to
Definitions 2.1–2.4. Let Fn : LiMap(A,CJtKn) → (A∗)n be the map defined
by Fn(ϕt) = (ϕ(k))nk=0. Then we define a product

(A1, (ϕ
(k)
1 )nk=0) ?D (A2, (ϕ

(k)
2 )nk=0) := (A1 ∗ A2, (ϕ(k))nk=0)

by
(ϕ(k))nk=0 := Fn(F−1

n ((ϕ(k)
1 )nk=0) ? F−1

n ((ϕ(k)
2 )nk=0)).

We call this product the n-differential product. All results in this paper
can easily be proved for n-differential products; therefore, we only focus on
infinitely many linear functionals.

Now we show how to calculate joint moments. By definition, we
can calculate the joint moments ϕ(n)(X1 · · ·Xn) by taking derivatives of
ϕt(X1 · · ·Xn) =

∑∞
n=0 ϕ

(n)(X1 · · ·Xn) t
n

n! .

Theorem 2.7. Let (A, (ϕ(n))n≥0) := ?Dk≥1(Ak, (ϕ
(n)
k )n≥0) be a differen-

tial product. For any elements Xk ∈ Aik and indices i1 6= · · · 6= in, we have
the following.

(1) Let ? be the tensor product. Then for m ≥ 0,

ϕ(m)(X1 · · ·Xn) =
∑

k1+k2+···=m; ki≥0

m!
k1!k2! · · ·

∞∏
i=1

ϕ(ki)
( −→∏
j:Xj∈Ai

Xj

)
.

(2) Let ? be the monotone product. If j satisfies ij−1 < ij > ij+1 then

ϕ(m)(X1 · · ·Xn)

=
n∑
k=0

m!
k!(m− k)!

ϕ(k)(Xj)ϕ(m−k)(X1 · · ·Xj−1Xj+1 · · ·Xn).

(3) Let ? be the Boolean product. Then

ϕ(m)(X1 · · ·Xn) =
∑

k1+···+kn=m; ki≥0

m!
k1! · · · kn!

n∏
i=1

ϕ(ki)(Xi).

Thus we obtained the calculation rules of higher order derivatives for
tensor, monotone and Boolean cases. The 1-differential free product is an
important aspect of free probability of type B, and a calculation rule for it
was clarified in [3]. However, higher order cases are complicated and we do
not calculate them in this paper. Anyway, if we use a universal calculation
rule [21] for free independent algebras, we can write down the calculations
of moments for higher order derivatives in an abstract way.



DIFFERENTIAL INDEPENDENCE 85

The above calculation rules for differentially tensor, free, monotone and
Boolean products are called differential universal calculation rules in this
paper. Now we can define differential independence of subalgebras.

Definition 2.8. We fix an arbitrary natural independence and let
(A, (ϕ(n))n≥0) be a pair of an algebra and a sequence of linear function-
als. We say that subalgebras (Ai)i≥1 of A are differentially independent if
for any ak ∈ Aik and i1 6= · · · 6= in, the differential universal calculation rule
holds.

Example 2.9. (1) Let {X,X ′} and {Y, Y ′} be differentially tensor in-
dependent. Then

ϕ(0)(XYX ′Y ′) = ϕ(0)(XX ′)ϕ(0)(Y Y ′),

ϕ(1)(XYX ′Y ′) = ϕ(1)(XX ′)ϕ(0)(Y Y ′) + ϕ(0)(XX ′)ϕ(1)(Y Y ′),

ϕ(2)(XYX ′Y ′) = ϕ(2)(XX ′)ϕ(0)(Y Y ′) + 2ϕ(1)(XX ′)ϕ(1)(Y Y ′)

+ ϕ(0)(XX ′)ϕ(2)(Y Y ′).

(2) Let {X,X ′} and Y be differentially free independent. Then

ϕ(0)(XYX ′) = ϕ(0)(XX ′)ϕ(0)(Y ),

ϕ(1)(XYX ′) = ϕ(1)(XX ′)ϕ(0)(Y ) + ϕ(0)(XX ′)ϕ(1)(Y ),

ϕ(2)(XYX ′) =ϕ(2)(XX ′)ϕ(0)(Y )+2ϕ(1)(XX ′)ϕ(1)(Y )+ϕ(0)(XX ′)ϕ(2)(Y ).

(3) Let {X,X ′} and {Y, Y ′} be differentially monotone independent.
Then

ϕ(0)(XYX ′Y ′) = ϕ(0)(XX ′)ϕ(0)(Y )ϕ(0)(Y ′),

ϕ(1)(XYX ′Y ′) = ϕ(1)(XX ′)ϕ(0)(Y )ϕ(0)(Y ′) + ϕ(0)(XX ′)ϕ(1)(Y )ϕ(0)(Y ′)

+ ϕ(0)(XX ′)ϕ(0)(Y )ϕ(1)(Y ′),

ϕ(2)(XYX ′Y ′) = ϕ(2)(XX ′)ϕ(0)(Y )ϕ(0)(Y ′) + ϕ(0)(XX ′)ϕ(2)(Y )ϕ(0)(Y ′)

+ϕ(0)(XX ′)ϕ(0)(Y )ϕ(2)(Y ′)+2ϕ(1)(XX ′)ϕ(1)(Y )ϕ(0)(Y ′)

+2ϕ(1)(XX ′)ϕ(0)(Y )ϕ(1)(Y ′)

+2ϕ(0)(XX ′)ϕ(1)(Y )ϕ(1)(Y ′).

Remark 2.10. Let us consider only the zeroth and first derivatives. In
this section, we have constructed an associative product(

(A1, ϕ
(0)
1 , ϕ

(1)
1 ), (A2, ϕ

(0)
2 , ϕ

(1)
2 )
)
7→ (A1 ∗ A2, ϕ

(0), ϕ(1)).

The product for the second components is the usual natural product. The
marginal distribution of ϕ(1) on Ai is ϕ(1)

i . Therefore the situation is similar
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to c-free and c-monotone products. However, the calculation rule of second
moments is different from the c-free and c-monotone cases since ϕ(1)(ab) =
ϕ(1)(ba) = ϕ

(1)
1 (a)ϕ(0)

2 (b) + ϕ
(0)
1 (a)ϕ(1)

2 (b) for a ∈ A1 and b ∈ A2.

By definition, we have the following.

Proposition 2.11. Let (A, (ϕ(n))n≥0) be a pair of an algebra and a
sequence of linear functionals. For each concept of natural independence,
subalgebras (Ai)i≥1 of A are differentially independent if and only if they
are independent (in the sense of Definition 2.5) in the algebraic probability
space (A, ϕt), where ϕt is defined by ϕt(X) =

∑n
k=0 ϕ

(k)(X) t
k

k! .

3. Cumulants associated with differential independence. Cumu-
lants can be defined for a natural independence along the lines of [13]. Now
we are considering infinitely many linear functionals, but the idea for a
single linear functional can be extended easily. We note that Lehner’s ap-
proach [15] is applicable to all natural independences except for monotone
independence. We outline how to define cumulants. Proofs are the same as
in [13] if we use Proposition 2.11.

Definition 3.1. Let (A, (ϕ(n))n≥0) be a pair of an algebra and a se-
quence of linear functionals. We take copies {X(j)}j≥1 (in an algebraic prob-
ability space) of every X ∈ A which satisfy

(1) ϕ(k)(X(j)
1 · · ·X

(j)
n ) = ϕ(k)(X1 · · ·Xn) for any Xi ∈ A, j, n ≥ 1, k ≥ 0;

(2) the subalgebras A(j) := {X(j) : X ∈ A}, j ≥ 1, are differentially
independent.

We define a dot operation N.X by the sum of i.i.d. random variables:

N.X = X(1) + · · ·+X(N)

for X ∈ A and N ∈ N; 0.X is defined to be 0.

Lemma 3.2. The dot operation is associative:

(3.1) ϕ(k)(N.(M.X1) · · ·N.(M.Xn)) = ϕ(k)((MN).X1 · · · (MN).Xn)

for any Xi ∈ A, n ≥ 1, k ≥ 0.

Lemma 3.3. The expression ϕ(k)(N.X1 · · ·N.Xn) is a polynomial in N
and ϕ(m)(Xi1 · · ·Xip) for i1 < · · · < ip, 1 ≤ p ≤ n, m ≤ k, with no constant
term with respect to N .

Definition 3.4. For each natural independence, the (k;n)-differen-
tial cumulant K

(k)
n (X1, . . . , Xn) is defined to be the coefficient of N in

ϕ(k)(N.X1 · · ·N.Xn).
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Proposition 3.5. We have the following properties:

(1) (Multilinearity) K
(k)
n are multilinear.

(2) (Polynomiality) There exist polynomials P (k)
n such that

K(k)
n (X1, . . . , Xn)

= ϕ(k)(X1 · · ·Xn) + P (k)
n ({ϕ(m)(Xi1 · · ·Xip)}1≤p≤n−1;m≤k;

i1<···<ip
).

(3) (Extensivity)

K(k)
n (N.X1, . . . , N.Xn) = NK(k)

n (X1, . . . , Xn).

Moreover, differential cumulants satisfying the above three properties are
unique.

Cumulants can be calculated from the CJtK-valued usual cumulants
thanks to Proposition 2.11. We know the CJtK-valued moment-cumulant for-
mula for each natural independence since the proof needs no changes. Let
TKt

n(X1, . . . , Xn), FKt
n(X1, . . . , Xn), MKt

n(X1, . . . , Xn) and BKt
n(X1, . . . , Xn)

be the CJtK-valued tensor, free, monotone and Boolean cumulants, respec-
tively. For every p-multilinear functional fp, set fp(XV ) := fn(Xi1 , . . . , Xip)
for any subset V = {i1, . . . , ip} ⊂ {1, . . . , n}, i1 < · · · < ip. Then

ϕt(X1 · · ·Xn) =
∑

π∈P(n)

∏
V ∈π

TKt
|V |(XV ),(3.2)

ϕt(X1 · · ·Xn) =
∑

π∈NC(n)

∏
V ∈π

FKt
|V |(XV ),(3.3)

ϕt(X1 · · ·Xn) =
∑

π∈M(n)

∏
V ∈π̄

1
|π|!

MKt
|V |(XV ),(3.4)

ϕt(X1 · · ·Xn) =
∑

π∈I(n)

∏
V ∈π

BKt
|V |(XV ),(3.5)

where P(n), NC(n),M(n) and I(n) are the sets of partitions, non-crossing
partitions, monotone partitions and interval partitions, respectively, and π̄
denotes the projection from M(n) onto NC(n). (3.3) was proved in [20],
(3.4) in [13] and (3.5) in [15]. The reader is referred to [13, 15] for the
definitions of the above partitions.

Differential cumulants can be calculated from the above formulae as
follows.

Proposition 3.6. Let ϕt(X) =
∑∞

n=0 ϕ
(n)(X) t

n

n! be a CJtK-valued linear
map on an algebra A. Then the (k;n)-differential cumulant K(k)

n associated
to a natural independence is calculated as the kth derivative of the CJtK-
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valued nth cumulant Kt
n:

K(k)
n (X1, . . . , Xn) =

dk

dtk
Kt
n(X1, . . . , Xn)

∣∣∣∣
t=0

.

Proof. By Proposition 2.11, the dot operation for differential indepen-
dence coincides with that for CJtK-valued independence. We define

L(k)
n (X1, . . . , Xn) :=

dk

dtk
Kt
n(X1, . . . , Xn)

∣∣∣∣
t=0

.

We notice that Kt
n(N.X1, . . . , N.Xn) = NKt

n(X1, . . . , Xn) by definition.
Therefore, the extensivity L

(k)
n (N.X1, . . . , N.Xn) = NL

(k)
n (X1, . . . , Xn)

holds. Multilinearity and polynomiality are easy to prove. By the uniqueness
of differential cumulants, L(k)

n coincides with K
(k)
n .

We can now prove the vanishing property of cumulants.

Theorem 3.7. Consider any one of tensor, free and Boolean indepen-
dences. Let (A, (ϕ(n))n≥0) be a pair of an algebra and a sequence of linear
functionals. Subalgebras Ai (i ≥ 1) of A are differentially independent if and
only if the following vanishing property of cumulants holds:

(Vanishing property) For any i1, . . . , in and Xk ∈ Aik for 1 ≤ k ≤ n,
K

(m)
n (X1, . . . , Xn) = 0 for all m ≥ 0 unless all ik’s are the same number.

Proof. The proof of the direct implication is the same as in Proposi-
tion 3.6 of [13]. The converse implication follows from the formulae (3.2),
(3.3) or (3.5). Indeed, these moment-cumulant formulae enable us to calcu-
late the joint moments ϕ(m)(X1 · · ·Xn) for any n ≥ 1, i1, . . . , in ≥ 1 and
any Xk ∈ Aik only using sums and products of ϕ(Xj1 · · ·Xjp), where all Xjk

belong to the same Ar.

4. Examples

4.1. Formal multi-variate convolution semigroups. We introduced
the dot operation N.X in Section 2. Let CJX1, . . . , XnK be the unital ring
generated by n non-commuting indeterminates. Let ϕ be a linear func-
tional on CJX1, . . . , XnK with ϕ(1) = 1. Then ϕ((N.Xj1) · · · (N.Xjp)) is a
polynomial in N , and hence we can define a new linear functional ϕt by
ϕt(Xj1 · · ·Xjp) :=ϕ((t.Xj1) · · · (t.Xjp)) for t∈R, p≥ 1 and 1≤ j1, . . . , jp≤ n.
Formally, this corresponds to a multivariate convolution semigroup for each
concept of natural independence. In particular, if n = 1 and the probabil-
ity distribution µ of X1 is infinitely divisible, then ϕt(Xp

1 ) becomes the pth
moment of the associated Lévy process at time t ≥ 0.

FK
(1)
n was calculated in [9]. We can also calculate the other differential

cumulants associated to each natural independence.



DIFFERENTIAL INDEPENDENCE 89

Proposition 4.1. Let P(n)(m), NC(n)(m),M(n)(m) and I(n)(m) be re-
spectively the set of the partitions, non-crossing partitions, monotone par-
titions and interval partitions of the set {1, . . . , n} with m blocks. If the
independence under consideration is tensor, free, monotone or Boolean, we
respectively obtain

ϕ(m)(Xj1 · · ·Xjp) = m!
∑

π∈P(p)(m)

∏
V ∈π

TK|V |(Xj(V )),(4.1)

ϕ(m)(Xj1 · · ·Xjp) = m!
∑

π∈NC(p)(m)

∏
V ∈π

FK|V |(Xj(V )),(4.2)

ϕ(m)(Xj1 · · ·Xjp) = m!
∑

π∈M(p)(m)

∏
V ∈π̄

1
|π|!

MK|V |(Xj(V )),(4.3)

ϕ(m)(Xj1 · · ·Xjp) = m!
∑

π∈I(p)(m)

∏
V ∈π

BK|V |(Xj(V ))(4.4)

for 0 ≤ m ≤ p, where K|V |(Xj(V )) is defined to be K|V |(Xji1
, . . . , Xjir ) for

V = {i1, . . . , ir}, i1 < · · · < ir, and ϕ(m)(Xj1 · · ·Xjp) = 0 for m > p.

The proof is easy from the extensivity of cumulants.

4.2. Dual derivation systems. Février and Nica defined dual deriva-
tion systems in [9] which give us many examples of differential cumulants
and independence. We basically follow the notation and definitions in [9],
except for the range of the operator dn below. Let M be the set of sequences
(fn)n≥1, where fn is an n-multilinear functional from An to C for each n ≥ 1.
For a partition π = {V1, . . . , Vp} ∈ P(n) and f = (fn) ∈ M, we define an
n-multilinear functional Jπ(f) by

Jπ(f)(X1, . . . , Xn) =
∏
V ∈π

f|V |(XV ).

Jπ(f) only depends on f|V1|, . . . , f|V|π||. Therefore, we may denote Jπ(f) by
Jπ(f|V1|, . . . , f|V|π||). Let Multn be the multiplication map from An to A
defined by Multn(X1, . . . , Xn) = X1 · · ·Xn.

Definition 4.2. Let Mn be the set of all n-multilinear functionals from
An to C. A family of linear maps (dn : Dn → Dn)n≥1, where Dn is a
subspace of Mn, is called a dual derivation system if it satisfies the following
conditions:

(i) Let D be the set of sequences (fn)n≥1 satisfying fn ∈ Dn. Then

dn(Jπ(f|V1|, . . . , f|V|π||)) =
|π|∑
k=1

Jπ(f|V1|, . . . , d|Vk|f|Vk|, . . . , f|V|π||)

for all f ∈ D and π ∈ P(n).
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(ii) For every f ∈ D1 and every n ≥ 1, f ◦Multn ∈ Dn and

dn(f ◦Multn) = (d1f) ◦Multn.

If a linear functional ϕ ∈ D1 and a dual derivation system (dn :
Dn→Dn)n≥1 are given, we can construct a CJtK-valued linear map ϕt by

ϕt = exp(td1)ϕ =
∞∑
n=0

tn

n!
dn1ϕ.

In other words, ϕ(k) is defined by ϕ(k) = dk1ϕ for k ≥ 0. In this setting, we
can calculate the differential cumulants as follows.

Proposition 4.3. Fix a natural independence, and let Kn be the as-
sociated cumulants. Then the differential cumulants K(k)

n associated to the
sequence (dn1ϕ)n≥0 are given by K(k)

n = dknKn. Equivalently, the CJtK-valued
cumulants Kt

n associated to ϕt := exp(td1)ϕ are given by Kt
n = exp(tdn)Kn.

Proof. We prove the last equivalent claim. Moreover, we only prove the
claim for tensor independence; the other cases are proved in the same way.

First we notice that exp(tdn) satisfies

exp(tdn)Jπ((fk)k≥1) = Jπ((exp(tdk)fk)k≥1)

for every π ∈ P(n) and every (fk)k≥1 ∈ D.
The cumulants TKn for ϕ are defined by

ϕ(X1 · · ·Xn) =
∑

π∈P(n)

∏
V ∈π

TK|V |(XV ),

which is equivalent to

ϕ ◦Multn =
∑

π=(V1,...,V|π|)∈P(n)

Jπ(TK|V1|, . . . ,
TK|V|π||).

Applying exp(tdn) to the above equality, we obtain

(exp(td1)ϕ) ◦Multn

=
∑

π=(V1,...,V|π|)∈P(n)

Jπ(exp(td|V1|)
TK|V1|, . . . , exp(td|V|π||)

TK|V|π||),

which completes the proof.

Let ϕ be a linear functional on A. If D : A → A is a derivation, then we
can define dn : Mn →Mn by

dnfn(X1, . . . , Xn) =
n∑
k=1

fn(X1, . . . , DXk, . . . , Xn).
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It is easy to check that (dn : Mn →Mn)n≥1 is a dual derivation system. Let
{αt}t∈R be the formal automorphism group αt = exp(tD). Then ϕt := ϕ◦αt
is the CJtK-valued linear map associated to D.

Example 4.4. Let A = CJxK be the unital ring generated by one in-
determinate and let D be the derivation Dxn = nxn−1. For a probability
measure µ with finite moments of all orders, we denote by ϕµ the state
ϕµ(xn) =

	
R x

n µ(dx). Then ϕt = ϕ ◦ etD has the moments of x+ t:

ϕt(xn) = ϕµ((x+ t)n)

for all n ≥ 0. Let Kn(x) := Kn(x, . . . , x) be the nth cumulant of x for any
one of tensor, free or Boolean independences. Then (etDKn)(x) = Kn(x+ t,
. . . , x + t) = Kn(x) + tδ1n. We excluded monotone independence since the
above calculation does not hold.

5. Further generalizations. It is easy to extend many results in this
paper to a more general setting. Let R be a commutative algebra over C.
We take a basis {eλ}λ∈Λ of the vector space R over C. We would like to con-
sider infinite sums by identifying the formal expression

∑
λ∈Λ cλeλ (cλ ∈ C)

with the map λ 7→ cλ which is denoted by (cλ)λ∈Λ. For this purpose, we
assume that the multiplication (

∑
λ∈Λ cλeλ)(

∑
λ∈Λ dλeλ) is well-defined for

any cλ, dλ ∈ C. That is, we assume that the coefficient of each eλ, appearing
after multiplication, is a finite sum. For instance, this is true for a graded al-
gebra with finite-dimensional homogeneous components. An R-valued linear
map ϕ on an algebra A can be written as

ϕ(X) =
∑
λ∈Λ

ϕ(λ)(X)eλ

for some linear functionals ϕ(λ) from A to C. By this correspondence, we
identify ϕ with (ϕ(λ))λ∈Λ. Along the lines of Section 2, we can define an asso-
ciative product of linear functionals indexed by Λ for each natural product.
We give some examples.

(1) Let CJt1, . . . , tnK be the unital and commutative algebra over C gener-
ated by t1, . . . , tn. We introduce the set An of multi-indices α = (α1, . . . , αn)
satisfying αk ∈ Z, αk ≥ 0 for each k. We define |α| := α1 + · · · + αn.
A CJt1, . . . , tnK-valued linear map ϕt1,...,tn can be identified with (ϕ(α))α∈An
by

ϕ(α)(X) =
∂|α|

∂tα
ϕt1,...,tn(X)

∣∣∣∣
(t1,...,tn)=(0,...,0)

=
∂|α|

∂tα1
1 · · · ∂t

αn
n
ϕt1,...,tn(X)

∣∣∣∣
(t1,...,tn)=(0,...,0)

.

Using this identification, we can define an associative product for multi-
indexed linear functionals (ϕ(α))α∈An .
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(2) Let G be a finite abelian group and CG be its group algebra. It is
known that a finite abelian group is the direct product of cyclic groups. CG
consists of elements of the form (cg)g∈G, cg ∈ C. We note that the exam-
ple (1) corresponds to the semigroup algebra of Nn, where N = {0, 1, . . .}.
More concretely, let G consist of the unit e and g with the relation g2 = e.
A CG-valued linear map ϕ can be identified with a pair (ϕ(e), ϕ(g)) by
ϕ(X) = ϕ(e)(X)e + ϕ(g)(X)g. If {X,X ′} and {Y, Y ′} are free independent
under the CG-valued linear map ϕ, we recall that

ϕ(XY ) = ϕ(X)ϕ(Y ),

ϕ(XYX ′) = ϕ(XX ′)ϕ(Y ),

ϕ(XYX ′Y ′) = ϕ(XX ′)ϕ(Y )ϕ(Y ′) + ϕ(X)ϕ(X ′)ϕ(Y Y ′)

− ϕ(X)ϕ(X ′)ϕ(Y )ϕ(Y ′).

Therefore, we obtain the following:

ϕ(e)(XY ) = ϕ(e)(X)ϕ(e)(Y ) + ϕ(g)(X)ϕ(g)(Y ),

ϕ(g)(XY ) = ϕ(e)(X)ϕ(g)(Y ) + ϕ(g)(X)ϕ(e)(Y ),

ϕ(e)(XYX ′) = ϕ(e)(XX ′)ϕ(e)(Y ) + ϕ(g)(XX ′)ϕ(g)(Y ),

ϕ(g)(XYX ′) = ϕ(e)(XX ′)ϕ(g)(Y ) + ϕ(g)(XX ′)ϕ(e)(Y ),

ϕ(e)(XYX ′Y ′)

=
∑

1

(
ϕ(a)(XX ′)ϕ(b)(Y )ϕ(c)(Y ′) + ϕ(a)(X)ϕ(b)(X ′)ϕ(c)(Y Y ′)

)
−
∑

2
ϕ(a)(X)ϕ(b)(X ′)ϕ(c)(Y )ϕ(d)(Y ′),

ϕ(g)(XYX ′Y ′)

=
∑

3

(
ϕ(a)(XX ′)ϕ(b)(Y )ϕ(c)(Y ′) + ϕ(a)(X)ϕ(b)(X ′)ϕ(c)(Y Y ′)

)
−
∑

4
ϕ(a)(X)ϕ(b)(X ′)ϕ(c)(Y )ϕ(d)(Y ′),

where
∑

1 is over
(a, b, c) = (e, e, e), (g, g, e), (g, e, g), (e, g, g),∑

2 is over
(a, b, c, d) = (e, e, e, e), (g, g, e, e), (g, e, g, e), (g, e, e, g),

(e, g, g, e), (e, g, e, g), (e, e, g, g), (g, g, g, g),∑
3 is over

(a, b, c) = (g, e, e), (e, g, e), (e, e, g), (g, g, g),
and

∑
4 is over

(a, b, c, d) = (g, e, e, e), (e, g, e, e), (e, e, g, e), (e, e, e, g),
(g, g, g, e), (g, g, e, g), (g, e, g, g), (e, g, g, g).

So far we have considered the setting of linear functionals without positiv-
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ity. A natural question is: when does the associative product preserve the
positivity of states? However, we do not treat this problem in this paper.

One can expect that the c-free and c-monotone products can be under-
stood as commutative algebra-valued free and monotone products, respec-
tively. This is, however, impossible for the following reason. For instance,
consider random variables X,X ′, Y such that {X,X ′} and Y are free inde-
pendent for a linear map ϕ with values in a two-dimensional commutative
algebra. Let ϕ be identified with (ϕ(0), ϕ(1)). Then the calculation rules
for ϕ(1)(XY ) and ϕ(1)(XYX ′) must be the same. If we try to realize the
c-free independence with respect to the two linear functionals (ϕ(0), ϕ(1)),
then we need to choose the commutative algebra and its basis such that
ϕ(1)(XY ) coincides with ϕ(1)(X)ϕ(1)(Y ). This automatically implies that
ϕ(1)(XYX ′) = ϕ(1)(XX ′)ϕ(1)(Y ) by definition of free independence. There-
fore, we cannot realize the c-free independence.

There are however connections to multi-state cases in a different context.
There are natural products for more than one state: a c-free product [6], a
c-monotone product [11], an ordered free product and an indented prod-
uct [12]. Differential products can be defined for these products of states.
For instance, let ∗ be the c-free product: (ϕ,ψ) = (ϕ1, ψ1)∗ (ϕ2, ψ2). We can
define the c-free product of pairs of CJtK-valued linear maps, similarly to the
free case. A pair of CJtK-valued linear maps (ϕt, ψt) can be identified with
a sequence of pairs (ϕ(n), ψ(n))n≥0. Then we can introduce an associative
product for such sequences of pairs.
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