COLLOQUIUM MATHEMATICUM

VOL. 125 2011 NO. 2

A FREE GROUP OF PIECEWISE LINEAR TRANSFORMATIONS

BY

GRZEGORZ TOMKOWICZ (Bytom)

Abstract. We prove the following conjecture of J. Mycielski: There exists a free non-
abelian group of piecewise linear, orientation and area preserving transformations which
acts on the punctured disk {(z,y) € RZ:0<z?+9% < 1} without fixed points.

1. Introduction. In the theory of paradoxical decompositions which
goes back to Hausdorff, Banach and Tarski, and von Neumann (see the
survey of M. Laczkovich [2] and also [5]) the following conjecture was open
until recently:

(I) The punctured disk D = {(z,y) € R? : 0 < 22 +y*> < 1} has a
paradoxical decomposition relative to the group SLa(R).

Likewise we have the more demanding conjecture:

(IT) There exists a partition of D into three sets A, B,C such that the
sixz sets A, B,C,AUB,BUC,CUA are equivalent to each other by
finite decomposition relative to the group SLo(R).

Recall that sets A, B C X are equivalent by finite decomposition (or
equidecomposable) relative to a group G acting on X if there exist finite
partitions {A4;}¥_ | and {B;}}_, of A and B respectively and g1,...,g; € G
such that g;(A;) = B; for each 1 < i < k. The set E C X is paradozical
relative to G if E contains disjoint subsets A and B and each of them is
equidecomposable to E relative to G.

Conjecture (I) was proved by M. Laczkovich [I]. (IT) presents additional
difficulties, and it will be proved in the present paper. In fact it is known
(see [4] and Corollary 4.12 in [5]) that with the use of the Axiom of Choice,
affirmative answers to (I), (II) and many similar conjectures follow from the
following theorem:

THEOREM 1.1. There exists a free nonabelian group F of permutations
acting on the punctured disk D = {(x,y) € R?: 0 < 2% 4+ y? < r?} such that
if f € F\{e} and x € D then f(z) # x, and for every f € F there exists a
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finite partition D = Dy U --- U D, where the sets D; belong to the Boolean
algebra generated by sets open in D, and there exist ¢1,...,pn € SLa(R)
such that f1D; = @;[D; fori=1,...,n.

J. Myecielski [3] proved a similar theorem for the hyperbolic plane and
in [4] he conjectured the above one and outlined a possible approach to the
proof. In the present paper we will show that indeed his approach can be
realized. Our proof does not use the Axiom of Choice. Let us also mention
that the proof of conjecture (I) in [I] is based on the fact that the action of
SLy(R) on R%\ {(0,0)} is locally commutative. However this fact does not
suffice to prove conjecture (II).

2. Preliminaries. In this section we recall the material from Mycielski
[4] that is relevant to our proof. All unexplained terminology can be found
in [4].

In what follows, unless otherwise stated, linear transformations are rep-
resented by a matrix relative to the standard basis.

LEMMA 2.1. If A € SLa(R) and tr(A) # 2, then A(x) # x for all
z € R?\ {(0,0)}.

Proof. It is enough to observe that tr(A) # 2 implies det(A — I) # 0.
Then apply this to the equation Az = x to obtain z = (0,0). m

LEMMA 2.2. For any ¢ € SLa(R) there exists a rotation p, € SO2(R)

such that .
D\ (D) = pp(D\ ¢~ (D)).
Proof. This follows since the ellipses ¢~ 1(D) and ¢(D) are congruent. =

Applying Lemma 2.2 for all ¢ € SLy(R) we can define a piecewise linear
transformation @ : D — D such that

5(x) {gp(:n) if x€ DNy (D),
x) = ) -
po(x) if € D\ Y(D).
Let ko > 1 be a real number such that D C p1p(D) U p2p(D) U psp(D)
for some rotations pi, p2, p3 € SO2(R) and ¢ represented by the matrix

A0:<KO 0 )
0 1//@0

We observe that there exist three orthonormal, oriented bases with the same
orientation as the standard basis, such that if @1, 2, p3 € SLa(R) are rep-

resent ed bS/ a malriX

relative to these bases, where 1 < k < kg, then the composition $1p2@3 has
the following property:
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(P) For every z € D, p1p2p3(x) = fgh(z), where

(f,9:1) € {1, p} x {2, 0} x {03, p} \ {(p. 0, )}
and p is the counter-clockwise rotation through 7 /2.

REMARK 2.3. Clearly, if each of the three bases defined above is rotated
counter-clockwise by the same angle, then the transformations oy, @5, vg €
SLa(R) represented by the matrix A relative to these bases are such that
the map @495p¢ also has the property (P).

Finally, the above implies that Theorem 1.1 reduces to the following
statement:

THEOREM 2.4. There exist triples (p1, 92, ¢3), (04, P5, p6) € (SLa(R))3
and a real number Kk with 1 < Kk < Ko such that the pair of transformations
10203, Daps5ps : D — D generate a free group as required in Theorem 1.1.

REMARK 2.5. In the standard basis, each ¢; has a matrix of the form
S;}AS%, where S, is an orthogonal matrix.

3. Proof of Theorem 2.4. Choose ¢1,...,p6 € SLa(R) represented
by the matrix A = (051 /(L) in some six, pairwise different, orthonormal bases
B, ..., Bg with the same orientation as the standard basis. Assume also that
P1p2p3 and @405 have the property (P). Further let D be the punctured
disk and R be the matrix corresponding to the rotation p, defined in the
property (P). Denote by ¥ the set consisting of the elements @1 0293, P4P5P6
and their inverses.

LEMMA 3.1. Let w be a nontrivial, irreducible composition of | elements
from W. Then there exists a finite partition {Di}’f:l of D such that the sets
D; belong to the Boolean algebra generated by sets open in D and w restricted
to any D; has matrixz of the form P1X1... P, X, Ppi1, where n < 31, P;
is an orthogonal matriz and X; € {A, A~} fori =1,...,n. Moreover for
each i <n—+1, either

(i) P; = R’“S;} forr <6 and ky € {0,1,2,3}, or
(i) P; = S%RI“S;L} forr,s <6 and k1 € {0,1,2,3}, or
(iii) P; = S, R™ for v <6 and k; € {0,1,2,3},
where P; satisfies (1) (resp. (iii)) if and only if i =1 (resp. i =n+1).
Proof. By the property (P), for any x € D and any w, w(zx) equals the
value of some composition of elements from V.

The order of the elements in the composition determines the shape of the
matrices P; and also the form of the partition {D;}%_ ;. =

Let S be the set of all entries of the matrices S,,,..., S, (see Re-
mark 2.5).
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LEMMA 3.2. Let P1X;...P,X,, be a matriz such that X; € {A, A1}
and P; is an orthogonal matriz with entries from S for 1 < i < n and
n=1,2.... Then each entry of P1 Xy ...P,X,, is a function of the form

QK)=a_pk "+ -+ a1k 4 ag+ ark+ -+ ank®,
where a; € Q(S), the field generated by the set S.
Moreover:
(i) If X, = A then P1X; ... P,X,, is of the form
a(_lq)zﬁ_("_z) 4+ 4 a( ) n a(2) K4+ ch(f),%"_2
PiXp . PrA=1 @) 9 (3),n ) - (1), n—2
al, K +odan 'K al, kT an K"

(i) If X,, = A~ then P1X; ... P, X, is of the form

I N Ay O A (e IRy ACORE

PiXi PoA =1 3 (3) n-2 ;@  —(n-2) )

L R L b, K 4+ -+ b’k

Proof. By induction on the number of factors P;X;. We observe that the

highest term of each entry of P1X; ... P, X, P,+1 has the form a,x™ and the

lowest a_,x~"™. Then multiplying the matrix by A (resp. A~!) is multiplying
the first column by x (resp. 1/k) and the second by 1/k (resp. k). =

LEMMA 3.3. Let f’l, . ,13n be some orthogonal matrices such that each

of them can be expressed by the conditions (1)—(iil) of Lemma 3.1. If the rota-

tion angles o of Sy, 1 =1,...,6, are such that a;—a; ¢ {kﬂ'/Q ke Z} and

@ ¢ {kr/2:k € Z} for any i 7é j, then no entry of P.X,...P Xn, where

X € {A, A1}, is a constant function in k, for any positive integer n > 2.

Proof. We consider two cases.

CASE 1: 132 #* S%RQS;T1 for any 7 < 6 and any 1 < i < n. In this case
the assumptions of the lemma imply that P; represents a rotation through
an angle # kx /2 for k € Z. Then it is enough to observe by Lemma 3.2 that,
for any n > 2, each of the coefficients in the highest terms of P1X1 P Xn
is a product of some entries of P1, . P and thus it is not zero.

CASE 2: f’l = S%RQS;T1 for some r < 6 and some 1 < i <n. Let j be
the minimal number such that Pj is of the above form. Suppose X;_1 = A
e}\ndAobser/\\/e th/z\at in this case X; = A and by Lemma 3.2 we can express
P1X1 e ijlxj;l as

(1()3 1)1%7(]‘73) _,_,.__,_a;li)lﬁjfl a(,Q()j,l)Hf(jfl) +.. (2)1,<;J 3
(3()] 1)/{_(‘7’_3) 4t a(3_) H‘j_l CL(_4()] 1)/{_(.7'—1) 4+ o4 a('_)l'%] 3

Since the matrix S, RQS 1 corresponds to rotation through 7, multiplica-

tion of P1X1 P] 1Xj 1 by it changes the sign of the coefficients in the
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highest and the lowest terms of all the entries of ].315(1 ... l?’j_l}A(j_l. Thus

finally

PR P X, o ),((J h 4.y a(l),QJ a(Q),fJ bt a§2)ﬁjf4
e B agﬁf(jf@ T a<3>,€J a<4> et it

where the coefficients in the highest terms in the first column and in the

lowest terms in the second column are not zero. Clearly we can extend this
reasoning to the case PJ = P]+1 = P]+p =8, R2S , where j +p < n.

It remains to observe that if f’j+p # SapTRQS@Tl for some j + p < n then

by Lemma 3.2 we obtain Case 1 for the matrix P:1X; .. f’J+p)A(j+p The
same reasonlng can be applied, mutatis mutandis, to the situation when
X; 1 =A"L

Now we can conclude the proof of Theorem 2.4. Let @1, ..., ps, 19203
and p4P5p6 be the transformations, A, R be the matrices and D be the
set as at the beginning of Section 3. For all positive integers n, the matrices
Pi,..., P, satisfy the assumptions of Lemma 3.3. Let w be a nontrivial,
irreducible composition of elements from ¥, and P1X; ... P, X, P11 be a
matrix corresponding to w, restricted to some D; C D, as in Lemma 3.1.

First we show that for any positive integer n,

(*) tr(P1X1 P X Pn+1) :tr(f’lj\il i:\)X)

for some integer j such that 1 < j <n, where P is described by one of the
conditions (i)-(iii), and X; € {A, A~ 1} for 1 <i<j.
We have two cases:

CAsSE 1: Py # P;il. By Lemma 3.1 we can write P, 1P; = S%Rkls;sl
for some 7, s < 6 and some k; € {0,1,2,3}. Since similar matrices have equal
traces,

tr(P1X1...PyX,Pyyy) = tr(PX;...P,X,), where P =8, RMSL

CAsE 2: Py = Pnil By Lemma 3.1 we obtain P; = R’“S;} for some

r < 6 and some k; € {0,1,2,3}, and then PnJrl = S, R7%. Since the

bases B; are pairwise different, we apply the property (P) to deduce that
X; = X! Thus
tr(P1X1 ... PpX,Prp1) = tr(P, 1, X, 'PoXs . .. P X, Prgq)
= t1(XpPp1 P11 X, ' PoXs .. . Py X1 Py)
=tr(PaXy... Py 1 X1 Py).
We can repeat this operation if necessary, to obtain finally

tr(P1X1 e PanPn+1) = tr(P1+jX1+j e Pnijnijn+1fj)7



146 G. TOMKOWICZ

where j is the number of the above cancelations and P14 ; # P;}_l_ j (such
a j exists since w is nontrivial and irreducible).
Thus Case 2 is reduced to Case 1.

Further, we observe that, by Lemmas 3.2 and 3.3, the condition
tr(P1X; ... P,X,) = 2 leads to a nonconstant polynomial in x. Since each of
the above polynomials has only finitely many roots and there are only count-
ably many expressions of the form P1X;...P,X,, where n is any positive
integer, we conclude that the set K = {k € R : tr(f’lxl LLPRXy) = 2
n € N, P; are of the form (i)-(iii), X; € {A, A"} for each 1 < i < n}
is countable. Thus we can choose some k; € R such that k1 ¢ K and
1 < k1 < Ko.

By the properties (P) and (%) we have tr(P1X;...P,X,,Py11) # 2 for
this k1, any positive integer n and any P;,X;, j <n+ 1,79 < n+ 1. To
conclude the proof it is enough to use Lemmas 2.1 and 3.1. =

COROLLARY 3.4. If the entries of the matrices P; from P1Xq...
. Pu X,y Poy1 are nonzero algebraic numbers and kg is a real number, oc-
curring in the property (P), then one can use as ki, in the above proof, all
transcendental numbers k such that 1 < k < Kg.
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