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BANACH SPACES WHICH EMBED INTO THEIR DUAL

BY

VALERIO CAPRARO (Neuchâtel) and STEFANO ROSSI (Roma)

Abstract. We use Birkhoff–James’ orthogonality in Banach spaces to provide new
conditions for the converse of the classical Riesz representation theorem.

1. Introduction. It is well-known that the two most basic properties
of a complex Hilbert space H are

• If X is a closed subspace of H, then H = X ⊕X⊥.
• (Riesz’s representation theorem). There is a conjugate-linear isometry

from H onto H∗.

It was shown by Lindenstrauss and Tzafriri in [Li-Tz71] that the first
property essentially characterizes Hilbert spaces among the Banach spaces.
A longstanding question asks instead whether Riesz’s representation theo-
rem also characterizes Hilbert spaces; namely, let X be a Banach space and
F : X → X∗ an isometric isomorphism; is it true that X is a Hilbert space?
In general, the answer is clearly negative. Indeed, if Y is a reflexive Banach
space which is not a Hilbert space, one can easily check that X = Y ⊕Y ∗ is
isometrically isomorphic to its dual, but X is not a Hilbert space. So, over
the years, there have been many attempts to add some condition on F in
order to guarantee that X turns to be a Hilbert space (see, for instance,
[Dr-Ya05], [Li70], [Pa86a], [Sz-Za81]). In this paper we contribute to this
problem proposing some different conditions, by making use of the so-called
Birkhoff–James orthogonality (see Theorems 2 and 4). We also propose some
weaker statement, as in Theorem 5 and its corollary.

2. Some converses of the Riesz representation theorem. Through-
out this note (X, ‖ · ‖) will denote a complex normed Banach space (the real
case is analogous). We start by recalling Birkhoff–James’ definition of or-
thogonality in Banach spaces (cf. [Bi35] and [Ja47]).
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Definition 1. x ∈ X is said to be orthogonal to y ∈ X if for each
scalar λ one has ‖x‖ ≤ ‖x+ λy‖.

It is clear that if X is a Hilbert space, then this definition reduces to
the usual one. In this general context, where there is no inner product, it
describes the following geometric property: a vector x is orthogonal to y if
each triangle with one side equal to x and another side constructed along y
has the third side longer than x. By the way, this is not the unique definition
of orthogonality in Banach spaces, but it is surely the oldest and the most
intuitive one (see [Al-Be97], [Di83], [Ja45] and [Pa86b] for other notions of
orthogonality).

A simple but important remark is that the classical Riesz representation
H 3 x 7→ fx ∈ H∗ has the property x ∈ Ker(fx)⊥, which we can require
in our context of normed spaces by using the Birkhoff–James orthogonality
(by the way, it would be interesting to know if the following result holds
true also using other notions of orthogonality).

Theorem 2. Let X be a complex normed (resp. Banach) space and F :
x ∈ X 7→ fx ∈ X∗ an isometry such that for all x, y ∈ X one has

fx(y) = fy(x),(1)

x ∈ Ker(fx)⊥ in the sense of Birkhoff and James.(2)

Then X is a pre-Hilbert (resp. Hilbert) space with respect to the inner product
given by (x, y) = fx(y) and (x, x) = ‖x‖2.

Proof. Clearly (x, y) .= fx(y) defines a sesquilinear hermitian form on
X (thanks to (1)). We will prove that this form is also positive definite.
Let x ∈ X be such that (x, x) = 0. Then x ∈ Ker(fx) and we can apply
Definition 1 with λy = −x: ‖x‖ ≤ 0, i.e. x = 0. Now we observe that the
real-valued function Φ : X 3 x 7→ fx(x) ∈ R is continuous (by the triangle
inequality), X \ {0} is connected (unless dimX = 1 and X is real, which is
a trivial case) and thus Φ(X \ {0}) is an interval I ⊆ R not containing 0.
Hence I ⊆ (−∞, 0) or I ⊆ (0,∞) and we can assume that fx(x) > 0 for
all x 6= 0 (otherwise take −fx(x)). It remains to prove that fx(x) = ‖x‖2.
Clearly fx(x) ≤ ‖fx‖ ‖x‖ = ‖x‖2. Conversely, let p(x) be such that fx(x) =
p(x)‖x‖. We have to prove that p(x) ≥ ‖x‖. Let y ∈ Ker(fx) and λ ∈ C. By
Definition 1, we have

|fx(λx+ y)| = |λ|fx(x) = |λ|p(x)‖x‖ = p(x)‖λx‖ ≤ p(x)‖λx+ y‖.
Now, remember that when y runs over Ker(fx) and λ ∈ C, λx+ y describes
the whole X (indeed Ker(fx) has codimension 1 and does not contain x),
whence ‖x‖ = ‖fx‖ ≤ p(x).

Remark 3. In [Pa86a] the author proved that the existence of an or-
thogonality relation on a Banach space which satisfies certain properties is
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sufficient to guarantee that the Banach space is actually a Hilbert space.
Unfortunately, the Birkhoff–James orthogonality does not have those prop-
erties. In [Dr-Ya05], the authors proved a result similar to our Theorem 2. In-
deed they obtained the same conclusion under the two conditions fx(x) ≥ 0
for all x ∈ X and x 7→ fx surjective. The first condition is weaker than
ours, while the second one is stronger. Indeed, we have not required that
F : X → X∗ is surjective, which is a consequence of the other hypothesis,
at least when X is norm-complete. In fact, requiring surjectivity a priori,
we are able to relax our second hypothesis.

Theorem 4. Let F : x ∈ X 7→ fx ∈ X∗ be an isometric isomorphism
that satisfies

fx(y) = fy(x), x ∈ Ker(fx)⇒ x = 0.

Then X is a Hilbert space with respect to the inner product given by (x, y) =
fx(y) and (x, x) = ‖x‖2.

Proof. The argument of the previous proof shows that (·, ·) is positive
definite. Setting |x| = (x, x)1/2, it remains to prove that |x| = ‖x‖ for each
x ∈ X. Clearly |x|2 ≤ ‖fx‖ ‖x‖ = ‖x‖2. Conversely, by the Hahn–Banach
theorem, there exists f ∈ X∗, with ‖f‖ = 1, such that ‖x‖ = f(x). By
the surjectivity of the embedding we have f = fy for some y ∈ X with
‖y‖ = ‖fy‖ = ‖f‖ = 1. So

‖x‖ = fy(x) = (y, x) ≤ |y| |x| ≤ ‖y‖ · |x| = |x|
in which the first inequality is just the Cauchy–Schwarz inequality applied
to (·, ·).

Now we propose a minor refinement of the previous results. Indeed, if
X is reflexive and RanF is closed we get the same conclusion, up to norm-
equivalence. More precisely:

Theorem 5. Let F : x ∈ X 7→ fx ∈ X∗ be a continuous map from the
reflexive Banach space X into its dual with closed range and such that

fx(y) = fy(x),(3)
x ∈ Ker(fx) ⇒ x = 0.(4)

Then the norm of X is equivalent to the Hilbert norm given by |x| = fx(x)1/2.

Proof. We start by observing that F is injective (by (4)), so it is an
isomorphism between X and RanF . Then, by the Banach inverse operator
theorem we get ‖fx‖ ≥ δ‖x‖ for each x ∈ X (for some δ > 0). As in the
previous proofs we set (x, y) = fx(y) and we see easily that it is a positive
definite sesquilinear form. Now

|x|2 = fx(x) ≤ ‖fx‖ ‖x‖ ≤ ‖F‖ ‖x‖2.
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To prove the reverse inequality, we need to show first the surjectivity of F .
It is a straightforward consequence of the reflexivity of X : RanF is a dense
(and closed) subspace of X∗ because the polar space of RanF is the null
space, as one can easily check. Now, let x ∈ X and f ∈ X∗ with ‖f‖ = 1 and
‖x‖ = f(x). By the surjectivity of F , we have f = fy for a unique y ∈ X.
So (using the Cauchy–Schwarz inequality on the positive definite form (·, ·))

‖x‖ = fy(x) = (y, x) ≤ |y| |x| ≤ ‖F‖1/2‖y‖ |x| ≤ δ−1‖F‖1/2|x|.
This ends the proof.

Remark 6. The assumption about the reflexivity of X is, in some sense,
necessary. Indeed, a straightforward application of James’ characterization
of reflexivity shows that if X is a real Banach space which is isometrically
isomorphic to its dual via x 7→ fx and this isomorphism is such that fx(y) =
fy(x), then X is reflexive (see for instance [Li70]).

3. Contraction of a Banach space into a Hilbert space. Theo-
rem 5 suggests an observation that might be of interest. Indeed, we have
used the fact that RanF is closed and the reflexivity of X only to prove
that C‖x‖ ≤ |x|. Thus we have the following

Corollary 7. Let X be a normed space and F : x ∈ X 7→ fx ∈ X∗ be
continuous and such that

fx(y) = fy(x), x ∈ Ker(fx)⇒ x = 0.

Then (x, y) = fx(y) defines a pre-Hilbertian structure on X, and the topology
induced by (·, ·) is weaker than the norm-topology.

Let X̃ denote the completion of X with respect to the inner product
fx(y). We can compute X̃ in some simple cases.

• We consider the contraction of l1 into its dual l∞ given by the “iden-
tity”. It is easy to check that l̃1 = l2.

• Let L1(B(H)) and L2(B(H)) be respectively the trace class and the
Hilbert–Schmidt operators on a Hilbert space H. L1(B(H)) is canon-
ically embedded into its dual B(H) through the conjugate-linear map

T 7→ tr(T ∗·). Thus ˜L1(B(H)) = L2(B(H)).

In both these examples, a Banach space turns out to be contracted into
a Hilbert space. The contraction of a Banach space into a Hilbert space
is nothing special, at least when the space is separable. Indeed the classi-
cal Banach–Mazur representation theorem provides an isometry from ev-
ery separable Banach space into C[0, 1], which is obviously contracted into
L2[0, 1]. On the other hand, it is not clear what happens when the space
is not separable: one can still apply the Banach–Mazur theorem to obtain
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an isometry from X onto a closed subspace of C(X∗1 ), where X∗1 stands for
the weak∗ closed unit ball in the dual space of X. When does C(X∗1 ) embed
into L2(X∗1 )? To obtain the canonical embedding we need a positive Borel
measure whose support is the whole X∗1 , but it is clear that such a mea-
sure might not exist. For instance, let H be a non-separable Hilbert space,
{ea : a ∈ A} an orthonormal basis for H, and X = {x ∈ H : ‖x‖ ≤ 1}
with the weak topology. We set Ua = {x ∈ X : |(x, ea)|2 > 1/2}. This is
an uncountable family of non-empty (ea ∈ Ua!) disjoint (by Parseval!) open
(because the functionals x 7→ |(x, ea)|2 are continuous with respect the weak
topology) sets. Thus, if µ is a Borel measure on X, there exists a ∈ A such
that µ(Ua) = 0 and thus supp(µ) ⊆ U c

a.
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