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ON THE DIFFERENTIABILITY OF CERTAIN
SALTUS FUNCTIONS
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Abstract. We investigate several natural questions on the differentiability of certain
strictly increasing singular functions. Furthermore, motivated by the observation that for
each famous singular function f investigated in the past, f ′(ξ) = 0 if f ′(ξ) exists and is
finite, we show how, for example, an increasing real function g can be constructed so that
g′(x) = 2x for all rational numbers x and g′(x) = 0 for almost all irrational numbers x.

1. Introduction and statement of results. Let Φ be the family of
all bijective functions from N onto Q. (We do not consider 0 to be a member
of the set N.) For ϕ ∈ Φ define the function Fϕ : R→ R by

Fϕ(x) =
∑

ϕ(n)<x

1
2n

where the summation is extended over all n ∈ N with ϕ(n) < x. This
is the well-known prototype of a strictly increasing real function which is
discontinuous at each rational number and continuous at each irrational
number. (This is a worst case scenario for the monotonic functions because
their points of discontinuity are always countably many and Q is a dense
subset of R.)

Naturally, the image Wϕ of Fϕ is a subset of the open interval ]0, 1[ and
0 and 1 are limit points of Wϕ. Moreover, Fϕ is a saltus function with a
jump to the right of height 2ϕ

−1(r) at each r ∈ Q. Thus the open intervals
In = ]Fϕ(ϕ(n)), Fϕ(ϕ(n)) + 2−n[ (n ∈ N) are mutually disjoint and disjoint
from Wϕ. As a consequence, the set Wϕ is null and nowhere dense. But
trivially, Wϕ has the cardinality of the continuum.

As an increasing function, Fϕ is differentiable almost everywhere. Let Eϕ
be the set of all reals at which Fϕ is not differentiable. Thus Eϕ is a null set
containing Q. As a consequence of Fort’s theorem [2], Eϕ is always residual,
i.e. R \ Eϕ is of first category. (This can also be shown in a direct way:
Since Fϕ is increasing and |Fϕ(x) − Fϕ(y)| ≥ 2−n whenever x < ϕ(n) < y,
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the function Fϕ cannot be differentiable at any point in the residual set⋂∞
k=1

⋃∞
n=k]ϕ(n)− 3−n, ϕ(n) + 3−n[.)

In particular, Fϕ is not differentiable at infinitely many points of conti-
nuity. Moreover, [a, b]∩Eϕ has the cardinality of the continuum for arbitrary
a < b and ϕ ∈ Φ. This statement can be sharpened in the following way.

Theorem 1. For arbitrary a < b one can find a nowhere dense null set
Z of irrational numbers in [a, b] such that Z ∩ Eϕ has the cardinality of the
continuum for each ϕ ∈ Φ.

Since obviously Fϕ is the limit of a series of monotonic step functions,
Fϕ is a singular function, i.e. its first derivative exists and vanishes almost
everywhere. But there is a stronger argument for {x ∈ R \ Eϕ | F ′ϕ(x) 6= 0}
being a null set. In fact, this set is always empty! Moreover, the following is
true.

Theorem 2. Independently of ϕ ∈ Φ, there never exists a real ξ such
that Fϕ has a right or a left derivative at ξ which is finite and non-vanishing.

Let Φ0 be the family of all ϕ ∈ Φ such that ϕ−1(r) ≥ q for every ra-
tional number r with least positive denominator q. Note that ϕ ∈ Φ0 if ϕ
is either the standard numbering of the rational numbers using Farey se-
quences or the popular numbering of Q which uses a spiral path through
all points in the lattice Z2 starting with (0, 0). If r1, r2, . . . is the beauti-
ful sequence 1

1 ,
1
2 ,

2
1 ,

1
3 ,

3
2 ,

2
3 ,

3
1 ,

1
4 ,

4
3 ,

3
5 ,

5
2 ,

2
5 ,

5
3 ,

3
4 ,

4
1 , . . . of all positive rational

numbers given in [1], then ϕ0 ∈ Φ0 where ϕ0 is defined by ϕ0(1) = 0 and
ϕ0(2n) = rn and ϕ0(2n+ 1) = −rn for every n ∈ N.

Theorem 3. If ϕ ∈ Φ0 then the first derivative of Fϕ exists and vanishes
at each algebraic irrational number.

Despite Theorems 1 and 3 it is small wonder that the set Eϕ depends
strongly on the choice of ϕ.

Theorem 4.

(i) For every countable set X ⊂ R one can choose ϕ ∈ Φ such that
X ⊂ Eϕ and additionally F ′ϕ(x) =∞ for all x ∈ X.

(ii) On the other hand, for every countable set X of irrational numbers
one can choose ϕ ∈ Φ0 such that X ∩ Eϕ = ∅ and F ′ϕ(x) = 0 for all
x ∈ X.

For ϕ ∈ Φ let Ωϕ be the set of all points ξ ∈ R at which Fϕ has an infinite
derivative. Since differentiability means the existence of a finite derivative,
Ωϕ ⊂ Eϕ. In particular, Ωϕ is always a null set. The following theorem shows
that there are ϕ such that the set Ωϕ is extremely small and rather large,
respectively.
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Theorem 5.

(i) If ϕ ∈ Φ0 then Ωϕ = ∅.
(ii) If a < b then [a, b] ∩ Ωϕ has the cardinality of the continuum for

some ϕ ∈ Φ.

By Theorem 4, for every countable X ⊂ R we can achieve X ⊂ Ωϕ for
some ϕ ∈ Φ. Since Ωϕ is null, in view of Theorem 5(ii) the question arises
whether X ⊂ Ωϕ is possible for an arbitrary null set X or at least for an
arbitrary nowhere dense null set X. The following theorem gives a negative
answer.

Theorem 6. Let D be the Cantor ternary set. Then for every ϕ ∈ Φ the
set D \Ωϕ has the cardinality of the continuum.

Let F be the family of all real monotonic functions f defined on an
arbitrary (nondegenerate) interval I such that f ′(x) = 0 for almost all x ∈ I.
Let F∗ be the family of all functions f in F such that f ′(x) 6= 0 for at least
one point x at which f is differentiable. By Theorem 2 all functions Fϕ
lie in F \ F∗. Further, the classical Cantor function (the devil’s staircase)
lies in F \ F∗. Also the famous Riesz–Nagy function (see [5, 18.8]) and
Minkowski’s Fragefunktion (see [6, p. 345]) and the interesting function F3,2

recently investigated in [6], which are all strictly increasing and singular,
have the property that at each point the derivative is 0 or ∞ or does not
exist. Since no example of a function in F∗ seems to be known, the question
arises whether F∗ = ∅.

In order to solve this question we modify the definition of our functions
Fϕ and consider saltus functions Gϕ : R→ R for ϕ ∈ Φ which are defined by

Gϕ(x) =
∑

ϕ(n)<x

1
n2
.

Of course, just as the functions Fϕ, all functions Gϕ are strictly increasing
and continuous precisely at the irrational numbers. (The image of Gϕ is a
null and nowhere dense subset of ]0, π2/6[.) Certainly, all functions Gϕ lie
in F . Now, the following theorem implies that F∗ 6= ∅.

Theorem 7. For every sequence of distinct irrational numbers ξ1, ξ2, . . .
and every sequence c1, c2, . . . of positive real numbers there is a ϕ ∈ Φ such
that Gϕ is differentiable at ξk and G′ϕ(ξk) = ck for every k ∈ N.

By Theorem 7 we may choose ϕ so that G′ϕ(r+ π) = 2r for every r ∈ Q
and then g(x) := Gϕ(x + π) defines a function g : R → R as mentioned in
the abstract.

Despite Theorem 7 it is not true that for every ϕ ∈ Φ there are points
ξ such that 0 < G′ϕ(ξ) < ∞. (For a counterexample choose any ϕ ∈ Φ
which maps {2n | n ∈ N} onto Q \ Z and define ψ ∈ Φ anyhow so that
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ψ(m) = ϕ(2m/2) for every even m ∈ N. Then for every k ∈ Z there is a
constant τk such that Gϕ(x) = Fψ(x) + τk whenever k < x ≤ k + 1.)

Let E ′ϕ be the set of all reals at which Gϕ is not differentiable. Theorem 1
remains true when Fϕ is replaced by Gϕ and Eϕ is replaced by E ′ϕ because
Eϕ ⊂ E ′ϕ for every ϕ ∈ Φ. (Note that G′ϕ(ξ) = c with 0 ≤ c < ∞ implies
F ′ϕ(ξ) = 0 since limk→∞ 2kk−2 = ∞ and

∑
n∈N n

−2 ≥ 2mm−2 ·
∑

n∈N 2−n

whenever ∅ 6= N ⊂ N and 3 ≤ m = minN .) Further, in view of its proof
it is not difficult to verify that the second statement of Theorem 4 remains
true as well when Fϕ is replaced by Gϕ. Trivially this is also the case con-
cerning Theorem 5(ii) and the first statement of Theorem 4 since, naturally,
G′ϕ(ξ) = ∞ when F ′ϕ(ξ) = ∞. But Theorem 3 has no counterpart for the
functions Gϕ.

Theorem 8. For each irrational ξ there exists a ϕ ∈ Φ0 such that Gϕ
is not differentiable at ξ.

2. Proof of Theorem 1. For irrational ξ let [bn]n≥0 be the continued
fraction expressing ξ and let An/Bn = [b0, . . . , bn] denote the nth convergent
to ξ where An, Bn are coprime integers and Bn > 0. Consequently, 0 <
(−1)n(ξ −An/Bn) < (BnBn+1)−1 for every n ∈ N.

Lemma 1. If logBn+1 > ϕ−1(An/Bn) for infinitely many n ∈ N, then
Fϕ is not differentiable at ξ.

Proof. Put hn = 9
8(An/Bn − ξ) for n ∈ N. Naturally, the sequence hn

tends to 0 as n → ∞. Further, for arbitrary h 6= 0 and m ∈ N we have
|Fϕ(ξ + h) − Fϕ(ξ)| ≥ 2−m when the rational number ϕ(m) lies between ξ
and ξ+h. Since ξ < An/Bn < ξ+hn when hn > 0 and ξ+hn < An/Bn < ξ
when hn < 0, and since 8

9 |hn| < (BnBn+1)−1, we have, for every n ∈ N,

h−1
n (Fϕ(ξ + hn)− Fϕ(ξ)) ≥ 8

9BnBn+12−mn

where ϕ(mn) = An/Bn. This concludes the proof of Lemma 1 because
Bn+12−mn ≥ 1 for infinitely many n ∈ N, and certainly Bn → ∞ as
n→∞.

Proof of Theorem 1. For fixed a < b we construct a null and nowhere
dense subset Z of [a, b] \ Q such that for each ϕ ∈ Φ there is a set S ⊂ Z
with the cardinality of the continuum such that Lemma 1 can be applied
to all numbers in S. First we choose δ > 0 and an irrational ξ expressed
by the continued fraction [bn]n≥0 so that a < ξ ± δ < b. Now fix N ∈ N
large enough that BN >

√
2/δ. Then every irrational number ξ′ = [b′n]n≥0

lies between a and b when bn = b′n for every n = 0, 1, . . . , N because then
|ξ − ξ′| ≤ |ξ − AN/BN | + |ξ′ − AN/BN | < 2/B2

N < δ since (AN , BN ) =
(A′N , B

′
N ).
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Now let Z be the set of all irrational numbers [b0, b1, . . . , bN , zN+1,
zN+2, . . .] with zn > n2 for every n > N . Then Z ⊂ [a, b] and Z is nowhere
dense because the closure of Z is a subset of Z ∪ Q and every interval of
positive length certainly contains an irrational number with continued-frac-
tion expansion [a0, a1, a2, . . .] having an = 1 for some n > N . In view of
[3, Theorem 197] it is clear that Z is a null set.

Starting with our sequence b0, b1, . . . , bN we define recursively two se-
quences b1N+1, b

1
N+2, . . . and b2N+1, b

2
N+2, . . . of integers such that n2 < b1n< b

2
n

for every n > N . Then we consider all sequences (cn)n≥0 with cn = bn for
every n ≤ N and cn ∈ {b1n, b2n} for every n > N . Clearly, the family of all
these sequences has the cardinality of the continuum and yields an equipo-
tent set S of irrational numbers in Z by associating to each sequence (cn)n≥0

the continued fraction [cn]n≥0. It remains to show that this can be done so
that Lemma 1 can be applied to each number in S.

Put b1N = b2N = bN and suppose that b1k and b2k are already defined for
n ≥ k ≥ N . Then choose integers b1n+1, b

2
n+1 so that b2n+1 > b1n+1 > (n+ 1)2

and

min{logB([b0, . . . , b
i(N)
N , . . . , b

i(n+1)
n+1 ]) | i(k) ∈ {1, 2} (N ≤ k ≤ n+ 1)}

> max{ϕ−1([b0, . . . , b
i(N)
N , . . . , bi(n)

n ]) | i(k) ∈ {1, 2} (N ≤ k ≤ n)},
where B(r) = q when r = p/q with coprime p, q ∈ Z and q > 0. By construc-
tion, for each continued fraction [bn]n≥0 with bn ∈ {b1n, b2n} for every n > N
we have logBn+1 > ϕ−1(An/Bn) and therefore we may apply Lemma 1.

3. Proof of Theorem 2. It is enough to deal with the right derivative
case. Suppose that the right derivative of Fϕ at ξ equals a real number
c 6= 0. Since Fϕ is increasing, c is positive. Let x ∈ R be such that c = 2x.
For each m ∈ N define

N (m) := {n ∈ N | ξ ≤ ϕ(n) < ξ + 2−m} and µ(m) := minN (m).

Then for every ε > 0 there is a positive integer Nε such that 2x−ε < ∆m

< 2x+ε for every integer m ≥ Nε where

∆m :=
Fϕ(ξ + 2−m)− Fϕ(ξ)

2−m
= 2m ·

∑
n∈N (m)

2−n.

If N is a nonempty subset of N with minimum µ, then of course

2−µ ≤
∑
n∈N

2−n ≤ 21−µ.

Consequently, m− x− ε < µ(m) < 1 +m− x+ ε for every integer m ≥ Nε.
Now we distinguish between the two cases x ∈ Z and x 6∈ Z. Suppose first
that x 6∈ Z and fix ε > 0 so that [x − ε, x + ε] ∩ Z = ∅. Thus for each
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integer m ≥ Nε the interval [m − x − ε, 1 + m − x + ε] contains precisely
one integer, which must be µ(m). Hence N (Nε) ⊃ [Nε − x− ε,∞[∩Z since
µ(m) ∈ N (m) ⊂ N (Nε) for every integer m ≥ Nε and

⋃
m≥Nε [m − x − ε,

1 +m− x+ ε] ∩ Z = [Nε − x− ε,∞[ ∩ Z.
Therefore the set N\N (Nε) must be finite, but this is impossible because

there are infinitely many rationals outside the interval [ξ, ξ + 2−Nε ] which
have to be numbered by ϕ.

Suppose secondly that x ∈ Z. Then we fix ε = 1/4 in order to conclude
from m − x − ε < µ(m) < 1 + m − x + ε that µ(m) ∈ {m − x, 1 + m − x}
for every integer m ≥ Nε. Now we choose an integer r ≥ Nε such that
1 + r− x 6∈ N (Nε). (This can be done because N \ N (Nε) is infinite.) Since
µ(r), µ(r+ 1) ∈ N (Nε), we have µ(r), µ(r+ 1) 6= 1 + r− x and therefore we
must have r−x = µ(r) ∈ N (r) and 2+r−x = µ(r+1) ∈ N (r+1) ⊂ N (r).
But then

∆r = 2r ·
∑

n∈N (r)

2−n > 2r · (2−(r−x) + 2−(2+r−x)) =
5
4
· 2x

contrary to ∆m < 2ε+x = 4
√

2 · 2x < 5
4 · 2

x for every integer m ≥ Nε.

4. Vanishing derivatives. A proof of the following lemma is a nice
exercise in analysis.

Lemma 2. Let f : R→ R be monotonic on [x− δ, x+ δ] with fixed x ∈ R
and δ > 0. If (hn) is a decreasing sequence of positive numbers tending to 0
such that (hn/hn+1) is bounded and the sequence (h−1

n ·|f(x+hn)−f(x−hn)|)
tends to 0, then f is differentiable at x with a vanishing first derivative.

For ϕ ∈ Φ and any interval I of positive length define mϕ(I) to be the
least m ∈ N such that the rational number ϕ(m) lies in I. Clearly we always
have the estimate ∑

ϕ(n)∈I

1
2n
≤ 21−mϕ(I).

Consequently, for all x ∈ R and h > 0 we have

|Fϕ(x+ h)− Fϕ(x− h)| ≤ 21−M

with M = mϕ([x− h, x+ h[).
Therefore, since for x fixed Fϕ(x + h) − Fϕ(x − h) increases when h

increases, Lemma 2 implies

Lemma 3. Let ξ be an irrational number and ϕ ∈ Φ and fix k ∈ N. Let
Mn = mϕ([ξ − n−k, ξ + n−k[) for every n ∈ N. If the sequence (n−k2Mn)
tends to ∞ as n → ∞, then Fϕ is differentiable at ξ with a vanishing first
derivative.
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Proof of Theorem 3. We make use of the following lemma which is clearly
true if ξ ∈ Q, and a straightforward consequence of Liouville’s theorem
(cf. [3, 11.7]) if ξ 6∈ Q.

Lemma 4. If ξ ∈ R is algebraic then there exists a positive integer k
such that for each n ∈ N the estimate 0 6= |ξ − r/s| ≤ n−k is only possible
for r, s ∈ Z and s > 0 if s ≥ n.

Now suppose that ϕ ∈ Φ0. Let ξ, k,Mn be as in Lemma 3 and (with
ξ 6∈ Q) Lemma 4. By Lemma 4 we must have Mn ≥ n for every n ∈ N since
ϕ(m) = r/s with r, s ∈ Z and 0 < s ≤ m for every m ∈ N. Thus (n−k2Mn)
tends to ∞ and therefore Theorem 3 follows from Lemma 3.

Remark. More generally, Theorem 3 is true for every irrational number
which is not a Liouville number. Indeed, by definition (cf. [7]), ξ ∈ R is
Liouville if and only if for every k ∈ N there are integers p, q with q ≥ 2 such
that 0 6= |ξ− p/q| < q−k. (An equivalent definition of the Liouville numbers
which uses continued fractions and is useful for concrete constructions can
be found in [8, §35]. Every Liouville number is transcendental and (cf. [7])
the set of all Liouville numbers is both null and residual.) Consequently, if
ξ ∈ R is not a Liouville number then the conclusion of Lemma 4 is true
for ξ even when ξ is transcendental. (Famous examples of transcendental
numbers which are not Liouville are π, e, ln 2, cf. [4].)

Proof of Theorem 4(ii). We will prove a little more than claimed. Let X
be any Fσ-set of irrational numbers, i.e. the union of a sequence X1, X2, . . . of
closed sets of irrational numbers. (So X may be uncountable and even R\X
may be a null set.) For ∅ 6= S ⊂ R and a ∈ R let d(a, S) = inf{|a−s| | s ∈ S}
be the Euclidian distance between the point a and the set S. Naturally, if S
is closed then d(a, S) = 0 if and only if a ∈ S. In particular d(r,Xn) > 0 for
all r ∈ Q and n ∈ N. We get an appropriate ϕ ∈ Φ0 in the following way.
We define an injective function ψ from Q \ Z to N such that N \ ψ(Q \ Z)
is infinite, whence ψ can be extended to a bijection from Q onto N. Then
we define ϕ to be the inverse of this bijection. Specifically, if p/q 6∈ Z with
coprime p, q ∈ Z and q ≥ 2 then we put

ψ(p/q) :=
√

2
1+|p|/p · 3|p| · 5q · 7δ(p/q)

where δ(p/q) is the least positive integer which is not smaller than

max{d(p/q,Xi)−1 | i = 1, . . . , q}.
Obviously, the function ψ is well defined and injective on Q \ Z and can
be extended to a bijection ψ : Q → N. Naturally, ϕ := ψ−1 lies in the
family Φ0. In order to verify that F ′ϕ(ξ) = 0 for each ξ ∈ X we fix m ∈ N so
that ξ ∈ Xm and apply Lemma 3 with k = 1. Certainly, for sufficiently large
n ∈ N no integer lies in the interval [ξ− 1/n, ξ+ 1/n] and a rational p/q lies
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in this interval only if q ≥ m. By definition, for such a rational we always
have δ(p/q) ≥ d(p/q,Xm)−1 ≥ |p/q − ξ|−1 ≥ n. Therefore Mn > 7n for all
sufficiently large n, and this completes the proof since (n−127n) tends to
infinity.

Remark. As we have just seen, Theorem 4(ii) remains true when X is
assumed to be a subset of an Fσ-set of irrational numbers. Although such
a set X must be meager, Theorem 1 does not allow us to replace countable
with meager in (ii). Such a replacement is also impossible in (i) since any
meager set X ⊂ R which is not null would naturally be a counterexample.
(An even better counterexample is provided by Theorem 6 since D is a
nowhere dense null set.)

With the help of vanishing left derivatives Theorem 8 is quickly proved.

Proof of Theorem 8. For n ∈ N let An/Bn be the nth convergent to ξ,
so that |ξ − An/Bn| < (BnBn+1)−1 for every n ∈ N. Now fix N ∈ N large
enough to enable a choice of ϕ ∈ Φ0 such that ϕ(Bn) = An/Bn for every
odd n ≥ N . Since An/Bn > ξ for every odd n, in view of the proof of
Theorem 4(ii) we can certainly achieve that additionally the left derivative
of Gϕ exists and vanishes at ξ. Then with hn = (BnBn+1)−1 we have

Gϕ(ξ + hn)−Gϕ(ξ)
hn

≥ 1
hn
· 1
B2
n

=
Bn+1

Bn
≥ 1

for every odd n ≥ N . Hence the right derivative of Gϕ at ξ cannot vanish if
it exists.

5. Infinite derivatives. The following variation of Lemma 2 is evi-
dently true.

Lemma 5. Let f : R→ R be increasing on [ξ − δ, ξ + δ] with fixed ξ ∈ R
and δ > 0. If (xn) is a decreasing sequence of positive numbers tending to 0
such that

lim
n→∞

f(ξ + xn+1)− f(ξ)
xn

=∞ resp. lim
n→∞

f(ξ)− f(ξ − xn+1)
xn

=∞

then the right resp. left derivative of f at ξ is ∞.

Proof of Theorem 4(i). Let P denote the set of all primes and choose
distinct reals ap(p ∈ P) so that X ⊂ {ap | p ∈ P}. If X is infinite, we
may assume that X = {ap | p ∈ P}. We want to define ϕ ∈ Φ so that for
every p ∈ P and every n ∈ N the rational number ϕ(pn) lies in the interval
]ap, ap+3−p

n+2
[ when n is even, and in ]ap−3−p

n+2
, ap[ when n is odd. Then

for each ap ∈ X with hn := (−1)n3−p
n

we have

|hn|−1 · |Fϕ(ap + hn+2)− Fϕ(ap)| ≥ 3p
n · 2−pn →∞ (n→∞)

and therefore F ′ϕ(ap) =∞ in view of Lemma 5.
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Now to achieve this, for p ∈ P put Rp := {m/pn | m ∈ Z ∧ n ∈ N} \ Z.
Naturally, each set Rp is dense. Hence for every p ∈ P and every n ∈ N we
may choose ϕ(pn) in ]ap + 3−p

n+4
, ap + 3−p

n+2
[ ∩Rp when n is even, and in

]ap − 3−p
n+2

, ap − 3−p
n+4

[ ∩Rp when n is odd. Doing so we get an injective
function from M := {pn | p ∈ P, n ∈ N} into Q \ Z since all the sets Rp
are mutually disjoint and for each p ∈ P all the intervals ]ap± 3−i, ap± 3−j [
are mutually exclusive. Since N \M is infinite, this injection can easily be
extended to a bijection ϕ ∈ Φ which fits automatically. This concludes the
proof of the first statement of Theorem 4.

Proof of Theorem 5(i). We will prove a little more than claimed. For
ϕ ∈ Φ let Ω+

ϕ resp. Ω−ϕ be the set of all points ξ ∈ R such that the right
resp. left derivative of Fϕ is infinite at ξ. Then Ωϕ = Ω+

ϕ ∩Ω−ϕ and it is clear
that always Ω+

ϕ ⊃ Q. Theorem 5(i) is an immediate consequence of

Theorem 9. If ϕ ∈ Φ0 then Ω−ϕ = ∅ and Ω+
ϕ = Q.

Proof. Let ϕ ∈ Φ0 and assume indirectly that Ω−ϕ 6= ∅ and choose
ξ ∈ Ω−ϕ . The left derivative of Fϕ is infinite at ξ and hence there is a lower
bound M ∈ N such that

2m ·
∑

ξ−2−m≤ϕ(n)<ξ

1
2n

> 1

for every m ≥ M . Suppose there were some m ≥ M such that ϕ−1(a) > m
for every rational a with ξ − 2−m ≤ a < ξ. Then

2m ·
∑

ξ−2−m≤ϕ(n)<ξ

1
2n
≤ 2m ·

∞∑
n=m+1

1
2n

= 1,

contrary to the above. It follows that for every m ≥ M there exists n ≤ m
such that ξ−2−m ≤ ϕ(n) < ξ. Consequently, since ϕ ∈ Φ0, for every m ≥M
there are coprime integers p, q such that 0 < q ≤ m and |ξ− p/q| ≤ 2−m. In
view of the lemma below this is impossible provided that ξ 6∈ Q. And the
following remark is a strong argument that ξ 6∈ Ω−ϕ whenever ξ ∈ Q. In a
similar way we get a contradiction from the assumption that Ω+

ϕ contains
an irrational number ξ.

Remark. By applying Lemma 4 for rational ξ and in view of the proof
of Theorem 3, if ϕ ∈ Φ0 then at each rational number the left derivative of
Fϕ must exist and vanish.

Lemma 6. For each irrational number ξ there exist infinitely many pos-
itive integers m such that |ξ − p/q| ≥ 1/(2m2) whenever p, q ∈ Z and
0 < q ≤ m.
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Proof. Let ξ be an irrational number and for every n ∈ N let An/Bn be
the nth convergent to ξ where An, Bn are coprime and Bn > 0. For each
k ∈ N put mk := (Bk +Bk+1 + τk)/2 with τk ∈ {0, 1} so that mk ∈ N.
We have m1 < m2 < · · · since always Bk < Bk+1. Further, since always
Bn+2 ≥ Bn+1 + Bn, for every k ≥ 3 we have Bk−1 ≥ 2. In order to prove
Lemma 6 we verify for every k ≥ 3 that |ξ − p/q| ≥ 1/(2m2

k) whenever
p, q ∈ Z and 0 < q ≤ mk. Assume indirectly that there is k ≥ 3 such
that both 0 < q ≤ mk and |ξ − p/q| < 1/(2m2

k) for certain p, q ∈ Z. Then
|ξ− p/q| < 1/(2q2) and therefore, as a well-known consequence (cf. [3, The-
orem 184]), the rational number p/q must be a convergent to ξ, whence
p/q = An/Bn for some n ∈ N. We have Bn ≤ q (with Bn = q if p, q are
coprime) and hence Bn ≤ mk. Moreover, n ≤ k since Bn ≤ mk < Bk+1.
(Note that from Bk+1 ≥ Bk + Bk−1 ≥ Bk + 2 we derive 2Bk+1 ≥ Bk+1 +
Bk + 2 > 2mk.) Consequently, Bn + Bn+1 ≤ Bk + Bk+1 ≤ 2mk. Naturally
(cf. [8, §13, (12)]), ∣∣∣∣ξ − An

Bn

∣∣∣∣ > 1
Bn(Bn +Bn+1)

and thus we arrive at the contradiction
1

2m2
k

>

∣∣∣∣ξ − p

q

∣∣∣∣ =
∣∣∣∣ξ − An

Bn

∣∣∣∣ > 1
mk · (2mk)

.

Proof of Theorem 5(ii). Let a < b and assume without loss of generality
that a, b ∈ Q. Put θm = (b − a) · 257−2m and choose an injective function
ϕ from the positive even numbers into Q ∩ [a, b] and, by analogy with the
construction of a Cantor set, intervals Im,1, Im,2, . . . , Im,2m (m = 1, 2, . . .)
so that the following properties are satisfied for each m ∈ N:

(1) I1,1 = [a, a+ θ1], I1,2 = [b− θ1, b] and ϕ(2) = a, ϕ(4) = b.
(2) Im,1, Im,2, . . . , Im,2m are mutually disjoint compact intervals of

length θm each.
(3) The 2 · 2m endpoints of the intervals Im,i are the rational numbers

ϕ(n) with n running through the even numbers up to 4 · 2m.
(4) For m′ = m+ 1 the 2m

′
intervals Im′,j are placed so that each Im′,j

is a subinterval of some Im,i with one common endpoint.

Naturally, the nonempty compact set

S =
∞⋂
m=1

2m⋃
n=1

Im,n

is a perfect subset of [a, b] and hence it has the cardinality of the continuum.
Extend ϕ in any way to a numbering of all rational numbers. We con-

clude the proof by verifying F ′ϕ(ξ) =∞ for all irrational ξ ∈ S. Let ξ ∈ S\Q.
Then for every m ∈ N we can find an interval Im,j which contains ξ. We have



DIFFERENTIABILITY OF SALTUS FUNCTIONS 25

Im,j = [ϕ(n), ϕ(n′)] for some even n, n′ ≤ 4 · 2m. Thus ξ < ϕ(n′) < ξ + θm
and ξ − θm < ϕ(n) < ξ for some n, n′ ≤ 2m+2. Hence for every m ∈ N,
both

1
θm−1

·
∑

ξ≤ϕ(n)<ξ+θm

1
2n

and
1

θm−1
·

∑
ξ−θm≤ϕ(n)<ξ

1
2n

are not smaller than

1
θm−1

· 1
22m+2 =

1
b− a

(
257
256

)2m−1

→∞ (m→∞).

Consequently,

lim
m→∞

Fϕ(ξ ± θm)− Fϕ(ξ)
±θm−1

=∞

and therefore F ′ϕ(ξ) =∞ by applying Lemma 5.

Proof of Theorem 6. Define mutually disjoint compact intervals

I(m, 1), I(m, 2), . . . , I(m, 2m)

of length 3−m for every m ∈ N in the usual way so that

D =
∞⋂
m=1

2m⋃
n=1

I(m,n)

and so that for arbitrary m, k ∈ N every interval I(m, ·) contains pre-
cisely 2k intervals I(m + k, ·). Let ϕ ∈ Φ be arbitrary and put Q(n) :=
{ϕ(1), . . . , ϕ(n)}. We claim that for every m ≥ 2 we can find distinct
intervals Im,k (k = 1, . . . , 2m−1) disjoint from Q(2m2) in the collection
{I(m2, n) | n ≤ 2m

2} such that for every m ≥ 2 each interval Im,k con-
tains precisely two disjoint intervals Im+1,i, Im+1,j .

In order to verify this, start with m = 2. At most eight of the sixteen
intervals I(4, ·) meet the set Q(8) and hence at least two intervals I(4, ·)
are disjoint from Q(8). For arbitrary m ≥ 2 each interval I(m2, ·) contains
precisely 2(m+1)2−m2

intervals I((m+1)2, ·) of which at most 2(m+1)2 meet
Q(2(m + 1)2), whence at least two of them are disjoint from Q(2(m + 1)2)
because 2(m+1)2−m2 − 2(m+ 1)2 ≥ 2.

Naturally,

Y :=
∞⋂
m=2

2m−1⋃
k=1

Im,k

is a subset of D and Y has the cardinality of the continuum. We finish the
proof by showing that F ′ϕ(ξ) =∞ is impossible for ξ ∈ Y.

Let ξ ∈ Y. Then {ξ} =
⋂∞
m=2[am, bm] where for every m ≥ 2 we have

[am, bm] = I(m2, n) for some n ≤ 2m
2

with I(m2, n)∩Q(2m2) = ∅. Therefore



26 G. KUBA

every interval [am, bm] has length 3−m
2

and contains a rational ϕ(n) only if
n > 2m2. Hence

3m
2 ·

∑
am≤ϕ(n)<bm

1
2n
≤ 3m

2 ·
∞∑

n=2m2+1

1
2n

=
(

3
4

)m2

→ 0 (m→∞).

Now for every m ≥ 2 we may choose cm ∈ {am, bm} so that |cm − ξ| ≥
1
2(bm − am) = 1

23−m
2
. Then limm→∞ cm = ξ and for every m ≥ 2 we have

cm 6= ξ and

Fϕ(ξ)− Fϕ(cm)
ξ − cm

≤ Fϕ(bm)− Fϕ(am)
1
2(bm − am)

= 2 · 3m2 ·
∑

am≤ϕ(n)<bm

1
2n
→ 0 (m→∞).

Hence F ′ϕ(ξ) =∞ is impossible.

6. Positive derivatives. Finally it remains to prove our probably most
surprising theorem.

Proof of Theorem 7. Define three sequences (ak), (bk), (dk) of positive
even numbers such that with Ak = {ak +ndk | n ∈ N} and Bk = {bk +ndk |
n ∈ N} all the elements in the family {Ak | k ∈ N} ∪ {Bk | k ∈ N} are
mutually disjoint sets of even numbers. (Choose for example ak = 2 · 3k and
bk = 4 · 3k and dk = 2 · 3k+1.) For each k ∈ N define a strictly decreasing se-
quence (x(k)

m ) which tends to 0 as m→∞ by x(k)
m := (ckd2

km)−1. Elementary
asymptotic analysis yields

∞∑
n=m

1
(s+ ndk)2

=
1

d2
km

+O

(
1
m2

)
(6.1)

= ckx
(k)
m +O((x(k)

m )2) (m→∞)

for each k, s ∈ N. Now put δ1 = 1 and δk := min{|ξi − ξk| | i < k} for
all integers k ≥ 2. Then choose mk ∈ N for every k ∈ N such that with
yk := x

(k)
mk = (ckd2

kmk)−1,

yk +
√
ckyk < δk/2,(6.2)

2ck+1yk+1 ≤ ckyk,(6.3)

max
{ ∞∑
n=mk

1
(ak + ndk)2

,
∞∑

n=mk

1
(bk + ndk)2

}
≤ 2ckyk,(6.4)

for each k ∈N. DefineXk ⊂Ak and Yk ⊂Bk byXk = {ak+ndk | mk ≤ n∈N}
and Yk = {bk + ndk | mk ≤ n ∈ N}. Now we define our desired ϕ ∈ Φ first
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on D :=
⋃
{Xk ∪ Yk | k ∈ N} by choosing for each k ∈ N and every integer

n ≥ mk,

ϕ(ak + ndk) ∈ ]ξk + x
(k)
n+1, ξk + x(k)

n [ ∩Q \ Z,

ϕ(bk + ndk) ∈ ]ξk − x(k)
n , ξk − x

(k)
n+1[ ∩Q \ Z.

By using the disjoint sets Rp (p ∈ P) of the proof of Theorem 4 these choices
can be made so that ϕ is injective on D. Then we extend ϕ (well-defined
and injective) by defining ϕ−1 on Q \ (Z ∪ ϕ(D)) via

ϕ−1(p/q) :=
√

13
1+|p|/p · 3|p| · 5q · 7δ(p/q)

where p, q are coprime integers and q ≥ 2 and where δ(p/q) is the least
positive integer not smaller than max{|p/q − ξi|−1 | i = 1, . . . , q}. This
extension is clearly possible because ϕ−1(p/q) is always odd by definition
and D contains only even numbers. Finally we extend ϕ in any way to a
bijection from N onto Q.

Now fix κ ∈ N and for abbreviation put ξ := ξκ and xm := x
(κ)
m for every

m ∈ N. For k,m ∈ N let Im,k := [ξk − yk, ξk + yk] ∩ [ξ − xm, ξ + xm]. We
claim that

(6.5) ∀m, k ∈ N : k > κ ∧ Im,k 6= ∅ ⇒ ckyk ≤ x2
m.

Indeed, if k > κ then ξ 6∈ [ξk − yk, ξk + yk] since by (6.2), yk < δk ≤ |ξk − ξ|.
Therefore, if additionally Im,k 6= ∅ for any m then we clearly must have
xm + yk ≥ |ξk − ξ| ≥ δk and thus ckyk > x2

m would imply
√
ckyk + yk >

xm + yk ≥ δk contrary to (6.2).
In order to conclude the proof by verifying G′ϕ(ξ) = cκ we take into

account the following three issues.
First, there clearly exists a bound δ > 0 such that Z∪ϕ(

⋃κ−1
k=1(Xk ∪Yk))

is disjoint from [ξ − δ, ξ + δ]. We claim that the set

Km := {k ∈ N | k > κ ∧ Im,k 6= ∅}

is empty for some m ∈ N if and only if ξ is not a limit point of the set
{ξ1, ξ2, . . .}. Indeed, if Km is empty for some m then for every k > κ we
have Im,k = ∅ and hence ξk 6∈ [ξ − xm, ξ + xm], whence ξ cannot be a limit
point of {ξ1, ξ2, . . .}. Conversely, if ξ is not a limit point then we may choose
h > 0 so that ξk 6∈ [ξ − h, ξ + h] for every k > κ. Since by (6.2) we have
yk <

1
2 |ξk − ξ| for every k > κ, we must have Im,k = ∅ for every k > κ, or

equivalently Km = ∅ if m is chosen so that xm < h/2.
So if ξ is not a limit point of {ξ1, ξ2, . . .} then there exists m̃ such that

Im̃,k = ∅ for every k > κ and hence δ̃ = min{δ, xm̃} is a bound such that
even Z ∪ ϕ(

⋃
k 6=κ(Xk ∪ Yk)) is disjoint from [ξ − δ̃, ξ + δ̃].
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Secondly, put Lm,k := {n ∈ (Xk ∪ Yk) | ξ − xm ≤ ϕ(n) < ξ + xm} and
assume that ξ is a limit point of {ξ1, ξ2, . . .}. Thus Km is never empty and
we may define µ(m) := minKm. Then in view of the definition of ϕ,

∑
k>κ

∑
n∈Lm,k

1
n2
≤
∑
k∈Km

( ∞∑
n=mk

1
(ak + ndk)2

+
∞∑

n=mk

1
(bk + ndk)2

)

for all m ∈ N. Thus by applying (6.4),∑
k>κ

∑
n∈Lm,k

1
n2
≤ 4

∑
k∈Km

ckyk.

Furthermore, since cµ(m)+nyµ(m)+n ≤ 2−ncµ(m)yµ(m) for n = 0, 1, 2, . . . due
to (6.3),

∑
k∈Km

ckyk ≤
∞∑

k=µ(m)

ckyk ≤
∞∑
n=0

2−ncµ(m)yµ(m) = 2cµ(m)yµ(m).

By (6.5) we have cµ(m)yµ(m) ≤ x2
m and so altogether we arrive at

(6.6)
1
xm
·
∑
k>κ

∑
n∈Lm,k

1
n2
≤ 8xm → 0 (m→∞)

provided that ξ is a limit point of {ξ1, ξ2, . . .}.
Thirdly, define Nm := {n ∈ N \D | ξ − xm ≤ ϕ(n) < ξ + xm} and let M

be the smallest positive integer such that the interval [ξ− xM , ξ+ xM ] does
not contain integers or reduced fractions p/q with |q| < κ. Then for each
m ≥ M we have Nm ⊂ [5 · 71/xm ,∞[ because if n ∈ Nm and ϕ(n) = p/q
(where q > 0 and the fraction p/q is reduced) then p/q ∈ [ξ−xm, ξ+xm] ⊂
[ξ − xM , ξ + xM ] and hence (by the definition of M) κ ∈ {1, . . . , q} so that
1/xm ≤ |p/q − ξ|−1 ≤ δ(p/q) and therefore n ≥ 3|p| · 5q · 7δ(p/q) ≥ 5 · 71/xm .
Consequently, for m ≥M ,

(6.7)
1
xm
·
∑
n∈Nm

1
n2
≤ 1
xm
·
∑

n≥5·71/xm

1
n2
≤ 1
xm
·
∞�

4·71/xm

dx

x2
→ 0 (m→∞).

To conclude the proof by verifying G′ϕ(ξ) = cκ it is enough to check

lim
m→∞

Gϕ(ξ + xm)−Gϕ(ξ)
xm

= lim
m→∞

Gϕ(ξ)−Gϕ(ξ − xm)
xm

= cκ

because limm→∞ xm+1/xm = 1 and Gϕ is increasing. Now, for every m ∈ N
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we can write

Gϕ(ξ + xm)−Gϕ(ξ)
xm

=
1
xm

( ∑
n∈Sm∩Xκ

1
n2

+
∑

n∈Sm∩D\Xκ

1
n2

+
∑

n∈Sm\D

1
n2

)
where Sm := {n ∈ N | ξ ≤ ϕ(n) < ξ + xm}. (Recall that Xκ ⊂ D.) In view
of Sm \D ⊂ Nm and (6.7) we have

lim
m→∞

1
xm

∑
n∈Sm\D

1
n2

= 0.

In view of (6.1) and the definition of ϕ we have

lim
m→∞

1
xm

∑
n∈Sm∩Xκ

1
n2

= cκ.

Since Sm ∩D \Xκ is a subset of
⋃
k 6=κ(Xk ∪ Yk), we have

lim
m→∞

1
xm

∑
n∈Sm∩D\Xκ

1
n2

= 0

in view of (6.6) and the consideration involving the bound δ and the potential
bound δ̃. (Clearly, if ξ is not a limit point of {ξ1, ξ2, . . .} then Sm∩D\Xκ = ∅
for sufficiently large m.) Summing up,

lim
m→∞

Gϕ(ξ + xm)−Gϕ(ξ)
xm

= cκ.

Analogously,

lim
m→∞

Gϕ(ξ)−Gϕ(ξ − xm)
xm

= cκ,

and this finishes the proof of Theorem 7.
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Gerald Kuba
Institute of Mathematics
University of Natural Resources and Life Sciences
Wien, Austria
E-mail: gerald.kuba@boku.ac.at

Received 27 April 2011;
revised 31 August 2011 (5500)


	Introduction and statement of results
	Proof of Theorem 1
	Proof of Theorem 2
	Vanishing derivatives
	Infinite derivatives
	Positive derivatives

