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STOCHASTIC DYNAMICAL SYSTEMS WITH WEAK
CONTRACTIVITY PROPERTIES

I. STRONG AND LOCAL CONTRACTIVITY

BY

MARC PEIGNÉ (Tours) and WOLFGANG WOESS (Graz)

(with a chapter featuring results of Martin Benda)

Abstract. Consider a proper metric space X and a sequence (Fn)n≥0 of i.i.d. random
continuous mappings X → X. It induces the stochastic dynamical system (SDS) Xx

n =
Fn ◦ · · · ◦ F1(x) starting at x ∈ X. In this and the subsequent paper, we study existence
and uniqueness of invariant measures, as well as recurrence and ergodicity of this process.

In the present first part, we elaborate, improve and complete the unpublished work of
Martin Benda on local contractivity, which merits publicity and provides an important tool
for studying stochastic iterations. We consider the case when the Fn are contractions and,
in particular, discuss recurrence criteria and their sharpness for the reflected random walk.

1. Introduction. We start by reviewing two well known models.
First, let (Bn)n≥0 be a sequence of i.i.d. real valued random variables.

Then the reflected random walk starting at x ≥ 0 is the stochastic dynamical
system given recursively by Xx

0 = x and Xx
n = |Xx

n−1 − Bn|. The absolute
value becomes meaningful when Bn assumes positive values with positive
probability; otherwise we get an ordinary random walk on R. The reflected
random walk was described and studied by Feller [20]; apparently, it was first
considered by von Schelling [36] in the context of telephone networks. In the
case when Bn ≥ 0, Feller [20] and Knight [28] have computed an invari-
ant measure for the process when the Yn are non-lattice random variables,
while Boudiba [8], [9] has provided such a measure when the Yn are lattice
variables. Leguesdron [29], Boudiba [9] and Benda [4] have also studied its
uniqueness (up to constant factors). When the invariant measure has finite
total mass—which holds if and only if E(B1) <∞—the process is (topolog-
ically) recurrent: with probability 1, it returns infinitely often to each open
set that is charged by the invariant measure. Indeed, it is positive recurrent
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in the sense that the mean return time is finite. More general recurrence
criteria were provided by Smirnov [37] and Rabeherimanana [34], and also
in our unpublished paper [33]: basically, recurrence holds when E

(√
B1

)
or

quantities of more or less the same order are finite. In the present paper, we
shall briefly touch the situation when the Bn are not necessarily positive.

Second, let (An, Bn)n≥0 be a sequence of i.i.d. random variables in R+
∗ ×R.

(We shall always write R+ = [0,∞) and R+
∗ = (0,∞), the latter usually seen

as a multiplicative group.) The associated affine stochastic recursion on R
is given by Y x

0 = x ∈ R and Y x
n = AnY

x
n−1 + Bn. There is ample literature

on this process, which can be interpreted in terms of a random walk on the
affine group. That is, one applies products of affine matrices:(

Y x
n

1

)
=
(
An Bn

0 1

)(
An−1 Bn−1

0 1

)
· · ·
(
A1 B1

0 1

)(
x

1

)
.

Products of affine transformations were one of the first examples of ran-
dom walks on non-commutative groups (see Grenander [22]). Among the
large body of further work, we mention Kesten [27], Grincevičjus [23], [24],
Elie [17], [18], [19], and in particular the papers by Babillot, Bougerol and
Elie [3] and Brofferio [10]. See also the more recent work of Buraczewski [11]
and Buraczewski, Damek, Guivarc’h, Hulanicki and Urban [12].

The hardest and most interesting case is when An is log-centered, that
is, E(logAn) = 0. The development of tools for handling this case, beyond
affine recursions, is the main focus of the present work. The easier and
well-understood case is the contractive one, where E(logAn) < 0.

In this work, stochastic dynamical systems are considered in the following
general setting. Let (X, d) be a proper metric space (i.e., closed balls are
compact), and let G be the monoid of all continuous mappings X → X. It
carries the topology of uniform convergence on compact sets. Now let µ̃ be
a regular probability measure on G, and let (Fn)n≥1 be a sequence of i.i.d.
G-valued random variables (functions) with common distribution µ̃, defined
on a suitable probability space (Ω,A,Pr). The measure µ̃ gives rise to the
stochastic dynamical system (SDS) ω 7→ Xx

n(ω) defined by

(1.1) Xx
0 = x ∈ X, and Xx

n = Fn(Xx
n−1), n ≥ 1.

There is ample literature on processes of this type: see e.g. Arnold [2] or
Bhattacharya and Majumdar [7]. Any SDS (1.1) is a Markov chain. The
transition kernel is

P (x, U) = Pr[Xx
1 ∈ U ] = µ̃({f ∈ G : f(x) ∈ U}),

where U is a Borel set in X. The associated transition operator is given by

Pϕ(x) =
�

X

ϕ(y)P (x, dy) = E(ϕ(Xx
1 )),
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where ϕ : X → R is a measurable function for which this integral exists.
The operator is Fellerian, that is, Pϕ is continuous when ϕ is bounded
and continuous. We shall write Cc(X) for the space of compactly supported
continuous functions X→ R.

The SDS is called transient if every compact set is visited only finitely
often, that is,

Pr[d(Xx
n , x)→∞] = 1 for every x ∈ X.

We call it (topologically) recurrent if there is a non-empty, closed set L ⊂ X
such that for every open set U that intersects L,

Pr[Xx
n ∈ U infinitely often] = 1 for every x ∈ L.

In our situation, we shall even have this for every starting point x ∈ X, so
that L is an attractor for the SDS. As an intermediate notion, we call the
SDS conservative if

Pr[lim inf
n

d(Xx
n , x) <∞] = 1 for every x ∈ X.

Besides the question whether the SDS is recurrent, we shall mainly be inter-
ested in the question of existence and uniqueness (up to constant factors)
of an invariant measure. This is a Radon measure ν on X such that for any
Borel set U ⊂ X,

ν(U) =
�

X

Pr[Xx
1 ∈ U ] dν(x).

We can construct the trajectory space of the SDS starting at x. This is

(XN0 ,B(XN0),Prx),

where B(XN0) is the product Borel σ-algebra on XN0 , and Prx is the image
of the measure Pr under the mapping

Ω → XN0 , ω 7→ (Xx
n(ω))n≥0.

If we have an invariant Radon measure, then we can construct the measure

Prν =
�

L

Prx dν(x)

on the trajectory space. It is a probability measure only when ν is a prob-
ability measure on X. In general, it is σ-finite and invariant with respect to
the time shift T : XN0 → XN0 . Conservativity of the SDS will be used to get
conservativity of the shift. We shall study ergodicity of T , which in turn will
imply uniqueness of ν (up to multiplication with constants).

As often in this field, ideas that were first developed by Furstenberg,
e.g. [21], play an important role at least in the background.
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(1.2) Proposition (Furstenberg’s contraction principle). Let (Fn)n≥1 be
i.i.d. continuous random mappings X→ X, and define the right process

Rxn = F1 ◦ · · · ◦ Fn(x).

If there is an X-valued random variable Z such that

lim
n→∞

Rxn = Z almost surely for every x ∈ X,

then the distribution ν of the limit Z is the unique invariant probability
measure for the SDS Xx

n = Fn ◦ · · · ◦ F1(x).

A proof can be found, e.g., in Letac [30] or in Diaconis and Freed-
man [16]. In [21], it is displayed in a more specific setting, but all ideas
are clearly present. While being ideally applicable to the contractive case,
this contraction principle is not the right tool for handling the log-centered
case mentioned above. In the context of affine stochastic recursion, Babillot,
Bougerol and Elie [3] introduced the notion of local contractivity (see Defini-
tion (2.1) below). This is not the same as the local contractivity property of
Steinsaltz [38] and Jarner and Tweedie [25]. Local contractivitiy as defined
in [3] was then exploited systematically by Benda in interesting and useful
work in his PhD thesis [4] (in German) and the two subsequent preprints
[5], [6] which were accepted for publication, circulated (not very widely) in
preprint version but have remained unpublished. In a personal communica-
tion, Benda also gives credit to unpublished work of his late PhD advisor
Kellerer (cf. the posthumous publication [26]).

We think that this material deserves to be documented in a publication,
whence we include—with the consent of M. Benda whom we managed to
contact—the next section on weak contractivity (§2). The proofs that we
give are “streamlined”, and new aspects and results are added, such as, in
particular, ergodicity of the shift on the trajectory space with respect to Prν
(Theorem (2.13)). Ergodicity yields uniqueness of the invariant measure. Be-
fore that, we explain the alternative between recurrence and transience and
the limit set (attractor) L, which is the support of the invariant measure ν.

We display briefly the classical results regarding stochastic affine recur-
sion in §3. Then, in §4, we consider the situation when the Fn are contrac-
tions with Lipschitz constants An = l(Fn) ≤ 1 (not necessarily assuming
that E(logAn) < 0). We provide a tool for getting strong contractivity in
the recurrent case (Theorem (4.2)). A typical example is the reflected ran-
dom walk. In §5, we discuss some of its properties, in particular sharpness
of recurrence criteria.

This concludes Part I. In the second paper, we shall examine in detail
the iteration of general Lipschitz mappings.

Since we want to present a sufficiently comprehensive picture, we have
included the statements—mostly without proof—of a few known results, in
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particular on cases where one has strong contractivity. We also remark that
the assumption of properness of the space X can be relaxed in several parts
of the material presented here.

2. Local contractivity and the work of Benda

(2.1) Definition.

(i) The SDS is called strongly contractive if for every x ∈ X,

Pr[d(Xx
n , X

y
n)→ 0 for all y ∈ X] = 1.

(ii) The SDS is called locally contractive if for every x ∈ X and every
compact K ⊂ X,

Pr[d(Xx
n , X

y
n) · 1K(Xx

n)→ 0 for all y ∈ X] = 1.

Let B(r) and B(r), r ∈ N, be the open and closed balls in X with radius
r and fixed center o ∈ X, respectively. B(r) is compact by properness of X.

Using Kolmogorov’s 0-1 law, one gets the following alternative.

(2.2) Lemma. For a locally contractive SDS,

either Pr[d(Xx
n , x)→∞] = 0 for all x ∈ X,

or Pr[d(Xx
n , x)→∞] = 1 for all x ∈ X.

Proof. Consider

(2.3) Xx
m,m = x and Xx

m,n = Fn ◦ Fn−1 ◦ · · · ◦ Fm+1(x) for n > m,

so that Xx
n = Xx

0,n. Then local contractivity implies that for each x ∈ X, we
have Pr(Ω0) = 1 for the event Ω0 consisting of all ω ∈ Ω with

(2.4) lim
n→∞

1B(r)(X
x
m,n(ω)) · d(Xx

m,n(ω), Xy
m,n(ω)) = 0

for each r ∈ N, m ∈ N0, y ∈ X.

Clearly, Ω0 is invariant with respect to the shift of the sequence (Fn).
Let ω ∈ Ω0 be such that the sequence (Xx

n(ω))n≥0 accumulates at some
z ∈ X. Fix m and set v = Xx

m(ω). Then also (Xv
m,n(ω))n≥m accumulates at z.

Now let y ∈ X be arbitrary. Then there is r such that v, y, z ∈ B(r). Therefore
also (Xy

m,n(ω))n≥m accumulates at z. In particular, the fact that (Xx
n(ω))n≥0

accumulates at some point does not depend on the initial trajectory, i.e., on
the specific realization of F1, . . . , Fm. We infer that the set

{ω ∈ Ω0 : (Xx
n(ω))n≥0 accumulates in X}

is a tail event of (Fn)n≥1. On its complement inΩ0, we have d(Xx
n , x)→∞.

If d(Xx
n , x)→∞ almost surely, then we call the SDS transient.

For ω ∈ Ω, let Lx(ω) be the set of accumulation points of (Xx
n(ω)) in X.

The following proof is much simpler than the one in [5].
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(2.5) Lemma. For any conservative, locally contractive SDS, there is a set
L ⊂ X—the attractor or limit set—such that

Pr[Lx(·) = L for all x ∈ X] = 1,

Proof. The argument of the proof of Lemma (2.2) also shows the follow-
ing. For every open U ⊂ X,

Pr[Xx
n accumulates in U for all x ∈ X] ∈ {0, 1}.

X being proper, we can find a countable basis {Uk : k ∈ N} of the topology
of X, where each Uk is an open ball. Let K ⊂ N be the (deterministic) set of
all k such that the above probability is 1 for U = Uk. Then there is Ω0 ⊂ Ω
such that Pr(Ω0) = 1, and for every ω ∈ Ω0, the sequence (Xx

n(ω))n≥0

accumulates in Uk for some (and equivalently all) x precisely when k ∈ K.
Now, if ω ∈ Ω0, then y ∈ Lx(ω) if and only if k ∈ K for every k with Uk 3 y.
We see that Lx(ω) is the same set for every ω ∈ Ω0.

Thus, (Xx
n) is (topologically) recurrent on L when Pr[d(Xx

n , x) → ∞]
= 0, that is, every open set that intersects L is visited infinitely often with
probability 1.

For a Radon measure ν on X, its transform under P is written as νP ,
that is, for any Borel set U ⊂ X,

νP (U) =
�

X

P (x, U) dν(x).

Recall that ν is called excessive when νP ≤ ν, and invariant when νP = ν.
For two transition kernels P,Q, their product is defined as

PQ(x, U) =
�

X

Q(y, U)P (x, dy).

In particular, P k is the k-fold iterate. The first part of the following is
well-known; we outline the proof because it is needed in the second part,
regarding supp(ν).

(2.6) Lemma. If the locally contractive SDS is recurrent, then every exces-
sive measure ν is invariant. Furthermore, supp(ν) = L.

Proof. For any pair of Borel sets U, V ⊂ X, define the transition kernel
PU,V and the measure νU by

PU,V (x,B) = 1U (x)P (x,B ∩ V ) and νU (B) = ν(U ∩B),

where B ⊂ X is a Borel set. We abbreviate PU,U = PU . Also, consider the
stopping time τUx = inf{n ≥ 1 : Xx

n ∈ U}, and for x ∈ U let

PU (x,B) = Pr[τUx <∞, Xx
τU
x
∈ B]
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be the probability that the first return of Xx
n to the set U occurs at a point

of B ⊂ X. Then we have

νU ≥ νUPU + νUcPUc,U ,

and by a typical inductive (“balayage”) argument,

νU ≥ νU
(
PU +

n−1∑
k=0

PU,UcP kUcPUc,U

)
+ νUcPnUcPUc,U .

In the limit,

νU ≥ νU
(
PU +

∞∑
k=0

PU,UcP kUcPUc,U

)
= νUP

U .

Now suppose that U is open and relatively compact, and U ∩ L 6= ∅. Then,
by recurrence, for any x ∈ U , we have τUx < ∞ almost surely. This means
that PU is stochastic, that is, PU (x, U) = 1. But then νUPU (U) = νU (U) =
ν(U) <∞. Therefore νU = νUP

U . We now can set U = B(r) and let r →∞.
Then monotone convergence implies ν = νP , and ν is invariant.

Let us next show that supp(ν) ⊂ L.
Take an open, relatively compact set V such that V ∩ L = ∅. Choose r

large enough such that U = B(r) contains V and intersects L. Let Q = PU .
We know from the above that νU = νU Q = νU Q

n. We get

ν(V ) = νU (V ) =
�

U

Qn(x, V ) dνU (x).

Now Qn(x, V ) is the probability that the SDS starting at x visits V at the
instant when it returns to U for the nth time. As

Pr[Xx
n ∈ V for infinitely many n] = 0,

it is an easy exercise to show that Qn(x, V )→ 0. Since the measure νU has fi-
nite total mass, we can use dominated convergence to see that	
U Q

n(x, V ) dνU (x)→ 0 as n→∞.
We conclude that ν(V ) = 0, and supp(ν) ⊂ L.
Since νP = ν, we have f(supp(ν)) ⊂ supp(ν) for every f ∈ supp(µ̃),

where (recall) µ̃ is the distribution of the random functions Fn in G. But
then almost surely Xx

n ∈ supp(ν) for all x ∈ supp(ν) and all n, that is,
Lx(ω) ⊂ supp(ν) for Pr-almost every ω. Lemma (2.5) implies that L ⊂
supp(ν).

The following holds in more generality than just for recurrent locally
contractive SDS.

(2.7) Proposition. If the locally contractive SDS is recurrent, then it pos-
sesses an invariant Radon measure ν.
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Proof. Fix ψ ∈ C+
c (X) such that its support intersects L. Recurrence

implies that
∞∑
k=1

P kψ(x) =∞ for every x ∈ X.

The statement now follows from a result of Lin [31, Thm. 5.1].

Thus we have an invariant Radon measure ν with νP = ν and supp(ν) = L.
It is now easy to see that the attractor depends only on supp(µ̃) ⊂ G.

(2.8) Corollary. In the recurrent case, L is the smallest non-empty closed
subset of X with the property that f(L) ⊂ L for every f ∈ supp(µ̃).

Proof. The reasoning at the end of the proof of Lemma (2.6) shows that
L is indeed a closed set with that property. On the other hand, if C ⊂ X is
closed, non-empty and such that f(C) ⊂ C for all f ∈ supp(µ̃) then (Xx

n(ω))
evolves almost surely within C when the starting point x is in C. But then
Lx(ω) ⊂ C almost surely, and on the other hand Lx(ω) = L almost surely.

(2.9) Remark. Suppose that the SDS induced by the probability measure
µ̃ on G is not necessarily locally contractive, resp. recurrent, but that there is
another probability measure µ̃′ on G which does induce a locally contractive,
recurrent SDS and which satisfies supp(µ̃) = supp(µ̃′). Let L be the limit
set of this second SDS. Since it depends only on supp(µ̃′), the results that
we have so far imply that also for the SDS (Xx

n) associated with µ̃, the
attractor L is the unique “essential class” in the following sense: it is the
unique minimal non-empty closed subset of X such that

(i) for every open set U ⊂ X that intersects L and every starting point
x ∈ X, the sequence (Xx

n) visits U with positive probability, and
(ii) if x ∈ L then Xx

n ∈ L for all n.

For ` ≥ 2, we can lift each f ∈ G to a continuous mapping

f (`) : X` → X`, f (`)(x1, . . . , x`) = (x2, . . . , x`, f(x`)).

In this way, the random mappings Fn induce the SDS

(F (`)
n ◦ · · · ◦ F

(`)
1 (x1, . . . , x`))n≥0

on X`. For n ≥ `− 1 this is just (Xx`
n−`+1, . . . , X

x`
n ).

(2.10) Lemma. Let x ∈ X, and let U0, . . . , U`−1 ⊂ X be Borel sets such that

Pr[Xx
n ∈ U0 for infinitely many n] = 1,

Pr[Xy
1 ∈ Uj ] ≥ α > 0 for every y ∈ Uj−1, j = 1, . . . , `− 1.

Then also

Pr[Xx
n ∈ U0, X

x
n+1 ∈ U1, . . . , X

x
n+`−1 ∈ U`−1 for infinitely many n] = 1.
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Proof. This is quite standard and true for general Markov chains and
not just SDS. Let τ(n), n ≥ 1, be the stopping times of the successive visits
of (Xx

n) in U0. They are all a.s. finite by assumption. We consider the events

Λn = [Xx
τ(`n)+1 ∈ U1, . . . , X

x
τ(`n)+`−1 ∈ U`−1] and Λk,m =

m−1⋃
n=k+1

Λn,

where k < m. We need to show that Pr(lim supn Λn) = 1. By the strong
Markov property, we have

Pr(Λn | Xx
τ(`n) = y) ≥ α` for every y ∈ U0.

Let k,m ∈ N with k < m. Just for the purpose of the next lines of the proof,
consider the measure on X defined by

σ(B) = Pr([Xx
τ(`m) ∈ B] ∩ Λck,m−1).

It is concentrated on U0, and using the Markov property,

Pr(Λck,m) =
�

U0

Pr(Λcm |Xx
τ(`m) = y) dσ(y)

≤ (1− α`)σ(U0) = (1− α`) Pr(Λck,m−1) ≤ · · · ≤ (1− α`)m−k.
Letting m→∞, we see that Pr(

⋂
n>kΛ

c
n) = 0 for every k, so that

Pr
(⋂

k

⋃
n>k

Λn

)
= 1,

as required.

(2.11) Proposition. If the SDS is locally contractive and recurrent on X,
then so is the lifted process on X`. The limit set of the latter is

L(`) =
{

(x, f1(x), f2 ◦ f1(x), . . . , f`−1 ◦ · · · ◦ f1(x)) : x ∈ L, fi ∈ supp(µ̃)
}−
,

and if the Radon measure ν is invariant for the original SDS on X, then the
measure ν(`) is invariant for the lifted SDS on X`, where
�

X`

f dν(`)

=
�

X

· · ·
�

X

f(x1, . . . , x`)P (x`−1, dx`)P (x`−2, dx`−1) · · ·P (x1, dx2) dν(x1).

Proof. It is a straightforward exercise to verify that the lifted SDS is
locally contractive and has ν(`) as an invariant measure. We have to prove
that it is recurrent. For this purpose, we just have to show that there is some
relatively compact subset of X` that is visited infinitely often with positive
probability. We can find relatively compact open subsets U0, . . . , U`−1 of X
that intersect L such that

Pr[F1(Uj−1) ⊂ Uj ] ≥ α > 0 for j = 1, . . . , `− 1.
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We know that for an arbitrary starting point x ∈ X, with probability 1, the
SDS (Xx

n) visits U0 infinitely often. Lemma (2.10) implies that the lifted
SDS on X` visits U0 × · · · × U`−1 infinitely often with probability 1.

By Lemma (2.2), the lifted SDS on X` is recurrent. Now that we know
this, it is clear from Corollary (2.8) that its attractor is the set L(`), as
stated.

As outlined in the introduction, we can equip the trajectory space XN0

of our SDS with the infinite product σ-algebra and the measure Prν , which
is in general σ-finite.

(2.12) Lemma. If the SDS is locally contractive and recurrent, then the
shift T is conservative on (XN0 ,B(XN0),Prν).

Proof. Let ϕ = 1U , where U ⊂ X is open, relatively compact, and inter-
sects L. We can extend it to a positive function in L1(XN0 ,Prν) by setting
ϕ(x) = ϕ(x0) for x = (xn)n≥0. We know from recurrence that∑

n

ϕ(Xx
n) =∞ Pr-almost surely, for every x ∈ X.

This translates into∑
n

ϕ(Tnx) =∞ Prν-almost surely, for every x ∈ XN0 .

Conservativity follows; see e.g. [35, Thm. 5.3].

The uniqueness part of the following theorem is contained in [4] and [5];
see also Brofferio [10, Thm. 3], who considers SDS of affine mappings. We
modify and extend the proof in order to be able to conclude that our SDS is
ergodic with respect to T . (This, as well as Proposition (2.11), is new with
respect to Benda’s work.)

(2.13) Theorem. For a recurrent locally contractive SDS, let ν be the mea-
sure of Proposition (2.7). Then the shift T on XN0is ergodic with respect
to Prν . In particular, ν is the unique invariant Radon measure for the SDS
up to multiplication with constants.

Proof. Let I be the σ-algebra of T -invariant sets in B(XN0). For ϕ ∈
L1(XN0 ,Prν), we write Eν(ϕ) =

	
ϕdPrν and Eν(ϕ | I) for the conditional

“expectation” of ϕ with respect to I. The quotation marks refer to the
fact that it does not have the meaning of an expectation when ν is not a
probability measure. As a matter of fact, what is well defined in the latter
case are the quotients Eν(ϕ | I)/Eν(ψ | I) for suitable ψ ≥ 0; compare with
the explanations in Revuz [35, pp. 133–134].

In view of Lemma (2.12), we can apply the ergodic theorem of Chacon
and Ornstein [13] (see also [35, Thm. 3.3]). Choosing an arbitrary function
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ψ ∈ L1(XN0 ,Prν) with

(2.14) Prν
({

x ∈ XN0 :
∞∑
n=0

ψ(Tnx) <∞
})

= 0,

one has, for every ϕ ∈ L1(XN0 ,Prν),

(2.15) lim
n→∞

∑n
k=0 ϕ(T kx)∑n
k=0 ψ(T kx)

=
Eν(ϕ | I)
Eν(ψ | I)

for Prν-almost every x ∈ XN0 .

In order to show ergodicity of T , we need to show that the right hand side
is just

Eν(ϕ)
Eν(ψ)

.

It is sufficient to show this for non-negative functions that depend only on
finitely many coordinates. For a function ϕ on X`, we also write ϕ for its
extension to XN0 , given by ϕ(x) = ϕ(x0, . . . , x`−1).

That is, we need to show that for every ` ≥ 1 and non-negative Borel
functions ϕ,ψ on X`, with ψ satisfying (2.14),

(2.16)

lim
n→∞

∑n
k=0 ϕ(Xx

k (ω), . . . , Xx
k+`−1(ω))∑n

k=0 ψ((Xx
k (ω), . . . , Xx

k+`−1(ω)))
=

	
L E(ϕ(Xy

0 , . . . , X
y
`−1)) dν(y)	

L E(ψ(Xy
0 , . . . , X

y
`−1)) dν(y)

for ν-almost every x ∈ X and Pr-almost every ω ∈ Ω, when the integrals on
the right hand side are finite.

At this point, we observe that we need to prove (2.16) only for ` = 1.
Indeed, once we have the proof for this case, we can reconsider our SDS
on X`, and using Proposition (2.11), our proof for ` = 1 applies to the new
SDS as well.

So now let ` = 1. By regularity of ν, we may assume that ϕ and ψ are
non-negative, compactly supported, continuous functions on L that both are
non-zero.

We consider the random variables Sxnϕ(ω)=
∑n

k=0 ϕ(Xx
k (ω)) and Sxnψ(ω).

Since the SDS is recurrent, both functions satisfy (2.14), i.e., almost surely
we have Sxnϕ, Sxnψ > 0 for all but finitely many n and all x. We shall show
that

(2.17) lim
n→∞

Sxnϕ

Sxnψ
=

	
L ϕdν	
L ψ dν

Pr-almost surely and for every x ∈ L,

which is more than what we need (namely that it just holds for ν-almost
every x). We know from (2.15) that the limit exists in terms of conditional
expectations for ν-almost every x, so that we only have to show that it is
Pr ⊗ ν-almost everywhere constant.
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Step 1: Independence of x. Let K0 ⊂ L be compact such that the
support of ϕ is contained in K0. Define K = {x ∈ L : d(x,K0) ≤ 1}. Given
ε > 0, let 0 < δ ≤ 1 be such that |ϕ(x)− ϕ(y)| < ε whenever d(x, y) < δ.

By (2.15), there is x such that the limits limn S
x
n1K

/
Sxnϕ and Zϕ,ψ =

limn S
x
nϕ
/
Sxnψ exist and are finite Pr-almost surely.

Local contractivity implies that for this specific x and each y ∈ X, we
have the following. Pr-almost surely, there is a random N ∈ N such that

|ϕ(Xx
k )− ϕ(Xy

k )| ≤ ε · 1K(Xx
k ) for all k ≥ N.

Therefore, for every ε > 0 and y ∈ X,

lim sup
n→∞

|Sxnϕ− S
y
nϕ|

Sxnϕ
≤ ε · lim

n→∞

Sxn1K
Sxnϕ

Pr-almost surely.

This implies that for every y ∈ L,

lim
n→∞

Sxnϕ− S
y
nϕ

Sxnϕ
= 0, that is, lim

n→∞

Synϕ

Sxnϕ
= 1 Pr-almost surely.

The same applies to ψ in place of ϕ. We deduce that for all y,

Sxnϕ

Sxnψ
− Synϕ

Synψ
=
Synϕ

Synψ

(
Sxnϕ

Synϕ

Synψ

Sxnψ
− 1
)
→ 0 Pr-almost surely.

In other terms, for the positive random variable Zϕ,ψ given above in terms
of our x,

lim
n→∞

Synϕ

Synψ
= Zϕ,ψ Pr-almost surely, for every y ∈ L.

Step 2: Zϕ,ψ is a.s. constant. Recall the random variables Xx
m,n of (2.3)

and set Sxm,nϕ(ω) =
∑n

k=m ϕ(Xx
m,k(ω)), n > m. Then Step 1 also shows

that for our given x and each m,

(2.18) lim
n→∞

Sym,nϕ

Sym,nψ
= lim

n→∞

Sxm,nϕ

Sxm,nψ
Pr-almost surely, for every x ∈ L.

Let Ω0 ⊂ Ω be the set on which the convergence in (2.18) holds for all m,
and both Sxnϕ, S

x
nψ →∞ on Ω0. We have Pr(Ω0) = 1. For fixed ω ∈ Ω0 and

m ∈ N, let y = Xx
m(ω). Then (because in the ratio limit we can omit the

first m terms of the sums)

Zϕ,ψ(ω) = lim
n→∞

Sxnϕ(ω)
Sxnψ(ω)

= lim
n→∞

Sym,nϕ(ω)
Sym,nψ(ω)

= lim
n→∞

Sxm,nϕ(ω)
Sxm,nψ(ω)

.

Thus, Zϕ,ψ is independent of F1, . . . , Fm, whence it is constant by Kol-
mogorov’s 0-1 law. This completes the proof of ergodicity. It is immediate
from (2.17) that ν is unique up to multiplication by constants.
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(2.19) Corollary. Let the locally contractive SDS (Xx
n) be recurrent with

invariant Radon measure ν. For relatively compact, open U ⊂ X which in-
tersects L, consider the probability measure mU on X defined by mU (B) =
ν(B ∩ U)/ν(U). Consider the SDS with initial distribution mU , and let τU

be its return time to U .

(a) If ν(L) <∞ then the SDS is positive recurrent, that is,

E(τU ) = ν(L)/ν(U) <∞.
(b) If ν(L) =∞ then the SDS is null recurrent, that is,

E(τU ) =∞.
This follows from the well known formula of Kac (see e.g. Aaronson [1,

1.5.5, p. 44]).

(2.20) Lemma. In the positive recurrent case, let the invariant measure be
normalized so that ν(L) = 1. Then, for every starting point x ∈ X, the
sequence (Xx

n) converges in law to ν.

Proof. Let ϕ : X → R be continuous and compactly supported. Since
ϕ is uniformly continuous, local contractivity implies for all x, y ∈ X that
ϕ(Xx

n)− ϕ(Xy
n)→ 0 almost surely. By dominated convergence, E(ϕ(Xx

n)−
ϕ(Xy

n))→ 0. Thus,

Pnϕ(x)−
�
ϕdν =

�
(Pnϕ(x)− Pnϕ(y)) dν(y)

=
�
E(ϕ(Xx

n)− ϕ(Xy
n)) dν(y)→ 0.

3. Basic example: affine stochastic recursion. Here we briefly re-
view the main known results regarding the SDS on X = R given by

(3.1) Y x
0 = x, Y x

n+1 = AnY
x
n +Bn+1,

where (An, Bn)n≥0 is a sequence of i.i.d. random variables in R+
∗ × R. The

following results are known.

(3.2) Proposition. If E(log+An) <∞ and

−∞ ≤ E(logAn) < 0

then (Y x
n ) is strongly contractive on R. If in addition E(log+ |Bn|) <∞ then

the affine SDS has a unique invariant probability measure ν, and is (positive)
recurrent on L = supp(ν). Furthermore, the shift on the trajectory space is
ergodic with respect to the probability measure Prν .

Proof (outline). This is the classical application of Furstenberg’s con-
traction principle. One verifies that for the associated right process,

Rxn → Z =
∞∑
n=1

A1 · · ·An−1Bn
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almost surely for every x ∈ R. The series that defines Z is almost surely
abolutely convergent by the assumptions on the two expectations. Recur-
rence is easily deduced via Lemma (2.2). Indeed, we cannot have |Y x

n | → ∞
almost surely, because then by dominated convergence ν(U) = ν Pn(U)→ 0
for every relatively compact set U . Ergodicity now follows from strong con-
tractivity.

(3.3) Proposition. Suppose that Pr[An = 1] < 1 and Pr[Anx + Bn = x]
< 1 for all x ∈ R (non-degeneracy). If E(|logAn|) < ∞ and E(log+Bn)
<∞, and if

E(logAn) = 0,

then (Y x
n ) is locally contractive on R. If in addition E(|logAn|2) < ∞ and

E((log+ |Bn|)2+ε) < ∞ for some ε > 0 then the affine SDS has a unique
invariant Radon measure ν with infinite mass, and it is (null) recurrent on
L = supp(ν).

This goes back to [3], with a small gap that was later filled in [5]. With
the moment conditions as stated here, a nice and complete “geometric”
proof is given in [10]: it is shown that under the stated hypotheses,

A1 · · ·An · 1K(Yn)→ 0 almost surely

for every compact set K. Recurrence was shown earlier in [18, Lemma 5.49].

(3.4) Proposition. If E(|logAn|) <∞) and E(log+Bn) <∞, and if

E(logAn) > 0,

then (Y x
n ) is transient, that is, |Y x

n | → ∞ almost surely for every starting
point x ∈ R.

A proof is given, e.g., by Elie [19].

4. Iteration of random contractions. Let us now consider a more
specific class of SDS: within G, we consider the closed submonoid L1 of
all contractions of X, i.e., mappings f : X → X with Lipschitz constant
l(f) ≤ 1. We suppose that the probability measure µ̃ that governs the SDS is
supported by L1, that is, each random function Fn of (1.1) satisfies l(Fn) ≤
1. In this case, one does not need local contractivity in order to obtain
Lemma (2.2); this follows directly from properness of X and the inequality

Dn(x, y) ≤ d(x, y), where Dn(x, y) = d(Xx
n , X

y
n).

When Pr[d(Xx
n , x) → ∞] = 0 for every x, we can in general only speak of

conservativity, since we do not yet have an attractor on which the SDS is
topologically recurrent. Let S(µ̃) be the closed subsemigroup of L1 generated
by supp(µ̃).
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(4.1) Remark. For strong contractivity it is sufficient that Pr[Dn(x, y)
→ 0] = 1 pointwise for all x, y ∈ X.

Indeed, by properness, X has a dense, countable subset Y . If K ⊂ X is
compact and ε > 0 then there is a finite W ⊂ Y such that d(y,W ) < ε for
every y ∈ K. Therefore

sup
y∈K

Dn(x, y) ≤ max
w∈W

Dn(x,w)︸ ︷︷ ︸
→0 a.s.

+ ε,

since Dn(x, y) ≤ Dn(x,w) +Dn(w, y) ≤ Dn(x,w) + d(w, y).

The following key result of [4] (whose statement and proof is slightly
strengthened here) is inspired by [28, Thm. 2.2], where reflected random
walk is studied; see also [29].

(4.2) Theorem. If the SDS of contractions is conservative, then it is strongly
contractive if and only if S(µ̃) ⊂ L1 contains a constant function.

Proof. Keeping Remark (4.1) in mind, first assume that Dn(x, y) → 0
almost surely for all x, y. We can apply all previous results on (local) con-
tractivity, and the SDS has the non-empty attractor L. If x0 ∈ L, then with
probability 1 there is a random subsequence (nk) such that Xx

nk
→ x0 for

every x ∈ X, and by the above, this convergence is uniform on compact sets.
Thus, the constant mapping x 7→ x0 is in S(µ̃).

Conversely, assume that S(µ̃) contains a constant function. Since
Dn+1(x, y) ≤ Dn(x, y), the limit D∞(x, y) = limnDn(x, y) exists and is
between 0 and d(x, y). We set w(x, y) = E(D∞(x, y)). First of all, we claim
that

(4.3) lim
m→∞

w(Xx
m, X

y
m) = D∞(x, y) almost surely.

To see this, consider Xx
m,n as in (2.3). Then Dm,∞(x, y)=limn d(Xx

m,n, X
y
m,n)

has the same distribution as D∞(x, y), whence E(Dm,∞(x, y)) = w(x, y).
Therefore, we also have

E(Dm,∞(Xx
m, X

y
m) | F1, . . . , Fm) = w(Xx

m, X
y
m).

On the other hand, Dm,∞(Xx
m, X

y
m) = D∞(x, y), and the bounded martin-

gale
(E(D∞(x, y) | F1, . . . , Fm))m≥1

converges almost surely to D∞(x, y). Statement (4.3) follows.
Now let ε > 0 be arbitrary, and fix x, y ∈ X. We have to show that the

event Λ = [D∞(x, y) ≥ ε] has probability 0.
(i) By conservativity,

Pr
( ⋃
r∈N

⋂
m∈N

⋃
n≥m

[Xx
n , X

y
n ∈ B(r)]

)
= 1.
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On Λ, we have Dn(x, y) ≥ ε for all n. Therefore we need to show that
Pr(Λr) = 0 for each r ∈ N, where

Λr =
⋂
m∈N

⋃
n≥m

[Xx
n , X

y
n ∈ B(r), Dn(x, y) ≥ ε].

(ii) By assumption, there is x0 ∈ X which can be approximated uni-
formly on compact sets by functions of the form fk ◦ · · · ◦ f1, where fj ∈
supp(µ̃). Therefore, given r there is k ∈ N such that

Pr(Γk,r) > 0, where Γk,r =
[

sup
u∈B(r)

d(Xu
k , x0) ≤ ε/4

]
.

On Γk,r we have D∞(u, v) ≤ Dk(u, v) ≤ ε/2 for all u, v ∈ B(r). Therefore,
setting δ = Pr(Γk,r) · (ε/2), we find for all u, v ∈ B(r) with d(u, v) ≥ ε that

w(u, v) = E(1Γk,r
D∞(u, v)) + E(1Ω\Γk,r

D∞(u, v))

≤ Pr(Γk,r) · (ε/2) + (1− Pr(Γk,r)) · d(u, v) ≤ d(u, v)− δ.
We conclude that on Λr, there is a (random) sequence (n`) such that

w(Xx
n`
, Xy

n`
) ≤ Dn`

(x, y)− δ.
Passing to the limit on both sides, we see that (4.3) is violated on Λr, since
δ > 0. Therefore Pr(Λr) = 0 for each r.

(4.4) Corollary. If the semigroup S(µ̃) ⊂ L1 contains a constant func-
tion, then the SDS is locally contractive.

Proof. In the transient case, Xx
n can visit any compact K only finitely

often, whence d(Xx
n , X

y
n) · 1K(Xx

n) = 0 for all but finitely many n. In the
conservative case, we even have strong contractivity by Proposition (4.2).

5. Some remarks on reflected random walk. As outlined in the in-
troduction, the reflected random walk on R+ induced by a sequence (Bn)n≥0

of i.i.d. real valued random variables is given by

(5.1) Xx
0 = x ≥ 0, Xx

n+1 = |Xx
n −Bn+1|.

Let µ be the distribution of the Bn, a probability measure on R. The tran-
sition probabilities of the reflected random walk are

P (x, U) = µ({y : |x− y| ∈ U}),
where U ⊂ R+ is a Borel set. If Bn ≤ 0 almost surely, then (Xx

n) is an
ordinary random walk (resulting from a sum of i.i.d. random variables).
We shall exclude this, and we shall always assume to be in the non-lattice
situation. That is,

(5.2) supp(µ) ∩ (0,∞) 6= ∅, and supp(µ) ⊂ κ · Z for no κ > 0.

For the lattice case, see [33], and for higher-dimensional variants, see [32].
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For b ∈ R, consider gb ∈ L1(R+) given by gb(x) = |x − b|. Then our
reflected random walk is the SDS on R+ induced by the random continuous
contractions Fn = gBn , n ≥ 1. The law µ̃ of the Fn is the image of µ under
the mapping b 7→ gb.

In [29, Prop. 3.2], it is shown that S(µ̃) contains the constant function
x 7→ 0. Note that this statement and its proof in [29] are completely de-
terministic, regarding topological properties of the set supp(µ). In view of
Theorem (4.2) and Corollary (4.4), we get the following.

(5.3) Proposition. Under the assumptions (5.2), the reflected random
walk on R+ is locally contractive, and strongly contractive if it is recurrent.

A. Non-negative Bn. We first consider the case when Pr[Bn ≥ 0] = 1.
Let

N = sup supp(µ) and L =
{

[0, N ] if N <∞,
R+ if N =∞.

The distribution function of µ is

Fµ(x) = Pr[Bn ≤ x] = µ([0, x]), x ≥ 0.

We next summarize basic properties that are due to [20], [28] and [29]; they
do not depend on recurrence.

(5.4) Lemma. Suppose that (5.2) is satisfied and that supp(µ) ⊂ R+. Then
the following holds.

(a) The reflected random walk with any starting point is absorbed after
finitely many steps by the interval L.

(b) The reflected random walk is topologically irreducible on L, that is,
for every x ∈ L and open set U ⊂ L, there is n such that Pn(x, U) =
Pr[Xx

n ∈ U ] > 0.
(c) The measure ν on L given by

ν(dx) = (1− Fµ(x)) dx,

where dx is Lebesgue measure, is an invariant measure for the tran-
sition kernel P .

At this point Lemma (2.6) implies that in the recurrent case, the above
set is indeed the attractor, and ν is the unique invariant measure up to
multiplication with constants. We now want to understand when we have
recurrence.

(5.5) Theorem. Suppose that (5.2) is satisfied and supp(µ) ⊂ R+. Then
each of the following conditions implies the next one and is sufficient for
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recurrence of the reflected random walk on L:

E(B1) <∞,(i)

E
(√

B1

)
<∞,(ii) �

R+

(1− Fµ(x))2 dx <∞,(iii)

lim
y→∞

(1− Fµ(y))
y�

0

(Fµ(y)− Fµ(x)) dx = 0.(iv)

In particular, one has positive recurrence precisely when E(B1) <∞.

The proof of (i)⇒(ii)⇒(iii)⇒(iv) is a basic exercise. For condition (i),
see [28]. The implication (ii)⇒ recurrence is due to [37], while the recurrence
condition (iii) was proved by ourselves in [33]. However, we had not been
aware of [37], as well as of [34], where it is proved that already (iv) implies
recurrence on L. Since ν has finite total mass precisely when E(B1) <∞, the
statement on positive recurrence follows from Corollary (2.19). In this case,
also Lemma (2.20) applies and shows that Xx

n converges in law to (1/ν(L))ν.
This was already obtained by [28].

Note that the “margin” between conditions (ii), (iii) and (iv) is quite
narrow.

B. General reflected random walk. We now drop the restriction
that the random variables Bn are non-negative. Thus, the “ordinary” ran-
dom walk Sn = B1 + · · · + Bn on R may visit the positive as well as the
negative half-axis. Since we assume that µ is non-lattice, the closed group
generated by supp(µ) is R.

We start with a simple observation ([6] has a more complicated proof).

(5.6) Lemma. If µ is symmetric, then the reflected random walk is (topo-
logically) recurrent if and only if the random walk (Sn) is recurrent.

Proof. If µ is symmetric, then also |Sn| is a Markov chain. Indeed, for a
Borel set U ⊂ R+,

Pr[ |Sn+1| ∈ U | Sn = x] = µ(−x+ U) + µ(−x− U)− µ(−x)δ0(U)
= Pr[ |Sn+1| ∈ U | Sn = −x],

and we see that |Sn| has the same transition probabilities as the reflected
random walk governed by µ.

Recall the classical result that when E(|B1|) < ∞ and E(B1) = 0 then
(Sn) is recurrent; see Chung and Fuchs [15].

(5.7) Corollary. If µ is symmetric and has finite first moment then the
reflected random walk is recurrent.
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Let B+
n = max{Bn, 0} and B−n = max{−Bn, 0}, so that Bn = B+

n −B−n .
The following is well-known.

(5.8) Lemma. If (a) E(B−1 ) < E(B+
1 ) ≤ ∞, or if (b) 0 < E(B−1 ) =

E(B+
1 ) <∞, then lim supSn =∞ almost surely, so that there are infinitely

many reflections.

In general, we should exclude that Sn → −∞, since in that case there
are only finitely many reflections, and the reflected random walk tends to
+∞ almost surely. In what follows, we assume that lim supSn =∞ almost
surely. Then the (non-strictly) ascending ladder epochs

s(0) = 0, s(k + 1) = inf{n > s(k) : Sn ≥ Ss(k)}
are all almost surely finite, and the random variables s(k + 1) − s(k) are
i.i.d. We can consider the embedded random walk Ss(k), k ≥ 0, which tends
to ∞ almost surely. Its increments Bk = Ss(k) − Ss(k−1), k ≥ 1, are i.i.d.
non-negative random variables with distribution denoted µ. Furthermore, if
X
x
k denotes the reflected random walk associated with the sequence (Bk),

while Xx
n is our original reflected random walk associated with (Bn), then

X
x
k = Xx

s(k),

since no reflection can occur between times s(k) and s(k+1). When Pr[Bn<0]
> 0, one clearly has sup supp(µ) = +∞. Lemma (5.4) implies the following.

(5.9) Corollary. Suppose that (5.2) is satisfied, Pr[Bn < 0] > 0 and
lim supSn =∞. Then

(a) the reflected random walk is topologically irreducible on L = R+,
(b) the embedded reflected random walkXx

k is recurrent if and only the
original reflected random walk is recurrent.

Proof. Statement (a) is clear.
Since both processes are locally contractive, each of them is transient

if and only if it tends to +∞ almost surely: If limnX
x
n = ∞ then clearly

also limkX
x
s(k) = ∞ a.s. Conversely, suppose that limkX

x
k → ∞ a.s. If

s(k) ≤ n < s(k + 1) then Xx
n ≥ Xx

s(k). (Here, k is random, depending on n

and ω ∈ Ω, and when n→∞ then k →∞ a.s.) Therefore, also limnX
x
n =∞

a.s., so that (b) is also true.

We can now deduce the following.

(5.10) Theorem. Suppose that (5.2) is satisfied and Pr[B1 < 0] > 0. Then
the reflected random walk (Xx

n) is (topologically) recurrent on L = R+ if

(a) E(B−1 ) < E(B+
1 ) and E

(√
B+

1

)
<∞, or

(b) 0 < E(B−1 ) = E(B+
1 ) and E

(√
B+

1

3)
<∞.
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Proof. We show that in each case the assumptions imply that E(
√
B1)

<∞. Then we can apply Theorem (5.5) to deduce recurrence of (Xx
k). This

in turn yields recurrence of (Xx
n) by Corollary (5.9).

(a) Under the first set of assumptions,

E
(√

B1

)
= E

(√
B1 + · · ·+Bs(1)

)
≤ E

(√
B+

1 + · · ·+B+
s(1)

)
≤ E

(√
B+

1 + · · ·+
√
B+

s(1)

)
= E

(√
B+

1

)
· E(s(1))

by Wald’s identity. Thus, we now are left with proving E(s(1)) < ∞. If
E(B+

1 ) < ∞, then E(|B1|) < ∞ and E(B1) > 0 by assumption, and in this
case it is well known that E(s(1)) < ∞; see e.g. [20, Thm. 2 in §XII.2, pp.
396–397]. If E(B+

1 ) =∞ then there is M > 0 such that B(M)
n = min{Bn,M}

(which has finite first moment) satisfies E(B(M)
n ) = E(B(M)

1 ) > 0. The first
increasing ladder epoch s(M)(1) associated with S(M)

n = B
(M)
1 + · · ·+B

(M)
n

has finite expectation by what we just said, and s(1) ≤ s(M)(1). Thus, s(1)
is integrable.

(b) If the Bn are centered, non-zero and E((B+
1 )1+a) <∞, where a > 0,

then E((B1)a) < ∞, as was shown by Chow and Lai [14]. In our case,
a = 1/2.

We conclude our remarks on the reflected random walk by discussing

sharpness of the sufficient recurrence conditions E
(√

B+
1

3)
< ∞ in the

centered case, resp. E(
√
B1) <∞ in the case when B1 ≥ 0.

(5.11) Example. Define a symmetric probability measure µ on R by

µ(dx) =
dx

(1 + |x|)1+a
,

where a > 0 and c is the proper normalizing constant (and dx is Lebesgue
measure). Then it is well known and quite easy to prove via Fourier analysis
that the associated symmetric random walk Sn on R is recurrent if and
only if a ≥ 1. By Lemma (5.6), the associated reflected random walk is also
recurrent, but if 1 ≤ a ≤ 3/2 then condition (b) of Theorem (5.10) does not
hold.

Nevertheless, we can also show that in general, the sufficient condition
E
(√

B1

)
<∞ for recurrence of the reflected random walk with non-negative

increments Bn is very close to being sharp. (We write Bn because we shall
represent this as an embedded random walk in the next example.)

(5.12) Proposition. Let µ0 be a probability measure on R+ which has a
density φ0(x) with respect to Lebesgue measure that is decreasing and satis-
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fies
φ(x) ∼ c(log x)b/x3/2 as x→∞,

where b > 1/2 and c > 0. Then the associated reflected random walk on R+

is transient.

Note that µ0 has finite moment of order 1/2 − ε for every ε > 0, while
the moment of order 1/2 is infinite.

The proof needs some preparation. Let (Bn) be i.i.d. random variables
with values in R that have finite first moment and are non-constant and
centered, and let µ be their common distribution.

The first strictly ascending and strictly descending ladder epochs of the
random walk Sn = B1 + · · ·+Bn are

t+(1) = inf{n > 0 : Sn > 0} and t−(1) = inf{n > 0 : Sn < 0},
respectively. They are almost surely finite. Let µ+ be the distribution of
St+(1) and µ− the distribution of St−(1), and—as above—µ the distribution
of B1 = Ss(1). We denote the characteristic function associated with any
probability measure σ on R by σ̂(t), t ∈ R. Then, following Feller [20, (3.11)
in §XII.3], Wiener–Hopf factorization tells us that

µ = µ+ µ− − µ ∗ µ− and µ = u · δ0 + (1− u) · µ+,

where

u = µ(0) =
∞∑
n=1

Pr[S1 < 0, . . . , Sn−1 < 0, Sn = 0] < 1.

Here ∗ is convolution. Note that when µ is absolutely continuous (with
respect to Lebesgue measure) then u = 0, so that

(5.13) µ = µ+ and µ = µ+ + µ− − µ+ ∗ µ−.

(5.14) Lemma. Let µ0 be a probability measure on R+ which has a de-
creasing density φ0(x) with respect to Lebesgue measure. Then there is an
absolutely continuous symmetric probability measure µ on R such that the
associated first (non-strictly) ascending ladder random variable has distri-
bution µ0.

Proof. If µ0 is the law of the first strictly ascending ladder random vari-
able associated with some absolutely continuous, symmetric measure µ, then
by (5.13) we must have µ+ = µ0 and µ− = µ̌0, the reflection of µ0 at 0, and

(5.15) µ = µ0 + µ̌0 − µ0 ∗ µ̌0.

We define µ in this way. The monotonicity assumption on µ0 implies that
µ is a probability measure: indeed, by the monotonicity assumption it is
straightforward to check that the function φ = φ0 + φ̌0 − φ0 ∗ φ̌0 is non-
negative; this is the density of µ.
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The measure µ of (5.15) is non-degenerate and symmetric. If it induces
a recurrent random walk (Sn), then the ascending and descending ladder
epochs are a.s. finite. If (Sn) is transient, then |Sn| → ∞ almost surely,
but it cannot be that Pr[Sn → ∞] > 0 since in that case this probability
would have to be 1 by Kolmogorov’s 0-1-law, while symmetry would yield
Pr[Sn → −∞] = Pr[Sn → ∞] ≤ 1/2. Therefore lim inf Sn = −∞ and
lim supSn = +∞ almost surely, a well-known fact (see e.g. [20, Thm. 1 in
§XII.2, p. 395]). Consequently, the ascending and descending ladder epochs
are again a.s. finite. Therefore the probability measures µ+ and µ− = µ̌+

(the laws of St±(1)) are well defined. By the uniqueness theorem for Wiener–
Hopf factorization [20, Thm. 1 in §XII.3, p. 401], it follows that µ− = µ̌0

and that the distribution of the first (non-strictly) ascending ladder random
variable is µ = µ0.

Proof of Proposition (5.12). Let µ be the symmetric measure associated
with µ0 according to (5.15) in Lemma (5.14). Then its characteristic function
µ̂(t) is non-negative real. A well-known criterion says that the random walk
Sn associated with µ is transient if and only if (the real part of) 1

/
(1−µ̂(t)) is

integrable in a neighbourhood of 0. Returning to µ0 = µ+, it is a standard
exercise (see [20, Ex. 12 in Ch. XVII, Section 12]) to show that there is
A ∈ C, A 6= 0, such that the characteristic function satisfies

µ̂0(t) = 1 +A
√
t (log t)b(1 + o(t)) as t→ 0.

By (5.13),
1− µ̂(t) = (1− µ̂+(t))(1− µ̂−(t)).

We deduce

µ̂(t) = 1− |A|2|t|(log |t|)2b(1 + o(t)) as t→ 0.

The function 1/(1−µ̂(t)) is integrable near 0. By Lemma (5.6), the associated
reflected random walk is transient. But then also the embedded reflected
random walk associated with Ss(n) is transient by Corollary (5.9). This is
the reflected random walk governed by µ0.
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Inst. H. Poincaré Probab. Statist. 39 (2003), 371–384.

[11] D. Buraczewski, On invariant measures of stochastic recursions in a critical case,
Ann. Appl. Probab. 17 (2007), 1245–1272.

[12] D. Buraczewski, E. Damek, Y. Guivarc’h, A. Hulanicki, and R. Urban, Tail-homo-
geneity of stationary measures for some multidimensional stochastic recursions,
Probab. Theory Related Fields 145 (2009), 385–420.

[13] R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4
(1960), 153–160.

[14] Y. S. Chow and T. L. Lai, Moments of ladder variables for driftless random walks,
Z. Wahrsch. Verw. Gebiete 48 (1979), 253–257.

[15] K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of random
variables, Mem. Amer. Math. Soc. 6 (1951).

[16] P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev. 41 (1999),
45–76.

[17] L. Elie, Étude du renouvellement sur le groupe affine de la droite réelle, Ann. Sci.
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