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Abstract. We characterize homogeneous real hypersurfaces of types (A0), (A1) and
(B) in a complex projective space or a complex hyperbolic space.

1. Introduction. We denote by M̃n(c), n ≥ 2, a complex n-dimensional
complete and simply connected Kähler manifold of constant holomorphic
sectional curvature c (6= 0). That is, M̃n(c) is holomorphically isometric
to either an n-dimensional complex projective space CPn(c) of constant
holomorphic sectional curvature c or an n-dimensional complex hyperbolic
space CHn(c) of constant holomorphic sectional curvature c according to
whether c is positive or negative. M̃n(c) is a so-called nonflat complex space
form of constant holomorphic sectional curvature c.

In this paper, we study real hypersurfaces M2n−1 of M̃n(c). It is known
that every such hypersurface admits an almost contact metric structure
(φ, ξ, η, g) induced from the ambient space. So it is natural to study the
theory of real hypersurfaces from the viewpoint of contact geometry (for
example, see [1, 2]). Motivated by a fundamental idea in contact geometry,
for a real hypersurface M2n−1 of M̃n(c) we shall investigate the equation

(1.1) dη(X,Y ) = ±k · g(X,φY ) for all vectors X,Y ∈ TM,

where k is a positive constant. Equation (1.1) means that the exterior deriva-
tive d of the contact form η of M satisfies either dη(X,Y ) = k ·g(X,φY ) for
all X,Y ∈ TM or dη(X,Y ) = −k · g(X,φY ) for all X,Y ∈ TM . Note that
(1.1) can be rewritten as φA+ Aφ = ∓2kφ, where A is the shape operator
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of M in M̃n(c). (Cf. the proof of Theorem 2.) This implies that every real
hypersurface satisfying (1.1) must be a Hopf hypersurface.

We first classify the real hypersurfaces M2n−1 in M̃n(c) satisfying (1.1)
(Theorems 1 and 2). From these classification theorems we can see that
every such hypersurface is locally a homogeneous real hypersurface of M̃n(c),
namely it is an orbit of some subgroup of the isometry group I(M̃n(c)) of the
ambient space. We next characterize the hypersurfaces M2n−1 among all real
hypersurfaces in M̃n(c) by observing some geodesics on M2n−1 (Theorem 3
and Proposition 2).

We here remark that there exist no real hypersurfaces M with dη = 0
on M in a nonflat complex space form (see Corollary 2.12 in [8]).

2. Fundamental notions in contact geometry. Let M be an odd-
dimensional Riemannian manifold furnished with an almost contact metric
structure (φ, ξ, η, g), which consists of a (1, 1)-tensor φ, a vector field ξ, a
1-form η and a Riemannian metric g on M satisfying
φ2(X) = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y )

for all vectors X,Y ∈ TM . It is known that these equations imply that
φξ = 0 and η(φ(X)) = 0. We say that such an odd-dimensional manifold is
an almost contact metric manifold. When the exterior derivative dη of the
contact form η on an almost contact metric manifold M which is given by
dη(X,Y ) := (1/2){X(η(Y ))− Y (η(X))− η([X,Y ])} satisfies
(2.1) dη(X,Y ) = g(X,φY ) for all X,Y ∈ TM,

the structure (φ, ξ, η, g) is said to be a contact metric structure on M . An
almost contact metric manifold having a contact metric structure is called
a contact manifold. Note that contact manifolds are analogues to Hermitian
manifolds in Kähler geometry. An almost contact metric manifold M is said
to be a Sasakian manifold if the structure tensor φ of M satisfies
(2.2) (∇Xφ)Y = g(X,Y )ξ − η(Y )X
with the Riemannian connection ∇ on M associated with g for all X,Y ∈
TM . By an easy computation we find that the structure of a Sasakian mani-
fold is a contact metric structure. However, in general a contact metric struc-
ture need not be Sasakian. For a unit tangent vector u ∈ TM orthogonal
to ξ in a Sasakian manifold M we call K(u, φu) := g(R(u, φu)φu, u) its φ-
sectional curvature, where R is the curvature tensor of M . A Sasakian space
form is a Sasakian manifold whose φ-sectional curvatures do not depend
on the choice of unit tangent vectors orthogonal to ξ. Sasakian manifolds
and Sasakian space forms are analogues to Kähler manifolds and complex
space forms in Kähler geometry, respectively. For more details on contact
geometry see [5] for example.
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3. Fundamental theory of real hypersurfaces in M̃n(c). LetM2n−1

be a real hypersurface with a unit normal local vector field N in an n-
dimensional nonflat complex space form M̃n(c) with the standard Rieman-
nian metric g and the canonical Kähler structure J . The Riemannian con-
nections ∇̃ of M̃n(c) and ∇ of M are related by the following formulas of
Gauss and Weingarten:

∇̃XY = ∇XY + g(AX,Y )N ,(3.1)

∇̃XN = −AX,(3.2)

for arbitrary vector fields X and Y on M , where g is the Riemannian metric
of M induced from the ambient space M̃n(c) and A is the shape operator
of M in M̃n(c). An eigenvector of the shape operator A is called a principal
curvature vector of M in M̃n(c) and an eigenvalue of A is called a principal
curvature of M in M̃n(c). We call Vλ = {v ∈ TM | Av = λv} the principal
foliation associated to the principal curvature λ.

It is well-known that M has an almost contact metric structure induced
from the Kähler structure of the ambient space M̃n(c). That is, we have a
quadruple (φ, ξ, η, g) defined by

g(φX, Y ) = g(JX, Y ), ξ = −JN , η(X) = g(ξ,X) = g(JX,N ).

It follows from (3.1), (3.2) and ∇̃J = 0 that

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ,(3.3)

∇Xξ = φAX.(3.4)

We clarify here the meaning of the condition that a real hypersurface M
is a contact manifold with respect to the almost contact metric structure
induced from the ambient space M̃n(c). On an orientable connected real
hypersurface M in a nonflat complex space form M̃n(c), we have an almost
contact metric structure (φ, ξ, η, g) associated with a unit normal vector N
of M in M̃n(c). Clearly the quadruple (φ,−ξ,−η, g) is also an almost contact
metric structure on M which is associated with the unit normal −N . We
call a real hypersurface M contact if M satisfies either (2.1) or

dη(X,Y ) = −g(X,φY )

for all vectorsX,Y ∈ TM . Similarly, a real hypersurfaceM is called Sasakian
if M satisfies either (2.2) or

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X

for all vectors X,Y ∈ TM .
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Denoting the curvature tensor of M by R, we have the equation of Gauss
given by

(3.5) g(R(X,Y )Z,W )
= (c/4){g(Y,Z)g(X,W )− g(X,Z)g(Y,W ) + g(φY,Z)g(φX,W )

− g(φX,Z)g(φY,W )− 2g(φX, Y )g(φZ,W )}
+ g(AY,Z)g(AX,W )− g(AX,Z)g(AY,W ).

We usually call M a Hopf hypersurface if the characteristic vector ξ of M
is a principal curvature vector at each point of M . The following properties
of principal curvatures of a Hopf hypersurface M in M̃n(c) are well-known.

Lemma 1.

(1) The principal curvature δ associated with ξ is locally constant.
(2) If a nonzero vector v ∈ TM orthogonal to ξ satisfies Av = λv, then

(2λ − δ)Aφv = (δλ + c/2)φv. In particular, when c > 0, we have
Aφv = ((δλ+ c/2)/(2λ− δ))φv.

Remark 1. When c < 0, in Lemma 1(2) it can happen that both the
equations 2λ − δ = 0 and δλ + c/2 = 0 hold. In fact, for example we may
take a horosphere in CHn(c). It is known that this real hypersurface has
two distinct constant principal curvatures, either λ =

√
|c|/2, δ =

√
|c| or

λ = −
√
|c|/2, δ = −

√
|c|. Hence, when c < 0, we must consider two cases

2λ− δ = 0 and 2λ− δ 6= 0.

Furthermore, every tube of sufficiently small constant radius around each
Kähler submanifold of a nonflat complex space form M̃n(c) is a Hopf hyper-
surface. This means that the notion of Hopf hypersurface is natural in the
theory of real hypersurfaces in a nonflat complex space form.

In CPn(c) (n ≥ 2), a Hopf hypersurface all of whose principal curvatures
are constant is locally one of the following (cf. [8]):

(A1) a geodesic sphere of radius r, where 0 < r < π/
√
c;

(A2) a tube of radius r around a totally geodesic CP `(c) (1 ≤ ` ≤ n−2),
where 0 < r < π/

√
c;

(B) a tube of radius r around a complex hyperquadric CQn−1, where
0 < r < π/(2

√
c);

(C) a tube of radius r around a CP 1(c)×CP (n−1)/2(c), where 0 < r <
π/(2
√
c) and n (≥ 5) is odd;

(D) a tube of radius r around a complex Grassmannian CG2,5, where
0 < r < π/(2

√
c) and n = 9;

(E) a tube of radius r around a Hermitian symmetric space
SO(10)/U(5), where 0 < r < π/(2

√
c) and n = 15.
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These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D)
and (E). Hypersurfaces of type (A1) or (A2) are called of type (A).

The number of distinct principal curvatures of the above real hypersur-
faces is 2, 3, 3, 5, 5, 5, respectively. Their principal curvatures are given as
follows:

(A1) (A2) (B) (C, D, E)

λ1

√
c

2
cot(

√
c

2
r)

√
c

2
cot(

√
c

2
r)

√
c

2
cot(

√
c

2
r − π

4
)

√
c

2
cot(

√
c

2
r − π

4
)

λ2 — −
√
c

2
tan(

√
c

2
r)

√
c

2
cot(

√
c

2
r + π

4
)

√
c

2
cot(

√
c

2
r + π

4
)

λ3 — — —
√
c

2
cot(

√
c

2
r)

λ4 — — — −
√
c

2
tan(

√
c

2
r)

δ
√
c cot(

√
c r)

√
c cot(

√
c r)

√
c cot(

√
c r)

√
c cot(

√
c r)

Notice that in CPn(c) a tube of radius r (0 < r < π/
√
c) around a totally

geodesic CP `(c) (0 ≤ ` ≤ n − 1) is a tube of radius π/
√
c − r around a

totally geodesic CPn−`−1(c).
In CHn(c) (n ≥ 2), a Hopf hypersurface all of whose principal curvatures

are constant is locally one of the following (cf. [8]):

(A0) a horosphere in CHn(c);
(A1,0) a geodesic sphere of radius r (0 < r <∞);
(A1,1) a tube of radius r around a totally geodesic CHn−1(c), where

0 < r <∞;
(A2) a tube of radius r around a totally geodesic CH`(c) (1 ≤ ` ≤ n−2),

where 0 < r <∞;
(B) a tube of radius r around a totally real totally geodesic RHn(c/4),

where 0 < r <∞.

These real hypersurfaces are said to be of types (A0), (A1), (A1), (A2) and
(B). Here, type (A1) means either (A1,0) or (A1,1). Hypersurfaces of types
(A0), (A1) or (A2) are said to be of type (A). A real hypersurface of type
(B) with radius r = (1/

√
|c|) log(2+

√
3) has two distinct constant principal

curvatures λ1 = δ =
√

3|c|/2 and λ2 =
√
|c|/(2

√
3 ) (cf. [4]). Except for

this real hypersurface, the number of distinct principal curvatures of Hopf
hypersurfaces with constant principal curvatures is 2, 2, 2, 3, 3, respectively.
The principal curvatures of these real hypersurfaces in CHn(c) are given as
follows:
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(A0) (A1,0) (A1,1) (A2) (B)

λ1

√
|c|
2

√
|c|
2 coth(

√
|c|
2 r)

√
|c|
2 tanh(

√
|c|
2 r)

√
|c|
2 coth(

√
|c|
2 r)

√
|c|
2 coth(

√
|c|
2 r)

λ2 — — —

√
|c|
2 tanh(

√
|c|
2 r)

√
|c|
2 tanh(

√
|c|
2 r)

δ
p
|c|
√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| tanh(

√
|c| r)

In [8], the above two tables of principal curvatures are given in the case of
c = ±4.

It is well-known that our ambient manifold M̃n(c) admits no totally
umbilic real hypersurfaces. In this context, we recall that a real hypersurface
M of a nonflat complex space form M̃n(c), n ≥ 2, is called totally η-umbilic
if its shape operator A is of the form A = αI + βη ⊗ ξ for some smooth
functions α and β on M . This is equivalent to saying that Au = αu for
each vector u on M which is orthogonal to the characteristic vector ξ of M ,
where α is a smooth function on M . It is known that every totally η-umbilic
hypersurface is a Hopf hypersurface with two distinct constant principal
curvatures α and α+ β.

A totally η-umbilic hypersurface M2n−1, n ≥ 2, with shape operator
A = αI+βη⊗ ξ in a nonflat complex space form M̃n(c) is locally one of the
following:

(P) a geodesic sphere of radius r (0 < r < π/
√
c) in CPn(c), where

α = (
√
c/2) cot(

√
c r/2) and β = −(

√
c/2) tan(

√
c r/2);

(Hi) a horosphere in CHn(c), where α = β =
√
|c|/2;

(Hii) a geodesic sphere of radius r (0 < r < ∞) in CHn(c), where
α = (

√
|c|/2) coth(

√
|c| r/2) and β = (

√
|c|/2) tanh(

√
|c| r/2);

(Hiii) a tube of radius r (0 < r <∞) around a totally geodesic complex
hyperplane CHn−1(c) in CHn(c), where

α = (
√
|c|/2) tanh(

√
|c| r/2), β = (

√
|c|/2) coth(

√
|c| r/2).

Totally η-umbilic hypersurfaces are interesting examples of Riemannian
manifolds. The length spectrum of such a hypersurface was studied in detail
(see [3]). Moreover, it is well-known that every geodesic sphere G(r) of radius
r (0 < r < π/

√
c ) with tan2(

√
c r/2) > 2 in CPn(c) is a Berger sphere ([9]).

We recall here characterizations of real hypersurfaces of type (A) and
type (B) in a nonflat complex space form. It is known that a real hyper-
surface M of a nonflat complex space form is of type (A) if and only if
φA = Aφ on M (see [8]). The following characterization of real hypersur-
faces of type (B) was established in [6].
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Lemma 2. Let M2n−1 (n ≥ 2) be a connected real hypersurface of a
nonflat complex space form M̃n(c). Then the following two conditions are
equivalent:

(1) M is a real hypersurface of type (B).
(2) The holomorphic distribution T 0M = {X ∈ TM | X ⊥ ξ} of M de-

composes into the direct sum of restricted principal foliations V 0
λi

=
{X ∈ T 0M | AX = λiX}. Moreover, every restricted principal fo-
liation V 0

λi
is integrable and each of its leaves is a totally geodesic

submanifold of M .

In contrast with the conclusion of Lemma 2, for every Hopf hypersurface
M in a nonflat complex space form, the holomorphic distribution T 0M is
not integrable (see Proposition 2 in [6]).

In this paper, real hypersurfaces of types (A), (B), (C), (D) and (E) in
M̃n(c) are said to be standard real hypersurfaces. It is well-known that every
standard real hypersurface M is a homogeneous real hypersurface of M̃n(c).

4. Statements of results

Theorem 1. Let M2n−1 (n ≥ 2) be a connected real hypersurface of
CPn(c). If (1.1) holds on M , then M is locally one of the following homo-
geneous real hypersurfaces:

(1) a geodesic sphere G(r) of radius r = (2/
√
c ) tan−1

(√
c/(2k)

)
, 0 <

r < π/
√
c,

(2) a tube of radius r = (2/
√
c ) tan−1

(
(
√
c+ 4k2 −

√
c )/(2k)

)
, 0 < r <

π/(2
√
c ), around a complex hyperquadric CQn−1.

Theorem 2. Let M2n−1 (n ≥ 2) be a connected real hypersurface of
CHn(c). If (1.1) holds on M , then M is locally one of the following homo-
geneous real hypersurfaces:

(1) a horosphere in CHn(c) (c = −4k2),
(2) either a geodesic sphere G(r) of radius r= (1/

√
|c| ){log(2k+

√
|c| )−

log(2k−
√
|c| )} or a tube of radius r = (1/(2

√
|c| )){log(2k+

√
|c| )−

log(2k −
√
|c| )} around a totally real totally geodesic RHn(c/4)

(−4k2 < c < 0),
(3) a tube of radius r = (1/

√
|c| ){log(

√
|c|+2k)−log(

√
|c|−2k)} around

a totally geodesic CHn−1(c) (c < −4k2).

Proof of Theorem 1. It follows from (1.1) and (3.4) that

0 = g(φAX, Y )− g(φAY,X)∓ 2kg(X,φY ) = g((φA+Aφ± 2kφ)X,Y )

for each X,Y ∈ TM . This implies that a real hypersurface M of CPn(c)
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satisfies (1.1) if and only if

(4.1) φA+Aφ = ∓2kφ.

So we shall determine real hypersurfaces M satisfying (4.1). We then have
φAξ = 0, which shows that ξ is principal. We denote by δ its princi-
pal curvature. We study principal curvatures λ associated with principal
curvature vectors orthogonal to ξ. We remark here that (4.1) shows that
AφX = (∓2k − λ)φX for each vector X perpendicular to ξ. This, together
with Lemma 1(2) and (4.1), means that the principal curvature λ satisfies
one of the following quadratic equations:

(4.2) 4λ2 + 8kλ+ c− 4kδ = 0 or 4λ2 − 8kλ+ c+ 4kδ = 0.

Since k and δ are constant, this implies that λ is also constant on the con-
nected real hypersurface M . Thus we can see that our real hypersurface is a
Hopf hypersurface with at most three distinct constant principal curvatures.
In view of the list of principal curvatures in Section 3 we find that M is of
type either (A1), (A2) or (B). But real hypersurfaces of type (A2) do not
satisfy (4.1). Thus we only have to check (4.1) in detail for real hypersurfaces
of type (A1) or (B).

When M is of type (A1), since all nonzero vectors orthogonal to ξ are
principal curvature vectors associated with the principal curvature (

√
c/2)×

cot(
√
c r/2), (4.1) yields cot(

√
c r/2) = ∓2k/

√
c (0 < r < π/

√
c). Thus the

sign must be positive and r = (2/
√
c) tan−1(

√
c/(2k)).

When M is of type (B), (4.1) turns into λ1 + λ2 = ∓2k with principal
curvatures λ1 = (

√
c/2) cot(

√
c r/2 − π/4) and λ2 = (

√
c/2) cot(

√
c r/2 +

π/4). Since 0 < r < π/(2
√
c ), we have λ1 < −

√
c/2 and 0 < λ2 <

√
c/2.

Therefore, the sign must be negative. As λ1 +λ2 = −2k is equivalent to the
equality

tan(
√
c r/2) + 1

tan(
√
c r/2)− 1

− tan(
√
c r/2)− 1

tan(
√
c r/2) + 1

= − 4k√
c
,

we obtain tan(
√
c r/2) = (

√
c+ 4k2 −

√
c )/(2k) because 0 < r < π/(2

√
c ).

We hence get the conclusion.

Proof of Theorem 2. By the proof of Theorem 1 we only have to deter-
mine Hopf hypersurfaces M with Aξ = δξ satisfying (4.1). Since c < 0, we
must consider the case that 2λ−δ = 0 at some point x of M (see Lemma 1).
Towards a contradiction suppose that the function 2λ − δ vanishes identi-
cally on no neighborhood of x. Then there exists a sequence {xn} in M
with limn→∞ xn = x and (2λ− δ)(xn) 6= 0 for each n. The discussion in the
proof of Theorem 1 means that for each n the function 2λ− δ is a nonzero
constant on some sufficiently small neighborhood of xn. This, together with
the continuity of 2λ−δ on M , shows that 2λ−δ 6= 0 at x, which is a contra-
diction. Hence the principal curvature λ is also constant locally if 2λ−δ = 0



HYPERSURFACES IN A SPACE FORM 125

at some point x of M . Thus our real hypersurface is a Hopf hypersurface
with at most four distinct constant principal curvatures. By considering the
list of principal curvatures in Section 3 we see that M is of type either (A0),
(A1), (A2) or (B). But real hypersurfaces of type (A2) do not satisfy (4.1).
So we only have to investigate (4.1) for real hypersurfaces of type (A0), (A1)
or (B).

When M is of type (A0), (4.1) turns into
√
|c| = ∓2k. Hence the sign

must be positive and c = −4k2. When M is of type (A1,0), (4.1) can be
written as coth(

√
|c| r/2) = ∓2k/

√
|c|. Then the sign must be positive and

−4k2 < c < 0. Solving this, we obtain r = (1/
√
|c|){log(2k +

√
|c| ) −

log(2k−
√
|c| )}. When M is of type (A1,1), (4.1) turns into tanh(

√
|c| r/2) =

∓2k/
√
|c|. Hence the sign must be positive and c < −4k2. Solving this, we

obtain r = (1/
√
|c|){log(

√
|c|+ 2k)− log(

√
|c| − 2k)}.

When M is of type (B), (4.1) turns into λ1 + λ2 = ∓2k with principal
curvatures λ1 = (

√
|c|/2) coth(

√
|c| r/2) and λ2 = (

√
|c|/2) ·tanh(

√
|c| r/2).

Hence the sign must be positive. Rewriting the relation λ1 + λ2 = 2k, we
have

exp(
√
|c| r) + 1

exp(
√
|c| r)− 1

+
exp(

√
|c| r)− 1

exp(
√
|c| r) + 1

=
4k√
|c|

;

we therefore obtain −4k2 < c < 0 and r = (1/(2
√
|c|)){log(2k +

√
|c| ) −

log(2k −
√
|c| )}.

As an immediate consequence of statements (1) and (2) in Theorem 2 we
obtain the following characterization of a horosphere and the homogeneous
real hypersurface of type (B) with two distinct constant principal curvatures
in CHn(c).

Corollary 1. Let M2n−1 (n ≥ 2) be a connected real hypersurface of
CHn(c). Then:

(1) M is locally a horosphere in CHn(c) if and only if (1.1) holds on M
with k =

√
|c|/2.

(2) M is locally either a geodesic sphere G(r) of radius r = (2/
√
|c| )×

log(2 +
√

3 ) or a tube of radius r = (1/
√
|c| ) log(2 +

√
3 ) around a

totally real totally geodesic RHn(c/4) if and only if (1.1) holds on M
with k =

√
|c|/3.

When k = 1, Theorems 1 and 2 give the following classification theorems
of real hypersurfaces which are contact in a nonflat complex space form.

Corollary 2. Let M2n−1 (n ≥ 2) be a connected real hypersurface of
CPn(c). If it is contact, then it is locally one of the following homogeneous
real hypersurfaces:
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(1) a geodesic sphere G(r) of radius r = (2/
√
c) tan−1(

√
c/2), 0 < r <

π/
√
c,

(2) a tube of radius r = (2/
√
c) tan−1((

√
c+ 4−

√
c )/2) around a com-

plex hyperquadric CQn−1, 0 < r < π/(2
√
c ).

Corollary 3. Let M2n−1 (n ≥ 2) be a connected real hypersurface of
CHn(c). If it is contact, then it is locally one of the following homogeneous
real hypersurfaces:

(1) a horosphere in CHn(c) (c = −4),
(2) either a geodesic sphere G(r) of radius r = (1/

√
|c| ){log(2+

√
|c| )−

log(2−
√
|c| )} or a tube of radius r = (1/(2

√
|c| )){log(2 +

√
|c| )−

log(2 −
√
|c| )} around a totally real totally geodesic RHn(c/4)

(−4 < c < 0),
(3) a tube of radius r = (1/

√
|c| )
{

log(
√
|c|+ 2)− log(

√
|c|−2)

}
around

a totally geodesic CHn−1(c) (c < −4).

Motivated by Corollaries 2 and 3, we establish the following classification
theorem of real hypersurfaces which are Sasakian in a nonflat complex space
form (cf. [4]).

Proposition 1. Let M2n−1 (n ≥ 2) be a connected Sasakian real hy-
persurface of a nonflat complex space form M̃n(c). Then M is locally one of
the following homogeneous real hypersurfaces of the ambient space M̃n(c):

(i) a geodesic sphere G(r) of radius r with tan(
√
c r/2) =

√
c/2, i.e.

r = (2/
√
c) tan−1(

√
c/2) (0 < r < π/

√
c ) in CPn(c);

(ii) a horosphere in CHn(c) (c = −4);
(iii) a geodesic sphere G(r) of radius r with tanh(

√
|c| r/2) =

√
|c|/2

(0 < r < ∞), i.e. r = (1/
√
|c| ){log(2 +

√
|c| ) − log(2 −

√
|c| )} in

CHn(c) (−4 < c < 0);
(iv) a tube of radius r around a totally geodesic CHn−1(c) with

tanh(
√
|c| r/2) = 2/

√
|c| (0 < r <∞),

i.e. r = (1/
√
|c| ){log(

√
|c|+2)−log(

√
|c|−2)} in CHn(c) (c < −4).

In these cases, M has constant φ-sectional curvature c+1. Conversely, each
of the hypersurfaces (i)–(iv) is Sasakian.

Proof. Assume that our real hypersurface M is a Sasakian manifold.
Then it follows from (2.2) and (3.3) that

(4.3) g(X,Y )ξ − η(Y )X = η(Y )AX − g(AX,Y )ξ

for all X,Y ∈ TM . Setting X = Y = ξ in (4.3), we see that ξ is principal.
Hence we can choose a principal curvature vector u orthogonal to ξ. Then,
setting Y = ξ in (4.3), we find that Au = −u, so that the tangent bundle
TM of M decomposes as TM = {ξ}R ⊕ V−1, where V−1 = {X ∈ TM |
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AX = −X}. Thus a Sasakian real hypersurface M is a totally η-umbilic
hypersurface with coefficients α = −1 and β = c/4 in M̃n(c). Here, we
change the unit normal vector N into −N for each member in the list
of totally η-umbilic hypersurfaces in Section 3. Then we know that M is
locally one of (i)–(iv). Next, for each unit vector u perpendicular to ξ, we
compute the φ-sectional curvature K(u, φu) of M . It follows from (3.5) and
the equality A = −I + (c/4)η ⊗ ξ that K(u, φu) = c+ 1.

Conversely, assume that a real hypersurface M is locally one of (i)–(iv).
Then the shape operator A of M is of the form A = −I + (c/4)η ⊗ ξ
by changing N into −N for each member in the list of totally η-umbilic
hypersurfaces in Section 3. This, combined with (3.3), yields (2.2), so that
M is a Sasakian manifold.

Theorems 1 and 2 show that real hypersurfaces satisfying (1.1) in a
nonflat complex space form are of type (A) or (B). We shall characterize
real hypersurfaces of type (A) satisfying (1.1).

Theorem 3. Let M2n−1 (n ≥ 2) be a connected real hypersurface of a
nonflat complex space form. Then for each positive constant k, the following
conditions (1) and (2) are equivalent:

(1) M is locally one of the following:

(1a) a geodesic sphere G(r) of radius r = (2/
√
c ) tan−1(

√
c/(2k)),

(0 < r < π/
√
c ) in CPn(c),

(1b) a horosphere in CHn(c) (c = −4k2),
(1c) a geodesic sphere G(r) of radius r = (1/

√
|c| ){log(2k+

√
|c| )−

log(2k −
√
|c| )} in CHn(c) (−4k2 < c < 0),

(1d) a tube of radius r = (1/
√
|c| ){log(

√
|c|+ 2k)− log(

√
|c|−2k)}

around a totally geodesic CHn−1(c) in CHn(c) (c < −4k2).

(2) At each x ∈M there exist orthonormal vectors v1, . . . , v2n−2 ∈ TxM
which are orthogonal to the characteristic vector ξx and satisfy:

(2a) All geodesics γi = γi(s) (1 ≤ i ≤ 2n − 2) on M with γi(0) = x
and γ̇i(0) = vi are mapped to a circle of the same curvature k
in M̃n(c).

(2b) All geodesics γij = γij(s) (1 ≤ i < j ≤ 2n − 2) on M with
γij(0) = x and γ̇ij(0) = (vi + vj)/

√
2 are mapped to a circle of

the same curvature k in M̃n(c).

Before proving Theorem 3 we review the definition of circles in Rie-
mannian geometry. A real smooth curve γ = γ(s) parameterized by its
arclength s in a Riemannian manifold M with Riemannian connection ∇
is called a circle of curvature k if it satisfies the ordinary differential equa-
tions ∇γ̇ γ̇ = kYs, ∇γ̇Ys = −kγ̇ with a field Ys of unit vectors along γ.
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Here k (≥ 0) is constant and Ys is called the unit principal normal vector
of γ. A circle of null curvature is nothing but a geodesic. A circle can be
equivalently defined to be a curve γ = γ(s) on M with Riemannian metric g
satisfying the ordinary differential equation

(4.4) ∇γ̇(∇γ̇ γ̇) + g(∇γ̇ γ̇,∇γ̇ γ̇)γ̇ = 0.

Proof of Theorem 3. We assume (1). Then the above discussion implies
that M satisfies both (4.1) and φA = Aφ. So, we can choose the normal
vector N of M in the ambient space M̃n(c) in such a way that

(4.5) AX = kX + βη(X)ξ for each X ∈ TM with some constant β.

We take an arbitrary geodesic γ = γ(s) on M with 〈γ̇(0), ξγ(0)〉 = 0 and
consider the function ργ(s) := 〈γ̇(s), ξγ(s)〉 along γ, called the structure tor-
sion of γ (cf. [3]). Then ργ is constant along γ. Indeed, from (3.4) and (4.5)
we have

∇γ̇ργ = γ̇〈γ̇, ξ〉 = 〈γ̇,∇γ̇ξ〉 = 〈γ̇, φAγ̇〉 = k〈γ̇, φγ̇〉 = 0.

This, combined with 〈γ̇(0), ξγ(0)〉 = 0, implies that γ̇(s) is perpendicular to
ξγ(s) for each s, so that γ satisfies Aγ̇(s) = kγ̇(s) for any s. Hence, from
(3.1) and (3.2) we find that the geodesic γ is mapped to a circle of positive
curvature k in the ambient space M̃n(c), proving (2).

Conversely, assume (2) holds. Then, from (4.4) and (2a),

(4.6) ∇̃γ̇i∇̃γ̇i γ̇i = −k2γ̇i.

On the other hand, from (3.1) and (3.2) we have

(4.7) ∇̃γ̇i∇̃γ̇i γ̇i = g((∇γ̇iA)γ̇i, γ̇i)N − g(Aγ̇i, γ̇i)Aγ̇i.

Comparing the tangential components of (4.6) and (4.7), we see that

g(Aγ̇i, γ̇i)Aγ̇i = k2γ̇i,

so that at s = 0 we get

g(Avi, vi)Avi = k2vi for 1 ≤ i ≤ 2n− 2,

which yields

(4.8) Avi = kvi or Avi = −kvi for 1 ≤ i ≤ 2n− 2.

This implies that ξ is a principal curvature vector, because 〈Aξ, vi〉 =
〈ξ, Avi〉 = 0 for 1 ≤ i ≤ 2n− 2. Therefore M is a Hopf hypersurface with at
most three distinct constant principal curvatures, k,−k and δ = g(Aξ, ξ) at
each its points. On the other hand, applying the same discussion as above
to condition (2b), we get the following corresponding to (4.8):

A((vi + vj)/
√

2 ) = k(vi + vj)/
√

2 or
(4.9)

A((vi + vj)/
√

2 ) = −k(vi + vj)/
√

2
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for 1 ≤ i < j ≤ 2n − 2. Thus, from (4.8) and (4.9) we can see that either
Avi = kvi (1 ≤ i ≤ 2n − 2) or Avi = −kvi (1 ≤ i ≤ 2n − 2). This implies
that M is totally η-umbilic with coefficient α = ±k in the ambient space
M̃n(c), which yields (1).

Remark 2. Condition (2b) in Theorem 3 cannot be omitted. In fact,
consider a real hypersurface M which is a tube of radius π/(2

√
c ) around a

totally geodesic CP `(c) (1 ≤ ` ≤ n− 2) in the ambient space CPn(c), n ≥ 3.
Note that this hypersurface is of type (A2) in CPn(c). The tangent bundle
TM decomposes as TM = {ξ}R⊕V√c/2⊕V−√c/2 with Aξ = 0 (see the table
of principal curvatures in Section 3). At an arbitrary fixed point x ∈M , we
take orthonormal vectors v1, . . . , v2n−2 orthogonal to ξx in such a way that
{v1, . . . , v2n−2`−2} and {v2n−2`−1, . . . , v2n−2} are orthonormal bases of V√c/2
and V−

√
c/2, respectively. Then all geodesics γi = γi(s) (1 ≤ i ≤ 2n − 2) on

M with γ̇i(0) = vi are mapped to the circle of the same curvature
√
c/2

lying on the totally real totally geodesic RP 2(c/4) in CPn(c) (for details,
see [7]).

The following is a characterization of real hypersurfaces of type (B) sat-
isfying (1.1).

Proposition 2. Let M2n−1 (n ≥ 2) be a connected real hypersurface of
a nonflat complex space form M̃n(c). Then for each positive constant k, M is
locally either a tube of radius r = (2/

√
c ) tan−1((

√
c+ 4k2−

√
c )/(2k)), 0 <

r < π/(2
√
c ), around a complex hyperquadric CQn−1 in CPn(c) or a tube

of radius r = (1/(2
√
|c| )){log(2k+

√
|c| )− log(2k−

√
|c| )} around a totally

real totally geodesic RHn(c/4) (−4k2 < c < 0) in CHn(c) if and only if M
satisfies the following two conditions.

(i) The holomorphic distribution T 0M = {X ∈ TM | X ⊥ ξ} decom-
poses into the direct sum of restricted principal foliations V 0

λi
= {X ∈

T 0M | AX = λiX}. Moreover, every restricted principal foliation
V 0
λi

is integrable and each of its leaves is a totally geodesic submani-
fold of M .

(ii) There exists an integral curve of ξ on M which is mapped to a circle
of positive curvature |c|/(2k) in the ambient space M̃n(c).

Proof. By Lemma 2 we only need to show that a homogeneous real
hypersurface M of type (B) satisfies (4.1) if and only if it satisfies (ii).
When c > 0, M has three distinct constant principal curvatures

λ1 =
√
c

2
cot
(√

c

2
r − π

4

)
, λ2 =

√
c

2
cot
(√

c

2
r +

π

4

)
, δ =

√
c cot(

√
c r).
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On the other hand, we have

λ1 + λ2 =
√
c

2
cot
(√

c

2
r − π

4

)
−
√
c

2
tan
(√

c

2
r − π

4

)
=
√
c cot

(√
c r − π

2

)
= −
√
c tan(

√
c r).

Hence M satisfies (1.1) if and only if Aξ = (c/(2k))ξ, i.e. δ = c/(2k).
Note that in this case every integral curve of ξ, considered as a curve in the
ambient space CPn(c), is a circle of positive curvature c/(2k) (see (3.1), (3.2)
and (3.4)). This, together with the constancy of the principal curvature δ,
implies that a homogeneous real hypersurface M of type (B) satisfies (1.1)
if and only if it satisfies (ii).

When c < 0, we have

λ1 + λ2 =

√
|c|
2

{
coth

(√
|c|
2

r

)
+ tanh

(√
|c|
2

r

)}
=
√
|c| coth(

√
|c| r).

By the same discussion as in the case of c > 0, we also obtain the desired
conclusion.
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