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AN AREA FORMULA IN METRIC SPACES

BY

VALENTINO MAGNANI (Pisa)

Abstract. We present an area formula for continuous mappings between metric
spaces, under minimal regularity assumptions. In particular, we do not require any notion
of differentiability. This is a consequence of a measure-theoretic notion of Jacobian, de-
fined as the density of a suitable “pull-back measure”. Finally, we give some applications
and examples.

1. Introduction. The classical area formula relates the Hausdorff mea-
sure of Lipschitz subsets of the Euclidean space En to the differential of
their parametrizations. Let m ≤ n, let A ⊂ Em be a measurable set and let
f : A→ En be a Lipschitz mapping. Then

(1)
�

A

Jf(x) dHm(x) =
�

En

N(f,A, y) dHm(y),

where N(f,A, y) is the multiplicity function and

Jf(x) =
√

det(Df(x)TDf(x))

is the Jacobian of f , which is a.e. defined by Rademacher’s theorem (see
for instance [3]). This formula easily extends to Lipschitz mappings between
Riemannian manifolds, where the Hausdorff measure Hm in each Rieman-
nian manifold is constructed from the corresponding Riemannian distance
and the Jacobian Jf(x) is computed in a fixed orthonormal basis of the
tangent space at x. The Lipschitz continuity of f can also be weakened to
a suitable Sobolev regularity [10]. Minimal smoothness assumptions for the
area formula have been found [4], and when f has a graph form the sharp
Sobolev regularity has also been established [9].

Formula (1) has also been proved in the non-Riemannian setting of strat-
ified groups [7, 12], where the Hausdorff measure is constructed with respect
to the so-called Carnot–Carathéodory distance or any equivalent homoge-
neous distance.

Even in this framework, the core of the proof is related to a differentiabil-
ity theorem, namely, the almost everywhere differentiability of [11]. In this
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case, the differentials are group homomorphisms, hence it is still possible to
introduce a natural notion of Jacobian in terms of the differential, namely,

Jf(x) =
HQ(Df(x)(B1))
HQ(B1)

= CG,M

√
det(Df(x)TDf(x)),

where Df(x) is the so-called Pansu differential of f at x. This notion of
Jacobian has been introduced in Subsection 3.2 of [7].

In a metric setting, the notion of metric differentiability goes back to the
work of Kirchheim [5], who shows that the Hausdorff measure of a Lipschitz
image of a Euclidean space only depends on the norm of the differential,
without referring to a possible linear structure of the target. The metric
differential of a Lipschitz mapping f : En → (Y, ρ) at a point x is the
seminorm s on En such that

ρ(f(y), f(x))− s(y − x) = o(|y − x|)
as y → x, where |·| is the Euclidean norm on En. If Y is a normed linear space
and f is differentiable at x, then v 7→ ‖Df(x)(v)‖ is the metric differential
at x. The main point about this notion is that all of these Lipschitz mappings
are almost everywhere metrically differentiable and for them an area formula
holds [5] (see also [1]). In this formula the Jacobian of a seminorm s is

J(s) =
ωn

Ln({v ∈ En | s(v) ≤ 1})
,

where Ln is the n-dimensional Lebesgue measure and ωn = Ln({v ∈ En |
|v| ≤ 1}. Clearly, when Y is another Euclidean space, this notion includes
the classical notion of Jacobian. However, in the literature one can find
notions of Jacobian that only use the Hausdorff measure, without involving
any differential (see for instance [11, 12]). In these works one considers the
limit of the quotient

(2)
HQ(f(Bx,r))
HQ(Bx,r)

as r → 0+,

where Q is the Hausdorff dimension of the stratified group G, the Lipschitz
mapping f is defined in G, and Bx,r ⊂ G is the metric ball of center x and
radius r > 0. In Definition 2.21 of [12], the Jacobian is defined as a limit
analogous to (2) and with this notion an area formula for Lipschitz mappings
between stratified groups is proved.

The present note shows that the above notion of Jacobian introduces an
abstract scheme to prove the area formula, which works in a pure metric set-
ting, without relying on any notion of differentiability. In fact, we essentially
regard the Jacobian (2) as the ratio between two measures, then we combine
classical facts on differentiation of measures and other measure-theoretic re-
sults [3].
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Our Theorems 1 and 2 point out the minimal requirements to prove an
area formula for Lipschitz mappings between metric spaces. For instance, the
less general conditions of Example 1 suffice to include all the above mentioned
area formulae, as clarified in Example 2. In all geometric frameworks where
the measure-theoretic area formula holds, one may look for new notions of
differentiability (see Example 3). Even when the almost everywhere metric
differentiability of Lipschitz mappings fails to hold, a metric area formula
can still be written (see Example 4). This should somehow show that this
way of thinking of the measure-theoretic area formula provides us with a
unified approach to study this formula in both known and new geometric
contexts.

2. Metric area formula. Throughout, let (X, d, µ) and (Y, ρ, ν) be
two metric measure spaces, where X is complete and separable, µ is a Borel
regular measure on X, and ν is a Borel measure on Y . We use the term
“measure” for a countably subadditive nonnegative set function. We also
assume that µ is finite on bounded sets and that there exists a µ-Vitali
relation V .

According to 2.8.16 of [3], a subset V of {(x, S) | S is Borel and x ∈ S}
is a µ-Vitali relation if for all x ∈ X we have

inf{diam(S) | (x, S) ∈ V } = 0

and for any C ⊂ V and A ⊂ X such that inf{diam(S) | (y, S) ∈ C} = 0 for
all y ∈ A, we can find a countable disjoint subfamily of {S | (x, S)∈C, x∈A}
whose union covers µ-almost all of A.

The next point is the notion of “pull-back measure” with respect to a
continuous mapping. We appeal to a classical result of N. Lusin, concerning
the universal measurability of analytic sets. A version of this result that can
be found for instance in 2.2.13 of [3] is the following: If X is a complete and
separable metric space and g : X → Y is continuous, then for every Borel
set B ⊂ X the set g(B) is ν-measurable.

Let us fix a closed set E ⊂ X and let f : E → Y be continuous. For each
S ⊂ E, we set ζ(S) = ν(f(S)) and denote by f∗ν the measure arising from
Carathéodory’s construction with size function ζ, defined on the family of
Borel sets (see 2.10.1 of [3]). We say that f∗ν is the pull-back measure of ν
with respect to f . The measure f∗ν extends to the whole of X by setting
f∗ν(A) = f∗ν(A ∩ E) for any A ⊂ X. In the following, E ⊂ X will stand
for any fixed closed set. Notice that f∗ν is a Borel regular measure on E, by
the Carathéodory construction.

The multiplicity function of f : E → Y relative to A is defined as

N(f,A, y) = #(A ∩ f−1(y)) for all y ∈ Y.
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For any Borel set T ⊂ E, Theorem 2.10.10 of [3] yields

(3) f∗ν(T ) =
�

Y

N(f, T, y) dν(y).

From 2.8.16 of [3], for each R-valued function ϕ defined on a subset of V , we
define

(V ) lim sup
S→x

ϕ(S) = lim
ε→0+

sup{ϕ(S) | (x, S) ∈ V, S ∈ dmn(ϕ), diam(S) < ε},

where dmn(ϕ) denotes the domain of ϕ. (V ) lim and (V ) lim inf are intro-
duced in a similar way. With these notions, we can give two possible notions
of metric Jacobian.

Definition 1. Let f : E → Y be continuous and let x ∈ E. Then we
introduce two metric Jacobians of f at x as follows:

(4) Jf (x) = (V ) lim sup
S→x

ν(f(S ∩ E))
µ(S)

, Jf(x) = (V ) lim sup
S→x

f∗ν(S)
µ(S)

.

Remark 1. It is important to notice that when f∗ν is absolutely con-
tinuous with respect to µ and finite on bounded sets, standard arguments
show that

(5) f∗ν(A) =
�

Y

N(f,A, y) dν(y)

for any µ-measurable set A ⊂ E, extending (3) to µ-measurable sets.

We will present in two distinct theorems the metric area formula under
different assumptions, depending on the notion of metric Jacobian we use.

Theorem 1 (Area formula I). Let f : E → Y be continuous and assume
that the pull-back f∗ν is finite on bounded sets and absolutely continuous with
respect to µ. Then Jf is µ-a.e. finite and for all µ-measurable sets A ⊂ E,
we have

(6)
�

A

Jf(x) dµ(x) =
�

Y

N(f,A, y) dν(y).

Proof. Under our assumptions, Theorem 2.9.7 of [3] shows that any µ-
measurable set A ⊂ X is also f∗ν-measurable and the integral formula

f∗ν(A) =
�

A

D(f∗ν, µ, V, x) dµ(x)

holds, where D(f∗ν, µ, V, x) is the density of f∗ν with respect to µ and the
Vitali relation V (see 2.9.1 of [3]). By the definition of metric Jacobian,
for any µ-measurable set A ⊂ E, we have f∗ν(A) =

	
A Jf(x) dµ(x). Thus,

formula (5) concludes the proof.

It should be apparent how in the previous theorem the regularity require-
ments on the mapping f are transferred to the pull-back measure f∗ν. The
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next lemma is a simple variant of Lemma 2.9.3 in [3], where we replace the
Borel regularity of the measure σ with the absolute continuity with respect
to µ.

Lemma 1. Let σ and µ be measures that are finite on bounded sets of X,
where σ is absolutely continuous with respect to µ. Then for any α > 0 and
any µ-measurable set

A ⊂
{
x ∈ X

∣∣∣∣ (V ) lim inf
S→x

σ(S)
µ(S)

< α

}
,

we have σ(A) ≤ αµ(A).

The next version of the metric area formula uses the more manageable
notion of metric Jacobian Jf , hence it requires some additional assumptions
on f .

Theorem 2 (Area formula II). Let f : E → Y be continuous and assume
that the pull-back f∗ν is finite on bounded sets and absolutely continuous with
respect to µ. If A ⊂ E is µ-measurable and there exist disjoint µ-measurable
sets {Ei}i∈N such that

µ
(
E \

⋃
i∈N

Ei

)
= 0,

f|Ei is injective for every i ≥ 1 and Jf (x) = 0 for µ-a.e. x ∈ E0, then

(7)
�

A

Jf (x) dµ(x) =
�

Y

N(f,A, y) dν(y).

Proof. We can assume that any Ei is contained in E. Let us fix ε > 0
and consider a sequence of closed sets Ci ⊂ Ei such that µ(Ei \ Ci) ≤ ε2−i

for any i ∈ N. Let us set fi = f|Ci and notice that for all x ∈ Ci we have

Jfi(x) = (V ) lim sup
S→x

ν(f(S ∩ Ci))
µ(S)

≤ (V ) lim sup
S→x

ν(f(S ∩ E))
µ(S)

= Jf (x).

By Corollary 2.9.9 of [3] applied to both 1Ci and 1Ci Jf , it follows that for
µ-a.e. x ∈ Ci, we have

(V ) lim
S→x

1
µ(S)

�

S

1Ci(z)D(f∗ν, µ, V, z) dµ(z) = Jf(x),(8)

(V ) lim
S→x

1
µ(S)

�

S

D(f∗ν, µ, V, z) dµ(z) = Jf(x).(9)

Now, for all x ∈ Ci such that (8) and (9) hold, we have

Jf (x) = (V ) lim sup
S→x

ν(f(S ∩ E))
µ(S)

≤ (V ) lim sup
S→x

f∗ν(S ∩ E)
µ(S)

= Jf(x)

≤ (V ) lim sup
S→x

ν(f(S ∩ E ∩ Ci))
µ(S)

+ (V ) lim sup
S→x

f∗ν(S ∩ E \ Ci)
µ(S)
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≤ (V ) lim sup
S→x

ν(fi(S ∩ Ci))
µ(S)

+ (V ) lim sup
S→x

f∗ν(S \ Ci)
µ(S)

= (V ) lim sup
S→x

ν(fi(S ∩ Ci))
µ(S)

.

The last equality follows from (8) and (9), hence we get Jf (x) = Jf(x) =
Jfi(x). These equalities hold a.e. in Ci for any i ≥ 1. Let B1 =

⋃∞
i=1Ci and

A1 =
⋃∞
i=1Ei. Then µ(A1 \B1) ≤ ε, since we have shown that the previous

equalities of metric Jacobians hold µ-a.e. in B1. The arbitrary choice of ε
allows constructing an increasing sequence of Borel sets Bi ⊂ A1 such that
µ(A1 \ Bn) ≤ ε/n for all n ≥ 1. In particular, setting B∞ =

⋃∞
n=1Bn, we

have
µ(A1 \Bn)↘ µ(A1 \B∞)

as n→∞ and this limit is zero. Thus, in view of formula (6), we get

f∗ν(A ∩A1) =
�

A∩A1

Jf(x) dµ(x) =
�

A∩A1

Jf (x) dµ(x).

We have obtained the formula

(10) f∗ν(A) =
�

A∩A1

Jf (x) dµ(x) + f∗ν(A ∩ E0).

We have to show that f∗ν(A ∩ E0) = 0. Let us consider for any Z ⊂ X the
“preimage measure” f ]ν(Z) = ν(f(Z)) that is absolutely continuous with
respect to µ. Since the set where Jf > 0 in E0 is µ-negligible and f∗ν is
absolutely continuous with respect to µ, it is not restrictive to assume that
Jf everywhere vanishes on E0. Now, for every ε > 0 and every µ-measurable
bounded set F ⊂ E0, we get f ]ν(F ) ≤ εµ(F ), due to Lemma 1 applied
with σ = f ]ν. This clearly implies f ]ν(E0) = ν(f(E0)) = 0, hence (5) gives
f∗ν(E0) = 0. Then (10) easily guides us to the conclusion.

3. Examples

Example 1. Let (X, d) be a complete and separable metric space, let
α > 0, let (Y, ρ) be a metric space and consider the metric measure spaces
(X, d,Hαd ) and (Y, ρ,Hαρ ). Let E ⊂ X be closed and let f : E → Y be a
Lipschitz mapping. We assume that

(1) Hαd is finite on bounded sets of X,
(2) for Hαd -a.e. x ∈ X,

lim inf
r→0+

Hαd (Dx,r)
rα

> 0.

These conditions imply that V = {(x,Dx,r) : x ∈ X, r > 0} is an Hαd -Vitali
relation, that f∗Hαρ is finite on bounded sets and absolutely continuous with
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respect to Hαd . It follows that the conclusion of Theorem 1 holds, where
µ = Hαd and ν = Hαρ . Furthermore, under these hypotheses for the metric
measure space Y , the conclusion of Theorem 2 also holds. Thus, the metric
area formula of [8] follows as a special case.

Example 2. Let E be a closed subset of a separable metric space X, let
(Y, ρ) be a metric space and let f : E → Y be Lipschitz. Then the conditions
of Example 1 are satisfied in the following known cases:

(1) (X, d, µ) = (En, | · |,Ln).
(2) (X, d, µ) = (M,dg, vg), where M is a complete n-dimensional Rie-

mannian manifold, equipped with the Riemannian distance dg and
volume measure vg.

(3) (X, d, µ) = (G, ‖ · ‖,HQ), where G is a stratified group equipped
with its homogeneous norm ‖ · ‖, HQ is its Q-dimensional Hausdorff
measure constructed with the distance induced by the homogeneous
norm, and Y is any stratified group whose distance is induced by
another homogeneous norm.

Thus, in all of these cases the conclusion of Theorem 1 holds. By [3, 5, 7,
11] in the same cases we have a Rademacher-type theorem with respect to
a proper notion of differentiability, the corresponding area formulae hold
and their Jacobian a.e. coincides with Jf , used in Theorem 1. Furthermore,
the injective decomposition required in Theorem 2 is satisfied in all the
above cases, hence its conclusion also holds and the metric Jacobian Jf of
Theorem 2 in particular a.e. coincides with that of Theorem 1.

Example 3. Let K ⊂ Rn be the invariant set associated to an Iterated
Function System of contraction similarities Si : Rn → Rn satisfying the open
set condition, such that |Si(x) − Si(y)| = ci|x − y| for all x, y ∈ Rn, where
0 < ci < 1 and i = 1, . . . ,m (see for instance [2]). Let s > 0 be the unique
real number such that

∑m
i=1 c

s
i = 1. Then one can check that there exist two

geometric constants c1, c2 > 0 such that

c1 ≤
Hs(K ∩B(x, ρ))

ρs
≤ c2

for all 0 < ρ < min{diam(K), 1}. The open ball B(x, ρ) is defined with
respect to the Euclidean distance, and so is the Hausdorff measure Hs. In
view of the previous example, V = {(x,B(x, r)∩K) : x ∈ X, r > 0} is anHs-
Vitali relation on K. Therefore any Lipschitz mapping defined on the metric
measure space (K, | · |,Hs) with values in a metric measure space (Y, ρ,Hsρ)
satisfies the measure-theoretic area formula (6) and, under the assumptions
of Theorem 2, the measure-theoretic area formula (7). One may ask whether a
suitable notion of differentiability is available to find a Jacobian that depends
on this differential and that fits with our metric Jacobian.
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Remark 2. The previous example may suggest regarding our approach
also as a tool to investigate novel area formulae in settings where suitable
metric differentiable structures are not available yet. In this sense, the condi-
tions of Example 1 essentially represent minimal requirements to investigate
the validity of an area formula.

The next example presents a special case where there is no metric differ-
entiability. Nevertheless, our metric area formula (6) holds.

Example 4. Let us consider the homogeneous distance d of the first
Heisenberg group H1 and the left invariant distance ρ on H1, constructed
in [6]. Recall that ρ is not homogeneous and the inequality ρ ≤ d holds
everywhere. In the above mentioned work, it is proved that I is nowhere
metrically differentiable, according to the notion of [5] extended to the group
setting. We have the maximal oscillations

(11) lim sup
t→0+

ρ(I(xδtz), I(x))
d(xδtz, x)

= 1 and lim inf
t→0+

ρ(I(xδtz), I(x))
d(xδtz, x)

= 0.

Let us define the left invariant distance ρα = ρ+αd on H1, where α ≥ 0. Then
the identity mapping of H1 has Lipschitz constant 1+α. Let us equip (H1, d)
and (H1, ρα) with the Hausdorff measures H4

d and H4
ρα , respectively. Since

H4
d is doubling on (H1, d), by Theorem 2.8.17 of [3], the covering relation

of closed balls {(x,Dx,r) : x ∈ H1, r > 0} forms an H4
d-Vitali relation

in (H1, d). Furthermore, the injectivity of I implies that f∗H4
ρα = H4

ρα ≤
(1 +α)4H4

d. Clearly, the identity mapping I : (H1, d)→ (H1, ρα) is nowhere
metrically differentiable for any α ≥ 0 and f∗H4

ρα satisfies the assumptions
of Theorem 1, hence for any H4

d-measurable set A ⊂ H1,

(12) H4
ρα(A) =

�

A

JI(x)H4
d(x),

where for all x ∈ H1, we have

JI(x) = JI(x) = lim sup
r→0+

H4
ρα(Dx,r)
H4
d(Dx,r)

= lim sup
r→0+

H4
ρα(D0,r)
H4
d(D0,r)

= cα <∞.

Thus we have obtained H4
ρα = cαH4

d with cα ≥ 0. As soon as H4
ρα is positive

on open sets, which is the case for α > 0, the previous equality also follows
by uniqueness of the Haar measure on locally compact Lie groups. Notice
that (12) does not refer to any notion of differentiability, although it turns
out to be a simple change of variable formula for two different measures.
This example also clarifies the dependence of the metric Jacobian on the
fixed measures of the metric spaces.

Remark 3. By approximation with step functions, the metric area for-
mulae (6) and (7) can be extended to all nonnegative measurable mappings
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u : A→ [0,∞], hence

(13)
�

A

u(x)Jf (x) dµ(x) =
�

Y

∑
x∈f−1(y)

u(x) dν(y).
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