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MORPHISMS IN THE CATEGORY OF FINITE-DIMENSIONAL
ABSOLUTE VALUED ALGEBRAS

BY

SEIDON ALSAODY (Uppsala)

Abstract. This is a study of morphisms in the category of finite-dimensional absolute
valued algebras whose codomains have dimension four. We begin by citing and transferring
a classification of an equivalent category. Thereafter, we give a complete description of
morphisms from one-dimensional algebras, partly via solutions of real polynomials, and
a complete, explicit description of morphisms from two-dimensional algebras. We then
give an account of the reducibility of the morphisms, and for the morphisms from two-
dimensional algebras we describe the orbits under the actions of the automorphism groups
involved. Parts of these descriptions rely on a suitable choice of a cross-section of four-
dimensional absolute valued algebras, and we thus end by providing an explicit means of
transferring these results to algebras outside this cross-section.

1. Definitions and background. An algebra A = (A, ·) over a field
k is a vector space A over k equipped with a k-bilinear multiplication A ×
A → A, (x, y) 7→ xy = x · y. Neither associativity nor commutativity is in
general assumed. A is called unital if it contains an element neutral under
multiplication; in that case, such an element is unique, and will be denoted
by 1. If A is non-zero, and if for each a ∈ A \ {0}, the maps La : A → A,
x 7→ ax, and Ra : A→ A, x 7→ xa, are bijective, then A is called a division
algebra. This implies that A has no zero divisors and, if the dimension of A
is finite, it is equivalent to having no zero divisors.

An algebra A is called absolute valued if the vector space is real and
equipped with a norm ‖ · ‖ such that ‖xy‖ = ‖x‖ ‖y‖ for all x, y ∈ A. By [1]
the norm in a finite-dimensional absolute valued algebra is uniquely de-
termined by the algebra multiplication if the algebra has finite dimension.
The multiplicativity of the norm implies that an absolute valued algebra
has no zero divisors and hence, if it is finite-dimensional, that it is a di-
vision algebra. The class of all finite-dimensional absolute valued algebras
forms a category A, in which the morphisms are the non-zero algebra ho-
momorphisms. Thus A is a full subcategory of the category D(R) of finite-
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dimensional real division algebras. It is known that morphisms in A respect
the norm, and are hence injective. (Injectivity in fact holds for all morphisms
in D(R).)

1.1. Notation

1.1.1. Complex numbers and quaternions. The real and imaginary part
of A ∈ {C,H} will be denoted by <A and =A, respectively. We also use the
notation a = <(a) + =(a) for elements a ∈ A. The letters i, j,k denote the
standard basis of the imaginary space =H of the quaternion algebra H, and
i will also be used as the imaginary unit in C as confusion is improbable.
Complex and quaternion conjugation (negation of the imaginary part) will
be denoted by x 7→ x for x ∈ C or x ∈ H. A quaternion with vanishing
imaginary part and real part r is simply denoted by r in view of the embed-
ding of R into H, and the notation S(H) and S(=H) will be used for the set
of quaternions of norm one and the set of purely imaginary quaternions of
norm one, respectively. For p ∈ S(H) we have p−1 = p, and we will denote
the map x 7→ pxp−1 = pxp by κp and refer to it as conjugation by p.

1.1.2. Other conventions. Throughout the paper, the abbreviations
νc := cos ν and νs := sin ν will be used to enhance readability, as trigono-
metric expressions are abundant in many equations, where at the same time
the trigonometry itself is of little importance.

Moreover, the elements 1 and −1 of the cyclic group C2 will often be
written simply as + and −, respectively. If n is a positive integer, the
notation n = {k ∈ N | 1 ≤ k ≤ n} will be used. Square brackets [ ]
around a sequence of vectors will denote their span, whereas 〈 , 〉 denotes
the following inner product of two quaternions: given x = s0 + s1i + s2j +
s3k and x′ = s′0 + s′1i + s′2j + s′3k, set 〈x, x′〉 =

∑3
i=0 sis

′
i. The norm

of the absolute valued algebra H is then given by ‖x‖ =
√
〈x, x〉 for all

x ∈ H.
Finally, given a category C, and objects A,B ∈ C, the class of mor-

phisms in C from A to B is denoted C(A,B). Given a group G acting from
the left on a set S, we denote by GS the category whose object class is S,
and in which for x, y ∈ S, a morphism from x to y is a triple (x, y, g)
such that g · x = y. When the objects x and y are clear from context,
we will denote such a morphism simply by g to avoid cumbersome nota-
tion.

1.2. History and outline. In 1947, Albert characterizes all finite-
dimensional absolute valued algebras as follows ([1]).

Proposition 1.1. Every absolute valued algebra is isomorphic to an
orthogonal isotope (A, ·) of a unique A′ ∈ {R,C,H,O}, i.e. A = A′ as a
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vector space, and the multiplication in A is given by

x · y = f(x)g(y)

for all x, y ∈ A, where f and g are linear orthogonal operators on A, and
juxtaposition is multiplication in A′.

Moreover, Albert shows in [1] that the norm in A coincides with the
norm defined in A′.

Thus the objects of A are partitioned into four classes according to their
dimension, and the class of d-dimensional algebras, d ∈ {1, 2, 4, 8}, forms
a full subcategory Ad of A. For d > 1 we moreover have the following
decomposition due to Darpö and Dieterich [6].

Proposition 1.2. Let A ∈ Ad with d ∈ {2, 4, 8}. For any a, b ∈ A\{0},
sgn(det(La)) = sgn(det(Lb)) and sgn(det(Ra)) = sgn(det(Rb)) (1).

The double sign of A is the pair (i, j) ∈ C2
2 where i = sgn(det(La)) and

j = sgn(det(Ra)) for all a ∈ A \ {0}. Moreover, for all d ∈ {2, 4, 8},

(1.1) Ad =
∐

(i,j)∈C2
2

Aijd

where Aijd is the full subcategory of Ad formed by all objects having double
sign (i, j).

Furthermore, the following has been achieved towards obtaining a com-
plete understanding of the category A.

• A classification of the categoriesA1 andA2, and a complete description
of the set A(R, B) for B ∈ A2.
• A classification of the category SO3(SO3×SO3), where the action is by

simultaneous conjugation, and a proof that this category is equivalent
to Akl4 for any (k, l) ∈ C2

2 . The equivalence is expressed in terms of a
category C and equivalences Fkl : C → Akl4 and G : C → SO3(SO3×SO3)
(see [11]).

• A description of the automorphism groups in A4 (see [11]).
• An explicit description of all those A ∈ A4 for which there is a mor-

phism φ : C → A for some C ∈ A2 (see [12]).
• Conditions for two eight-dimensional absolute valued algebras to be

isomorphic, and an exhaustive list of the algebras in A8 obtained from
algebras in A4 by a so-called duplication process (see [2]) (2).

(1) The sign function sgn : R \ {0} → {1,−1} is defined by sgn(r) = r/|r|.
(2) The above-mentioned duplication process is similar to the construction of doubled

eight-dimensional real quadratic division algebras, which are studied in [10]. The category
of all real quadratic division algebras is equivalent to the category of dissident triples,
considered in [7] and [10].
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• Partial classifications of the categoryA8 (see e.g. [4]). These use results
on pairs of rotations in Euclidean space, studied in [5] and [8].

In the remainder of this section, the first item in this list will be sum-
marized. Section 2 recollects the results of the second item, and expresses
it in terms of a cross-section for A4. The main results of the present ar-
ticle, and consequences thereof, are given in Section 3, where we investigate
morphisms from R to absolute valued algebras of dimension four, and in
Section 4, where the same is done for morphisms from two-dimensional
absolute valued algebras. In Section 5 we study the irreducibility of the
morphisms of Section 3, and in Section 6 we determine the number of or-
bits of A(C,A) for C ∈ A2 and A ∈ A4, under the action of the auto-
morphism groups of C and A by composition. The final section supplies
technical arguments to carry over results that have been obtained for a
specific cross-section of A4 to general four-dimensional absolute valued al-
gebras.

1.3. Basic results. It is known that A1 is classified by R, and that
every C ∈ A2 with double sign (i, j) ∈ C2

2 is isomorphic to Cij , the algebra
with underlying vector space C and with multiplication

(x, y) 7→ xjyi,

where for c ∈ C, c+ = c and c− = c, and juxtaposition is multiplication
in C (3).

To describe the morphisms from R to algebras of dimension two, we
recall the following result, which will be important in the coming sections.

Proposition 1.3. Let A be a finite-dimensional absolute valued algebra,
and let Ip(A) be the set of all idempotents in A \ {0}. Then

(1) Ip(A) 6= ∅, and
(2) for each algebra homomorphism ψ : R → A, ψ(1) is an idempotent,

and the map ψ 7→ ψ(1) defines a one-to-one correspondence between
A(R, A) and Ip(A).

The first item in fact holds for any finite-dimensional non-zero real or
complex algebra where x2 6= 0 for each x 6= 0 ([13]), and the second is
readily checked. For absolute valued algebras of dimension two, it is known
that Ip(Cij) = {1} for (i, j) 6= (−,−), and Ip(C−−) = {x ∈ C | x3 = 1}.
Hence, the category A≤d of absolute valued algebras with dimension at most
d is understood for d = 2, and we intend to gain the same understanding
of A≤4.

(3) The notation Cij is used due to practical advantages over the standard notation

C = C++, ∗C = C+−, C∗ = C−+, and
∗
C = C−−.
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2. Absolute valued algebras of dimension four

2.1. Introduction. In view of Proposition 1.2, the category A4 of four-
dimensional absolute valued algebras admits the decomposition

(2.1) A4 =
∐

(k,l)∈C2
2

Akl4

where, for each (k, l) ∈ C2
2 , Akl4 consists of all algebras in A4 with double

sign (k, l). Each object in A4 is isomorphic to an object with multiplication
defined in terms of quaternion multiplication as follows ([12]).

Proposition 2.1. For each A ∈ Akl4 there exists A′ = (A′, ·) ∈ Akl4 and
a, b ∈ S(H) such that A ' A′ and the multiplication · is given by

(2.2) x · y =


axyb if (k, l) = (+,+),
xayb if (k, l) = (+,−),
axby if (k, l) = (−,+),
ax yb if (k, l) = (−,−),

where juxtaposition denotes multiplication in H. Conversely, given any a, b ∈
S(H), (2.2) determines the structure of an algebra in Akl4 for each (k, l) ∈ C2

2 .

An algebra A′ ∈ Akl4 with multiplication given by (2.2) for some a, b ∈
S(H) will be denoted by Hkl(a, b).

2.2. Classification. It was shown in [11] that for each (k, l) ∈ C2
2 there

are equivalences of categories

(2.3) Akl4
Fkl

←−− E(S(H)× S(H)) G−→ SO3(SO3 × SO3)

where E = C2
2 × (S(H)/{1,−1}) acts on S(H)× S(H) by

E × (S(H)× S(H))→ S(H)× S(H), ((ε, δ, p{1,−1}), (a, b)) 7→ (εpap, δpbp),

and SO3 acts on SO3 × SO3 by simultaneous conjugation

SO3 × (SO3 × SO3)→ SO3 × SO3, (ρ, (φ, ψ)) 7→ (ρφρ−1, ρψρ−1).

The functors Fkl are defined on objects by Fkl(a, b) = Hkl(a, b), and on
morphisms by

Fkl(ε, δ, p{1,−1}) = εδκp.

The functor G is defined on objects by G(a, b) = (κa, κb), and furthermore
G(ε, δ, p{1,−1}) is the morphism defined by

(φ, ψ) 7→ (κpφκp, κpψκp)

for each (φ, ψ) ∈ SO3 × SO3. The fact that these constructions are well-
defined was shown in [11].
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We begin by applying the equivalences of categories to express the clas-
sification of SO3(SO3 × SO3), given in [11], as a classification of all four-
dimensional absolute valued algebras, i.e. to describe the image of the given
cross-section of SO3(SO3 × SO3) under the functor

Fkl ◦ H
for each (k, l) ∈ C2

2 , where H is a quasi-inverse functor to G. This is the
content of the following result.

Theorem 2.2. Let u, v ∈ S(=H) be orthogonal. Let (k, l) ∈ C2
2 and

A ∈ Akl4 . Then A ' Hkl(a, b) where a, b are given by

(2.4) a = αc + αsu, b = βc + βs(γcu+ γsv)

for precisely one triple (α, β, γ) satisfying one of

(1) (α, β, γ) ∈ [0, π/2]× {0} × {0},
(2) (α, β, γ) ∈ {0} × (0, π/2]× {0},
(3) (α, β, γ) ∈ (0, π/2)× (0, π)× [0, π/2),
(4) (α, β, γ) ∈ {π/2} × (0, π/2]× [0, π/2), or
(5) (α, β, γ) ∈ (0, π/2]× (0, π/2]× {π/2}.
Remark 2.3. Note that in case (1) above, the restriction on γ is for the

sake of uniqueness; indeed, when β = 0, we have b = 1 for any value of γ.
Observe moreover that the five cases are mutually exclusive.

Theorem 2.2 follows from the classification of SO3(SO3 × SO3) and the
explicit description of the equivalences of categories (2.3) given in [11] and
quoted above. These use the following fact proven in [3]:

For a quaternion q = cos θ+w sin θ, where w ∈ S(=H), the map x 7→ qxq
is a rotation in =H with axis w and angle of rotation 2θ.

For definiteness we fix a pair of quaternions u, v ∈ S(=H) as follows.

Definition 2.4. The set of all Hkl(a, b) ∈ A4 with (k, l) ∈ C2
2 and

(2.5) a = αc + αsi, b = βc + βs(γci + γsj),

with (α, β, γ) as in Theorem 2.2, is called the canonical cross-section of A4.

The particular choice of orthogonal quaternions in Definition 2.4 is made
in order to simplify calculations, and will be used throughout.

3. Morphisms from R to four-dimensional algebras

3.1. Preparatory results. We now study morphisms from the unique
(up to isomorphism) one-dimensional absolute valued algebra R to four-
dimensional algebras belonging to the canonical cross-section of Defini-
tion 2.4, thus acquiring an understanding of A(R, A) for each A ∈ A4. More-
over, the results of Section 7 below transfer details specific to algebras of
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the canonical cross-section to any four-dimensional absolute valued algebra
given as Hkl(a, b) for some a, b ∈ S(H).

By Proposition 1.3, for each A ∈ A4, describing A(R, A) amounts to
describing all non-zero idempotents in A. Rewriting the equations (2.2) with
y = x we see that these idempotents are precisely the non-zero solutions to
the quaternion equation

x2 = axb for A++
4 ,

x2 = axb for A+−
4 and A−+

4 ,

x2 = axb for A−−4 .

(3.1)

To simplify the quadratic terms in the above equations, we recall the notion
of a quadratic algebra.

Definition 3.1. An algebra A over a field k is called quadratic if it is
non-zero, unital, and if for each x ∈ A there exist λ, µ ∈ k such that

x2 = λx+ µ1.

Calculating x2 for arbitrary x ∈ H proves the following result.

Lemma 3.2. H is quadratic and each x∈H satisfies x2 = 2<(x)x−‖x‖21.

With this in mind, we construct for each real number a set of matrices
in R4×4, to be used as the main tool in investigating non-zero idempotents.

Definition 3.3. For a, b ∈ S(H) and (k, l) ∈ C2
2 , the maps Mkl

a,b :
R→ R4×4 are defined by

(1) M++
a,b (r) = 2rI − LaRb,

(2) M+−
a,b (r) = M−+

a,b (r) = 2rI − LaRb,
(3) M−−a,b (r) = 2rK − LaRb

for all r ∈ R, where I is the identity matrix in R4×4 and K the matrix of
quaternion conjugation.

Now, due to Lemma 3.2, the following proposition outlines the method
that will be used to determine the idempotents. To simplify notation we iden-
tify a quaternion x = r+s1i+s2j+s3k with the column matrix (r, s1, s2, s3)T ,
and use the notation Lc and Rc, c ∈ H, also for the matrices in the standard
basis of left and right multiplication by c, respectively.

Proposition 3.4. Given (k, l) ∈ C2
2 , and a, b ∈ S(H), let A = Hkl(a, b),

and let x = r + s1i + s2j + s3k ∈ A. Then

(1) x ∈ Ip(A) if and only if Mkl
a,b(r)x = 1 and ‖x‖ = 1, and

(2) if A belongs to the canonical cross-section, then for each fixed r, the
quaternion equation Mkl

a,b(r)x = 1 is equivalent to a linear system of
four real equations in the variables si, i ∈ 3.
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Proof. We prove the statements for (k, l) = (+,+). The other cases are
proven analogously.

(1) We have
M++
a,b (r)x = 2rx− axb.

Assume that x ∈ H satisfies M++
a,b (r)x = 1 and ‖x‖ = 1. Then axb =

2rx− 1 = 2<(x)x− ‖x‖21, which by virtue of Lemma 3.2 implies the equa-
tion (3.1) corresponding to (k, l) = (+,+). Hence x is non-zero and idempo-
tent. Conversely, if x is non-zero and idempotent, then by multiplicativity
of the norm, ‖x‖ = 1, and

M++
a,b (r)x = 2rx− axb = 2<(x)x− ‖x‖21 + 1− axb = 1 + x2 − axb = 1

where the two rightmost equalities follow from Lemma 3.2 and (3.1).
(2) Writing out the equation componentwise, one obtains

2r2 − 1 = (αcβc − αsβsγc)r + (αsβc + αcβsγc)s1(3.2)
+ αcβsγss2 + αsβsγss3,

2rs1 = − (αsβc + αcβsγc)r + (αcβc − αsβsγc)s1(3.3)
− αsβsγss2 + αcβsγss3,

2rs2 = − αcβsγsr − αsβsγss1(3.4)
+ (αcβc + αsβsγc)s2 + (αsβc − αcβsγc)s3,

2rs3 = αsβsγsr − αcβsγss1(3.5)
+ (αcβsγc − αsβc)s2 + (αcβc + αsβsγc)s3.

Fixing r, this is a linear system in si, i ∈ 3, with real coefficients.

3.2. Description of idempotents. In order to describe the idempo-
tents in each four-dimensional absolute valued algebra, we split the reason-
ing into cases according to the double sign of the algebra, and determine
the non-zero idempotents by solving the equations of Proposition 3.4(1)
for the double sign in question. The results are presented below. It turns
out that the algebras having double sign (−,−) have substantially different
properties with respect to idempotents, and therefore we present this case
separately. The computations, however, are analogous to those for the other
cases.

3.2.1. Idempotents in Hkl(a, b) with (k, l) 6= (−,−). In this section, the
non-zero idempotents are given either explicitly or in terms of roots of a
real polynomial. To begin with, this polynomial is defined, together with a
number of other functions to be used.

Definition 3.5. Given (k, l) ∈ C2
2 \ {(−,−)}, let A = Hkl(a, b) be in

the canonical cross-section with a, b given in terms of (α, β, γ) by (2.5),
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and set σ = −kl. Define p = pkla,b, q = qkla,b ∈ R[X] and ti = tkli,a,b ∈ R(X),
i ∈ 3, by

p(X) = (4X3 − 8αcβcX2 + (4α2
c + 4β2

c − 3)X + αsβsγc − αcβc)(4X2 − 1),

q(X) = αsβsγs(8X3 − 4(3αcβc + αsβsγc)X2

+ (4α2
c + 4β2

c − 2)X + αsβsγc − αcβc),

t1(X) = σαsβsγsX
(αsβc + αcβsγc)(4X2 + 1)− 4(αcαs + βcβsγc)X

q(X)
,

t2(X) = σαsβ
2
sγ

2
sX

αc(4X2 + 1)− 4βcX
q(X)

, t3(X) = α2
sβ

2
sγ

2
sX

4X2 − 1
q(X)

.

Using Proposition 3.4(1) to determine the non-zero idempotents, we ar-
rive at the following result.

Theorem 3.6. Given (k, l) ∈ C2
2 \ {(−,−)}, let A = Hkl(a, b) be in the

canonical cross-section with a, b given in terms of (α, β, γ) by (2.5), and set
σ = −kl. Let moreover p, q and ti, i ∈ 3, be given by Definition 3.5.

(1) If γ = 0, then x = (α + β)c + σ(α + β)si is the unique isolated
non-zero idempotent in A.

(2) If γ = 0 and α = β > π/6, then the points of the set{
1
2

+ σ
αc
2αs

i + s2j + s3k
∣∣∣∣ s22 + s23 = 1− 1

4α2
s

}
are precisely the non-isolated idempotents in A.

(3) If γ 6= 0 and αcβc = αsβsγc, then σβci/αs + σαcβsγsj− αsβsγsk is
a non-zero idempotent.

(4) If γ 6= 0, and r ∈ R satisfies

p(r) = 0 6= q(r) and r2 +
3∑
i=1

ti(r)2 = 1,

then r + t1(r)i + t2(r)j + t3(r)k is a non-zero idempotent.
(5) Every non-zero idempotent in A is given by precisely one of the cases

(1)–(4).

Proof. We outline the main details of the computations in the case of
double sign (+,+) (again the other cases are proven analogously). To this
end we solve the equations (3.2)–(3.5) above.

For each fixed r, we take three equations among (3.2)–(3.5); our choice
will be (3.3)–(3.5). In the variables si, i ∈ 3, this gives a system of linear
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equations with coefficient matrix

M =

 −αsβsγs αcβc + αsβsγc − 2r αsβc − αcβsγc
−αcβsγs αcβsγc − αsβc αcβc + αsβsγc − 2r

αcβc − αsβsγc − 2r −αsβsγs αcβsγs


and right hand side

N =

 αcβsγsr

−αsβsγsr
(αsβc + αcβsγc)r

 .

(Here, the order of the equations has been altered for computational sim-
plicity.) We now aim at solving, for each fixed r, the system Ms = N , with
s = (s1, s2, s3)T , using Gauß–Jordan elimination. Thus we must distinguish
those cases for which any of the upper left block determinants of M is zero.
The block determinants are all non-zero if and only if 0 /∈ {q(r),m(r)},
where m(r) = αsβsγs(βc−2αcr), and we thus consider separately the cases

(1◦) m(r) = 0,
(2◦) m(r) 6= 0, q(r) = 0 and

(i) n(r) = 0,
(ii) n(r) 6= 0,

where n(r) = det(M1 M2 N) = αsβsγsr(1− 4r2), using the notation Mi for
the ith column of M .

In case (1◦), Gauß–Jordan elimination cannot be completed straightfor-
wardly, and in case (2◦)(i), the system Ms = N has infinitely many solu-
tions. In both these cases it turns out that the equations (3.2)–(3.5), together
with the condition r2+‖s‖2 = 1 on the norm, can easily be solved altogether,
giving a list L of idempotents for each (α, β, γ). Computations show that L
includes the idempotents of items (1)–(3) of Theorem 3.6. In case (2◦)(ii),
the system Ms = N has no solutions.

If neither case among (1◦)–(2◦)(ii) holds, then q(r) 6= 0 and Gauß–Jordan
elimination determines si, i ∈ 3 as si = ti(r), and inserting these into (3.2)
gives the equation p(r) = 0. For each r that solves this equation and satisfies
r2 + ‖s‖2 = 1 it then follows by Proposition 3.4(1) that r+ s1i + s2j + s3k is
a non-zero idempotent. Moreover, the elements of L that are not given by
items (1)–(3) are verified to satisfy the conditions of item (4). This proves
items (4) and (5), and Theorem 3.6 follows.

3.2.2. Idempotents in H−−(a, b). In the case of the double sign (−,−)
we proceed similarly.

Definition 3.7. Let A = H−−(a, b) be in the canonical cross-section
with a, b given in terms of (α, β, γ) by (2.5). Define p′= p−−a,b , q′= q−−a,b ∈R[X]
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and t′i = t−−i,a,b ∈ R(X), i ∈ 3, by

p′(X) = 16X5 + 16(αcβc + αsβsγc)X4 − 8X3 − 8(2αcβc + αsβsγc)X2

+ (1− 4α2
c − 4β2

c )X + αsβsγc − αcβc,

q′(X) = αsβsγs(8X3 + 4(3αcβc + αsβsγc)X2

+ (4α2
c + 4β2

c − 2)X + αcβc − αsβsγc),

t′1(X) = αsβsγsX
(αsβc + αcβsγc)(4X2 + 1) + 4(αcαs + βcβsγc)X

q(X)
,

t′2(X) = αsβ
2
sγ

2
sX

αc(4X2 +1) + 4βcX
q(X)

, t′3(X) = α2
sβ

2
sγ

2
sX

1−4X2

q(X)
.

We then use Proposition 3.4(1) to determine the idempotents.

Theorem 3.8. Let A = H−−(a, b) be in the canonical cross-section with
a, b given in terms of (α, β, γ) by (2.5). Let moreover p′, q′ and t′i, i ∈ 3, be
given by Definition 3.7.

(1) If γ = 0 and at least one of α, β is non-zero, then

x = cos
(

2πk + α+ β

3

)
+ sin

(
2πk + α+ β

3

)
i

for k ∈ 3 are precisely the non-zero idempotents in A.
(2) If α = β = γ = 0, then 1 is the unique isolated non-zero idempotent

in A, and the points of the set{
−1

2
+ s1i + s2j + s3k

∣∣∣∣ s21 + s22 + s23 =
3
4

}
are precisely the non-isolated idempotents.

(3) If γ 6= 0 and αcβc = αsβsγc, then −βci/αs − αcβsγsj− αsβsγsk is a
non-zero idempotent.

(4) If γ 6= 0 and α+ β = π, then{
1
2

+
γc + 1

2γs
ei +

e

2
j +

γc − 1
2γs

k
∣∣∣∣ e ∈ R, e2 =

γc − (2γ)c
γc + 1

}
contains precisely two non-zero idempotents.

(5) If γ 6= 0 and α = β ≥ π/6, then{
−1

2
+
γc − 1

2γs
f i +

f

2
j− γc + 1

2γs
k
∣∣∣∣ f ∈ R, f2 =

γc + (2γ)c
γc − 1

}
contains precisely one non-zero idempotent if α = β = π/6, and
precisely two otherwise.
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(6) If γ 6= 0, and r ∈ R satisfies

p′(r) = 0 6= q′(r) and r2 +
3∑
i=1

t′i(r)
2 = 1,

then r + t′1(r)i + t′2(r)j + t′3(r)k is a non-zero idempotent.
(7) Every idempotent in A is given by precisely one of the cases (1)–(6).

The proof is analogous to that of Theorem 3.6.

3.3. General remarks. In this section we comment on the results ob-
tained above, partly in the light of the following result from [2].

Proposition 3.9. The cardinality |Ip(A)| for an absolute valued algebra
A is either odd or infinite. If it is infinite, then Ip(A) contains a differentiable
manifold of positive dimension.

An open question in [2] asks about an upper bound of the number of
non-zero idempotents in an arbitrary absolute valued algebra with finitely
many idempotents. We are now able to give a precise answer, along with
additional information in the cases where the number of idempotents is
infinite.

Proposition 3.10. If A ∈ A4, then |Ip(A)| ∈ {1, 3, 5,∞}. All four
cases do occur. If |Ip(A)| = ∞, then Ip(A) contains precisely one isolated
element x, and an n-sphere with all points equidistant from x, and with
n = 2 if (k, l) = (−,−), and n = 1 otherwise.

Proof. Assume first that A belongs to the canonical cross-section of A4.
The last statement is a reformulation of items (1) and (2) of Theorems 3.6
and 3.8, respectively, from which it also follows that the case |Ip(A)| = ∞
does occur. Next we show that |Ip(A)| <∞ implies |Ip(A)| ≤ 5.

Assume then that |Ip(A)| <∞. If A = Hkl(a, b) with a, b given in terms
of (α, β, γ) by (2.5), and γ = 0, then it follows from Theorems 3.6 and 3.8
that A has three idempotents if (k, l) = (−,−), and a unique idempotent
otherwise. If γ 6= 0, then the number of idempotents equals the sum of
the number of roots of the quintic pkla,b and the number of idempotents
given by item (3) of Theorem 3.6 (if (k, l) 6= (−,−)) or items (3)–(5) of
Theorem 3.8 (if (k, l) = (−,−)). However, if r is the real part of m idem-
potents given by Theorem 3.6(3) or 3.8(3)–(5), then one verifies directly
that (r −X)m | pkla,b(X) and that qkla,b(r) = 0. Thus r is not the real part of
any idempotent given by Theorem 3.6(4) or 3.8(6), and the total number of
idempotents does not exceed the number of roots of pkla,b, which is at most
five.

Thus by Proposition 3.9, |Ip(A)| ∈ {1, 3, 5,∞} for each A in the canon-
ical cross-section. If A does not belong to the canonical cross-section, then
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there exists A′ in the cross-section and an isomorphism ρ : A′ → A. The
idempotents of A are precisely the images under ρ of the idempotents of A′,
and |Ip(A)| ∈ {1, 3, 5,∞} by the above. If moreover |Ip(A′)| =∞, then the
configuration of the idempotents is preserved under ρ, as an isomorphism of
absolute valued algebras respects the norm and maps the standard basis to
an orthonormal basis in A.

Finally, applying Theorem 3.6 to H = H++(1, 1) and H++(i, j), and
Theorem 3.8 to H−−(i, j), one sees that these algebras have 1, 3 and 5
idempotents respectively.

Remark 3.11. The proposition in fact answers, for the case of dimension
four, another open question in [2], namely it gives the number of connected
components of Ip(A) in an absolute valued algebra A with |Ip(A)| = ∞.
This number is hence two for all such four-dimensional algebras.

Regarding the quintic polynomials pkla,b, the reader may have noticed that
when (k, l) = (−,−), they were not expressed as products of factors of lower
degree. This calls for a comment on the issue of their solvability, which we
address here.

Proposition 3.12. There exist a, b ∈ S(H) such that the polynomial
p−−a,b is not solvable by radicals.

Proof. Construct the polynomial p−−a,b where

a =
1
2

+
√

3
2

i, b =
1
4

+
√

15
4

j.

We then observe that P = 8p−−a,b is a polynomial with integer coefficients.
We first prove that P is irreducible over Z, by verifying that there exist no
l,m, n ∈ Z, no Q ∈ Z[X] of degree 4 and no R ∈ Z[X] of degree 3 such that
P (X) = (X + l)Q(X) or P (X) = (X2 + mX + n)R(X) (4). A well-known
result by Gauß implies that P is then irreducible over Q, and hence clearly
so is p−−a,b .

Dividing p−−a,b by its derivative, and using a suitable method for deter-
mining the number of real zeros of a polynomial in a given interval, we
deduce that p−−a,b has precisely three real roots, each of multiplicity one. By
Lemma 14.7 in [14], the Galois group over Q of an irreducible polynomial
of prime degree p with rational coefficients, having precisely two non-real
roots, is the symmetric group on p elements, and the statement follows.

(4) This is done by evaluating both sides of each equation at X = 0, and those of
the second at X = 1, to obtain a finite list of possible values for l, m and n, and then
checking that each of these gives a non-zero remainder when P (X) is divided by X + l
and X2 + mX + n, respectively.
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The reader may find the statement of the proposition discouraging. In the
search for other methods to solve the idempotency problem, the author has
examined available literature on solutions of quadratic equations in H. This
examination has indicated that equations of the form x2 + cxd = 0, where c
and d are given quaternions (cf. (3.1) above), have been little studied, and
an explicit method of finding the solutions seems not to be known. In any
case, the above results, even in the cases where Proposition 3.12 holds, are
useful to determine whether a given element is an idempotent or not, or to
extract various properties of the idempotents.

4. Morphisms from two-dimensional algebras. In this section we
explicitly determine all morphisms from any of the four non-isomorphic
two-dimensional absolute valued algebras Cij , (i, j) ∈ C2

2 , to any algebra in
the canonical cross-section of A4. As in the case of morphisms from R, Sec-
tion 7 transfers those results of this section which are specific to algebras of
the canonical cross-section to any four-dimensional absolute valued algebra
given as Hkl(a, b) for some a, b ∈ S(H).

4.1. Preparatory results. We start with the following general obser-
vation.

Proposition 4.1. Take Cij ∈ A2 and let A = (A, ·) be a real algebra
with a ∈ A. Then there is at most one algebra homomorphism φ : Cij → A
such that φ(i) = a.

Proof. Assume that there are φ1 and φ2 such that φ1(i) = φ2(i) = a.
Then, denoting multiplication in Cij by ◦, we have, since conjugation is
self-inverse,

φ1(1) = φ1(−ii) = −φ1(ij ◦ ii) = −φ1(i) · φ1(i) = −φ2(i) · φ2(i) = φ2(1)

where juxtaposition is multiplication in C, and for each c ∈ Cij , c+ = c
and c− = c. Since φ1 and φ2 are linear and the vector space C is spanned
by {1, i}, it follows that φ1 = φ2.

Thus the homomorphisms to be treated in this section are determined
by the image of the imaginary unit under them. In computations, however,
it is often more convenient to use the following characterization of the mor-
phisms.

Proposition 4.2. Let C = Cij , (i, j) ∈ C2
2 , and let A = (A, ·) ∈ A4.

A map φ : C → A is an algebra homomorphism if and only if it is linear
and the following conditions hold:

(1) φ(1) · φ(1) = φ(1),
(2) φ(1) · φ(i) = iφ(i),
(3) φ(i) · φ(1) = jφ(i), and
(4) φ(i) · φ(i) = −ijφ(1).
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Proof. If φ is a homomorphism, then φ is linear and respects multipli-
cation. The latter property, together with the definition of multiplication
in Cij , implies the four items above. If φ is linear, to show that it is a ho-
momorphism we need only show that it respects the multiplication of the
elements of a basis of Cij . Choosing the basis {1, i}, we see that this is
precisely the content of the four items of the proposition.

Since morphisms in A are always injective, the set A(Cij ,Hkl(a, b)) is
non-empty if and only if Hkl(a, b) contains a subalgebra isomorphic to Cij .
For any (i, j), (k, l) ∈ C2

2 , [12] gives a list of conditions on a, b ∈ S(H) that
hold if and only if Hkl(a, b) has a subalgebra D ' Cij . We present here its
explicit consequences for elements in the canonical cross-section.

Proposition 4.3. Given (k, l) ∈ C2
2 , let A = Hkl(a, b) be in the canon-

ical cross-section with a, b given in terms of (α, β, γ) by (2.5). Then there
exists a morphism φ : Cij → A precisely when

(1) γ = 0 if (i, j) = (k, l),
(2) α= γ = π/2 or

α= π/2, β = 0 if (i, j, k, l) = (+,+,+,−) ∨ (i, j) = (+,−) 6= (k, l),
(3) β = γ = π/2 or

α= 0, β = π/2 if (i, j, k, l) = (+,+,−,+) ∨ (i, j) = (−,+) 6= (k, l),
(4) α= β = π/2 if (i, j, k, l) = (+,+,−,−) ∨ (i, j) = (−,−) 6= (k, l).

The results follow immediately upon applying the conditions in Propo-
sition 3.2 of [12] to the canonical cross-section.

4.2. Description of morphisms. Before presenting the complete de-
scription of the morphisms, we give the following result, which is meant to
provide a geometric picture of the set of morphisms from a two-dimensional
absolute valued algebra to a four-dimensional one.

Theorem 4.4. For any (i, j), (k, l) ∈ C2
2 and any a, b ∈ S(H), consider

C = Cij and A = Hkl(a, b). Then either the set A(C,A) is empty, or the
map A(C,A)→ A, φ 7→ φ(i), induces a bijection

A(C,A)→
m⊔
µ=1

Sn

where m ∈ {1, 3} is the number of non-zero idempotents in C, and n ∈
{0, 1, 2} satisfies

n =
{

0 if dim[=(a),=(b)] = 1 ∧ (i, j) = (k, l),
2− dim[=(a),=(b)] otherwise.
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Remark 4.5. The statement that the map φ 7→ φ(i) induces a bijection
here means that the image of this map consists of m disjoint n-spheres em-
bedded in A, and the bijection is obtained by identifying this image with⊔m
µ=1 Sn in a natural way. The theorem follows from the description, given

below, of the morphisms from each Cij to each A = Hkl(a, b) in the canon-
ical cross-section, and holds for arbitrary Hkl(a, b) due to the properties of
isomorphisms in A4 given in [12] and quoted in Proposition 7.1 below.

Remark 4.6. Section 6 below deals with the orbits of the actions of
the automorphism groups of C and A on A(C,A) by composition. We will
briefly return to the above theorem and comment on it in the light of the
results obtained there.

We now give the description of the morphisms to algebras in the
canonical cross-section, divided into three parts according to the value of
dim[=(a),=(b)].

Proposition 4.7. Let C = Cij and let A = Hkl(a, b) be in the canocinal
cross-section with dim[=(a),=(b)] = 0. Then

A(C,A) 6= ∅ ⇔ (i, j) = (k, l).

In that case φ ∈ A(C,A) if and only if

φ(i) = sin
2πµ
m

+ u cos
2πµ
m

for some u ∈ S(=H) and µ ∈ m, where m = |Ip(C)|.

Proposition 4.8. Let C = Cij and let A = Hkl(a, b) be in the canonical
cross-section with dim[=(a),=(b)] = 1 and (i, j) 6= (k, l). If A(C,A) 6= ∅,
then φ ∈ A(C,A) if and only if

φ(i) = sin
2πµ
m

+ u cos
2πµ
m

for some u ∈ S(=H) ∩ [=(a),=(b)]⊥ and µ ∈ m, where m = |Ip(C)|.

Proposition 4.9. Let C = Cij and let A = Hkl(a, b) be in the canon-
ical cross-section with either dim[=(a),=(b)] = 1 and (i, j) = (k, l), or
dim[=(a),=(b)] = 2. If A(C,A) 6= ∅, then φ ∈ A(C,A) if and only if

φ(i) = ±
[
v sin

(
α+ β − γ + 2πµ

k

)
+ w cos

(
α+ β − γ + 2πµ

m

)]
for some µ ∈ m, where m = |Ip(C)|, a, b are given in terms of (α, β, γ)
by (2.5), and the pair (v, w) is given by Table 1.

The proofs of Propositions 4.7–4.9 are computationally heavy; we give an
outline of the general ideas, and illustrate the computations by an example.
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Table 1. The pair (v, w) of Proposition 4.9

(k, l) (i, j) = (+, +) (i, j) = (+,−) (i, j) = (−, +) (i, j) = (−,−)

(+, +) (1, i) (i,−k) (j,−k) (1,−k)

(+,−) (i,k) (1,−i) (j,k) (1,−k)

(−, +) (j,k) (i,k) (1,−i) (1,−k)

(−,−) (1,k) (i,−k) (j,−k) (1,−i)

Outline of proof. Take A ∈ A4 in the canonical cross-section that satis-
fies any of the conditions of Proposition 4.3. We first determine the idem-
potents of A by applying Theorem 3.6 or 3.8. It turns out that under the
conditions of Proposition 4.3, the computations are straightforward as the
roots of the polynomials pklab of Theorems 3.6 and 3.8 are easily found. Take
now C = Cij for some (i, j) ∈ C2

2 . According to item (1) of Proposition 4.2,
the set {φ(1) | φ ∈ A(C,A)} is a subset of the set of all non-zero idempo-
tents of A. Due to Proposition 4.2(2)–(4), for each non-zero idempotent y
we solve the equations

(4.1) y · x = ix, x · y = jx, x · x = −ijy
for x. For each solution x there then exists φ ∈ A(C,A) with φ(i) = x and
φ(1) = y. (If there exist no solutions, then y is not the image of 1 under
any morphism in A(C,A).) Doing this for all idempotents y ∈ A determines
A(C,A) completely.

As an example we determine A(C+−,H−+(a, b)) for H−+(a, b)) in the
canonical cross-section with γ 6= 0.

Example 4.10. The cases with (i, j) = (+,−) and (k, l) = (−,+) fall
under item (2) of Proposition 4.3, where we also have β 6= 0 as γ 6= 0.
Setting thus α = γ = π/2, we consider Theorem 3.6. The first two items of
the theorem give no idempotents, as γ 6= 0. The third item is applicable,
since γc = αc = 0, and gives the idempotent βci − βsk. In the fourth item,
we deduce that the roots of p that are not roots of q under the given condi-
tions are ±

√
3− 4β2

c /2 when β ≥ π/6, and none otherwise. Evaluating the
functions ti(r) and computing r2 +

∑3
i=1 ti(r)

2 for each root r, we find that
there are precisely two additional idempotents

−βcj +
1− 2β2

c

2βs
k±

√
3− 4β2

c

2

(
1− βc

βs
j
)

if β > π/6, and none otherwise.
Next we solve (4.1) for each idempotent y. If ‖x‖ 6= 1, then by multi-

plicativity of the norm, x does not satisfy the third equation in (4.1). Thus
we require ‖x‖ = 1, under which condition Lemma 3.2 implies that (4.1)
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can be rewritten as

ayb = 2<(x)x− 1, axb = −xy, axb = yx.

This is solved by writing each equation componentwise as a system of
real equations. For y = βci−βsk, one obtains two solutions x = ±(βsi+βck),
while for the other idempotents, no solution exists. Hence for each H−+(a, b)
in the canonical cross-section with γ 6= 0 we have

φ ∈ A(C+−,H−+(a, b)) ⇔ φ(i) ∈ {±(βsi + βck)}.

5. Irreducibility

5.1. Definition and background. A natural question to ask once a
class of morphisms has been described is whether the morphisms are irre-
ducible. To begin with, we quote the definition of irreducibility for division
algebras. Recall, to this end, that over any field k the finite-dimensional
division algebras form a category D(k), in which the morphisms are the
non-zero algebra morphisms. The following definition is due to Dieterich [9].

Definition 5.1. Let A and B be finite-dimensional division algebras
over a field k. A morphism ψ : A → B in D(k) is irreducible if it is not an
isomorphism and if for any pair (ψ1, ψ2) of morphisms in D(k) such that
ψ = ψ2ψ1, either ψ1 or ψ2 is an isomorphism. A morphism ψ is reducible if
it is not an isomorphism and is not irreducible.

An immediate consequence of the definition, and the injectivity of the
morphisms in D(k), is the following proposition.

Proposition 5.2. Let A and B be finite-dimensional division algebras
over a field k. Then there exists a reducible morphism ψ : A → B only if
there is a subalgebra C ⊂ B such that dimA < dimC < dimB.

For A,B ∈ A≤4 this implies that all morphisms A → B are irreducible
in case dimA = 2 or dimB = 2. It remains to consider the morphisms
R → B where dimB = 4 and B has a two-dimensional subalgebra. As in-
dicated in the outlined proof of Propositions 4.7–4.9, for such algebras that
moreover belong to the canonical cross-section it is straightforward to de-
termine the idempotents explicitly, and this will be used here to investigate
the reducibility of the corresponding morphisms.

5.2. Morphisms from R to Hkl(a, b) with (k, l) 6= (−,−). With-
out further ado, we describe the irreducibility of the morphisms from R to
Hkl(a, b). Note that if Hkl(a, b) has a subalgebra isomorphic to Cij for some
(i, j) ∈ C2

2 , then a morphism from R to Hkl(a, b) factors over Cij if and
only if it factors over each subalgebra of Hkl(a, b) isomorphic to Cij . In the
following, we will use these two equivalent formulations interchangeably.
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Proposition 5.3. Given (k, l) ∈ C2
2 \ {(−,−)}, let A = Hkl(a, b) with

a, b ∈ S(H) such that A contains a two-dimensional subalgebra (5).

(1) If a and b are purely imaginary and orthogonal, then A has a subal-
gebra isomorphic to Cij for each (i, j) 6= (k, l), and none isomorphic
to Ckl, and there are precisely three morphisms R→ A. All of these
are reducible and factor over C−−, and precisely one factors over
each subalgebra.

(2) (i) If a and b are purely imaginary and proportional, then A has
precisely two isomorphism types of two-dimensional subalgebras,
and there are uncountably many morphisms R→ A. All of these
are reducible and factor over C−−, and only the unique mor-
phism corresponding to the isolated non-zero idempotent in A
factors over each subalgebra.

(ii) If one of a and b is real and the other purely imaginary, then A
has precisely two isomorphism types of two-dimensional subalge-
bras, and there is precisely one morphism R → A. This unique
morphism is reducible and factors over each subalgebra.

(3) Otherwise, A has precisely one two-dimensional subalgebra, up to
isomorphism. Moreover:

(i) If a and b are proportional with 1/2 < ‖=(a)‖ = ‖=(b)‖ < 1,
then there are uncountably many morphisms R→A. The unique
morphism corresponding to the isolated non-zero idempotent in
A is reducible, and all other morphisms are irreducible.

(ii) If a and b are orthogonal, one is purely imaginary, and the other
has imaginary part z, 1/2 < ‖z‖ < 1, then there are precisely
three morphisms R→ A, and precisely one of these is reducible.

(iii) In all other cases, there are precisely three morphisms R→ A
if both a and b are purely imaginary, and precisely one if not.
All of these are reducible.

Proof. A morphism ψ : R → A is reducible if and only if there ex-
ists a subalgebra C ⊂ A of dimension two, and φ : C → A, such that
ψ(1) = φ(z) for an idempotent z ∈ C. The result follows for A in the canon-
ical cross-section by checking, for each ψ : R → A and C = Cij , whether
or not this condition is satisfied. If Hkl(c, d) is not in the cross-section, then
evidently it has the same number of subalgebras and morphisms as its rep-
resentative, and the morphisms factor in the same way. In addition, the
conditions on isomorphisms in A4 quoted in Proposition 7.1 below imply
that if Hkl(c, d) ' Hkl(a, b), then ‖=(c)‖ = ‖=(a)‖ and ‖=(d)‖ = ‖=(b)‖,

(5) In other words, assume that A satisfies the conditions of Proposition 3.2 in [12].
If A is in the canonical cross-section, this is equivalent to our Proposition 4.3.



166 S. ALSAODY

and moreover |〈c, d〉| = |〈a, b〉|. Hence Hkl(c, d) satisfies the same condition
among (1)–(3)(iii) as does Hkl(a, b), and the proof is complete.

Note how the isolated idempotents differ in nature whenever there are
infinitely many morphisms, and how the magnitude of the imaginary part
is of importance in some cases.

5.3. Morphisms from R to H−−(a, b). The case of double sign (−,−)
exhibits, as the reader may have assumed, several fundamental differences.

Proposition 5.4. Let A = H−−(a, b) with a, b ∈ S(H) such that A
contains a two-dimensional subalgebra.

(1) If a and b are purely imaginary and orthogonal, then A has a subal-
gebra isomorphic to Cij for each (i, j) 6= (−,−), and none isomor-
phic to C−−, and there are precisely five morphisms R→ A. Of these
morphisms precisely one factors over each subalgebra, and all others
are irreducible.

(2) If a and b are purely imaginary and proportional, or if one of a
and b is real and the other purely imaginary, then A has precisely
two isomorphism types of two-dimensional subalgebras, and there are
precisely three morphisms R → A. All of these are reducible and
factor over C−−, and precisely one factors over each subalgebra.

(3) Otherwise, A has precisely one two-dimensional subalgebra, up to
isomorphism. Moreover:

(i) If a and b are real, then there are uncountably many morphisms
R→ A. All of these are reducible.

(ii) If a and b are purely imaginary and neither proportional nor
orthogonal, then there are precisely five morphisms R→ A when
0 < |〈a, b〉| < 1/2 and precisely three when 1/2 ≤ |〈a, b〉| < 1.
In both cases precisely one of these morphisms is reducible.

(iii) If a and b are orthogonal, one is purely imaginary, and the other
having real part r, then there are precisely five morphisms R→A
when 0 < |r| < 1/2 and precisely three when 1/2 ≤ |r| < 1. In
both cases precisely one of these is reducible.

(iv) In all other cases, there are precisely three morphisms R → A.
All of these are reducible.

The proof is analogous to that of Proposition 5.3.

5.4. Morphism quivers. From Propositions 4.3, 5.3 and 5.4 we extract
the following partitioning of the object class of A4.

Corollary 5.5. For each (k, l) ∈ C2
2 , there exist uncountably many

isomorphism classes of objects A ∈ Akl4 such that each morphism ψ : R→ A
is irreducible, uncountably many isomorphism classes of objects A′ ∈ Akl4
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such that there is an irreducible morphism ψ′ : R → A′ and a reducible
morphism ψ∗ : R → A′, and uncountably many isomorphism classes of
objects A′′ ∈ Akl4 such that each morphism ψ′′ : R→ A′′ is reducible.

One may further combine Propositions 5.3 and 5.4 with the descriptions
of morphisms from one- and two-dimensional to four-dimensional absolute
valued algebras, which were given in Sections 3 and 4. In doing so, one ob-
tains a complete picture not only of whether the morphisms from dimension
one are reducible or not, but also of the morphisms from dimension two over
which the reducible morphisms factor. A way to visualize this is by means
of a quiver, the morphism quiver MA, for each four-dimensional absolute
valued algebra A. The nodes of the quiverMA are the non-zero idempotents
of all canonical representatives of all subalgebras of A, and there exists an
arrow from a node n1 ∈ B1 to a node n2 ∈ B2 if and only if there is an
irreducible morphism φ : B1 → B2 such that φ(n1) = n2.

Example 5.6. Let A = H−+(i, j). Then A satisfies the conditions of
part (1) of Proposition 5.3, and we obtain the following quiver:

MA:

· 1 ∈ R

1 ∈ C++ · · 1 ∈ C+− ·· · 1,− 1+
√

3i
2

,− 1−
√
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2
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· · · − k, k+
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√

3
2
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A
A
A
A
A

Q
Q

Q
Q
Q

Q
QQ

Each arrow is drawn as a line segment for visibility, and understood to be
directed upwards.

Note that each morphism φ : D1 → D2, where D1 and D2 are divi-
sion algebras over a given field, maps the idempotents of D1 injectively to
the idempotents of D2. The morphism quiver does not, as seen from Ex-
ample 5.6, encode which non-zero idempotent y ∈ A satisfies y = φ(x) for
a given morphism φ : Cij → A and a given non-zero idempotent x ∈ Cij ,
in case there is more than one possibility. Its purpose is to show, for each
non-zero idempotent y ∈ A, all possible paths from 1 ∈ R to y, i.e. all
possible factorizations of the morphism corresponding to y into irreducible
morphisms.

Example 5.7. Let A = H++(a, a) where a = αc + αsi and π/3 < α <
π/2, so that A falls under item (3)(i) of Proposition 5.3, and Ip(A) consists
of an isolated point and a circle. The morphism quiver is as follows:
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MA:

· 1 ∈ R

C++ 3 1 ·

· Ip(H++(a, a))

@
@

@
@

�
�
�
��
��

The thickened line segment here means that there is one arrow from 1 ∈ R
to each point on the circle.

Apart from these examples, there are several more different quivers for
different A ∈ A4. The interested reader will have no difficulty constructing
these for other algebras in A4.

6. Action of automorphism groups. The above description of mor-
phisms φ ∈ A(C,A) for C,A ∈ A≤4 was done without regard to the au-
tomorphisms of C and A. Since for any σ ∈ Aut(C) and τ ∈ Aut(A) we
have φσ, τφ ∈ A(C,A), the automorphism groups of C and A act from the
right by precomposition and from the left by postcomposition, respectively.
In this section we will consider these two group actions, and determine the
number of their orbits. In this context it is natural to also study the left
group action

(Aut(C)×Aut(A))×A(C,A)→ A(C,A), ((σ, τ), φ) 7→ τφσ−1,

by pre- and postcomposition. The aim of this section is to understand to
what extent the properties of the sets A(C,A) depend on the automorphism
groups, and, in a sense, how closely linked the morphisms in A(C,A) are to
each other. We will consider the cases where C ∈ A2 and A ∈ A4, as for
these cases we have an explicit description of A(C,A). We start by recalling
the structure of the automorphism groups themselves.

6.1. The automorphism groups in A≤4. For dimensions 1 and 2, we
have the following well-known facts.

Proposition 6.1. Let C ∈ A≤2.

(1) If C = R, then Aut(C) is trivial.
(2) If C = Cij with (i, j) 6= (−,−), then Aut(C) is generated by complex

conjugation.
(3) If C = C−−, then Aut(C) is generated by complex conjugation and

rotation by an angle of 2π/3.

Thus for C ∈ A2, Aut(C) has two or six elements. For dimension 4,
the automorphism groups are described for the category SO3(SO3 × SO3)
in [11]. Applying the equivalences of categories in (2.3) to this description
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gives the following description of the automorphism groups of algebras in
the canonical cross-section of A4.

Proposition 6.2. Let A = Hkl(a, b) ∈ A4 be in the canonical cross-
section.

(1) If dim[=(a),=(b)] = 0, then Aut(A) = {κp | p = θc + θsq; θ ∈ [0, π),
q ∈ S(=H)}.

(2) If dim[=(a),=(b)] = 1, let u∈ S(=H) be a basis vector of [=(a),=(b)].
Then:

(i) If at least one of a, b is neither real nor purely imaginary, then
Aut(A) = {κp | p = θc + θsu; θ ∈ [0, π)}.

(ii) If each of a, b is either real or purely imaginary, then Aut(A) =
{κp | p = θc + θsu; θ ∈ [0, π)} ∪ {εκq | q ∈ S(=H) ∩ u⊥}, where
ε = 1 if both a and b are purely imaginary, and −1 otherwise.

(3) If dim[=(a),=(b)] = 2, then:

(i) If either none of a, b is purely imaginary, or precisely one of
a, b is purely imaginary and =(a),=(b) are not orthogonal, then
Aut(A) is trivial.

(ii) If precisely one of a, b is purely imaginary and =(a),=(b) are
orthogonal, then Aut(A) = {Id,−κv}, where v ∈ S(=H) is a
basis vector of the imaginary part of the non-purely imaginary
element in {a, b}.

(iii) If a, b are both purely imaginary and not orthogonal, then
Aut(A) = {Id, κw}, where w ∈ S(=H) is orthogonal to a
and b.

(iv) If a, b are both purely imaginary and orthogonal, then Aut(A) =
{Id,−κa,−κb, κw}, where w ∈ S(=H) is orthogonal to a and b.

Remark 6.3. If A = Hkl(c, d) ' Hkl(a, b) = A′, where A′ is in the canon-
ical cross-section and A is not, then due to the properties of isomorphisms
quoted in Proposition 7.1 below, A satisfies the conditions for the same item
among (1)–(3)(iv) as does A′. Obviously Aut(A) ' Aut(A′), but the explicit
description of Aut(A) may differ from that given above for Aut(A′).

6.2. Orbits of the actions. We now use the results of Section 6.1 to
determine the number of orbits of the three group actions given above on
the set A(C,A) for all C ∈ A2 and A ∈ A4. We thus denote by nC the
number of orbits of the right action of Aut(C) by precomposition, by nA
the number of orbits of the left action of Aut(A) by postcomposition, and
by nCA the number of orbits of the left action of Aut(C)×Aut(A) by pre-
and postcomposition.
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Proposition 6.4. Let C ∈ A2 and A ∈ A4. Then nCA = 1 and the pair
(nC , nA) is one of

(1, 1), (1, 2), (1, 3), (1, 6), (∞, 1), (∞, 3).

All of these pairs do occur for suitable C ∈ A2 and A ∈ A4.

Proof. Using Propositions 6.1 and 6.2, for each C = Cij and each A in
the canonical cross-section, we can partition A(C,A) into the equivalence
classes of one of the following equivalence relations:

(1) φ ∼1 ψ ⇔ ∃σ ∈ Aut(C) : ψ = φσ,
(2) φ ∼2 ψ ⇔ ∃τ ∈ Aut(A) : ψ = τφ.

Computing the number of equivalence classes of each relation gives the pair
(nC , nA).

If either nC = 1 or nA = 1, then nCA = 1. If not, then by the previous
step, (nC , nA) = (∞, 3). Denoting the three Aut(A)-orbits by ωi, i ∈ 3,
taking an arbitrary φ ∈ ω1, and precomposing φ by each of the (at most)
six elements in Aut(C), one finds that there exist ρ, σ ∈ Aut(C) such that
φρ ∈ ω2 and φσ ∈ ω3. Hence there is one single orbit.

For algebras not in the canonical cross-section, the result holds by ap-
plying the above to their canonical representatives, as the number of orbits
of any of the three actions involved is preserved under isomorphism.

The computations of the proof of Proposition 6.4, together with Re-
mark 6.3, in fact prove the following statements.

Proposition 6.5. Let C ∈ A2 and A ∈ A4.

(1) The number nC of orbits of the right action of Aut(C) by precompo-
sition is 1 if A(C,A) is finite, and ∞ otherwise.

(2) The number nA of orbits of the left action of Aut(A) by postcomposi-
tion equals |Ip(C)| if A’s representative in the canonical cross-section
satisfies (1), (2)(ii) or (3)(iv) of Proposition 6.2, and 2|Ip(C)| if it
satisfies (2)(i), (3)(ii) or (3)(iii). In particular, if A(C,A) is infinite,
then nA = |Ip(C)|.

Case (3)(i) of Proposition 6.2 does not occur for those four-dimensional
algebras that have two-dimensional subalgebras.

Proposition 6.5 partly explains the geometric situation presented in The-
orem 4.4. Namely, when n ∈ {1, 2}, each n-sphere corresponds to an orbit of
the Aut(A)-action, while each orbit of the Aut(C)-action consists of a pair
of points on each n-sphere. For the Aut(C)-action the same holds in the
case n = 0, whence all morphisms belong to the same orbit of this action.

7. Isomorphisms to the canonical cross-section. Some results
above were only formulated for algebras in the canonical cross-section. In
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order to extend these to more general objects, either the descriptions have
to be generalized, or, given A ∈ A4, one has to explicitly construct an iso-
morphism to the algebra in the canonical cross-section isomorphic to A.

The first approach involves computational difficulties, as the computa-
tions of the morphisms, conducted in Sections 3 and 4 above, have depended
strongly on the simplifications associated with the particular choice of a
cross-section. We therefore devote this section to the second approach; hence,
given an algebra A = Hkl(c, d) ∈ A4 with arbitrary c, d ∈ S(H), we deter-
mine its representative in the canonical cross-section, and construct an iso-
morphism. We begin by the following result from [12], supplemented in [11].

Proposition 7.1. Two four-dimensional absolute valued algebras
Hkl(a, b) and Hk′l′(c, d), with a, b, c, d ∈ S(H), are isomorphic if and only if
(k′, l′) = (k, l) and there exists p ∈ S(H) and (ε, δ) ∈ C2

2 such that c = εpap

and d = δpbp. In that case, every isomorphism ψ : Hkl(a, b) → Hkl(c, d) is
of the form x 7→ εδpxp.

Note that Proposition 7.1 is not constructive, as p is not given explicitly.
We begin our explicit construction by determining the representatives in the
cross-section.

Lemma 7.2. Let A = Hkl(c, d) with c, d ∈ S(H) be given. Then the
representative of A in the canonical cross-section is Hkl(a, b), with a, b given
in terms of (α, β, γ) by (2.5), where

(1) α is determined uniquely by αc = |<(c)|,
(2) β is determined uniquely by

βc =
{

sgn(<(c)) sgn(〈=(c),=(d)〉)<(d) if 0 /∈ {<(c), 〈=(c),=(d)〉},
|<(d)| otherwise,

(3) γ is then determined uniquely by αsβsγc = |〈=(c),=(d)〉| if 0 /∈
{α, β}, and γ = 0 otherwise.

Proof. By Proposition 7.1, there exists p ∈ S(H) such that c = εpap and
d = δpbp for some (ε, δ) ∈ C2

2 . Since conjugation by p preserves the real part
of a quaternion, we have αc = ε<(c) and βc = δ<(d), hence |αc| = |<(c)|
and |βc| = |<(d)|. By Theorem 2.2, 0 ≤ α ≤ π/2, whence αc is non-negative
and determines α, which proves (1).

As for (2), the inner product on H is preserved under conjugation by
a unit norm quaternion, and hence 〈=(c),=(d)〉 = εδαsβsγc. Suppose that
<(c) 6= 0 and 〈=(c),=(d)〉 6= 0. Then ε = sgn(<(c)) by the above, and αsβsγc
is non-zero, hence positive by Theorem 2.2. Now 〈=(c),=(d)〉 = εδαsβsγc
implies that δ = sgn(<(c)) sgn(〈=(c),=(d)〉), and by the above, βc = δ<(d).

If <(c) = 0 or 〈=(c),=(d)〉 = 0, i.e. if αc = 0 or αsβsγc = 0, then
Theorem 2.2 implies that 0 ≤ β ≤ π/2, and thus βc is non-negative. Since
in all cases 0 ≤ β ≤ π, βc determines β completely.
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Regarding (3), if any of α or β vanishes, then so does γ by Theorem 2.2.
If both α and β are non-zero, then 〈=(c),=(d)〉 = εδαsβsγc determines γc up
to sign. Finally, 0 ≤ γ ≤ π/2 implies that γc is non-negative and determines
γ completely.

The construction of the isomorphisms relies on the following detail.

Lemma 7.3. Assume that two quaternions x = s1i+s2j+s3k and y = ti,
t > 0, satisfy ‖x‖ = ‖y‖ ≤ 1. Then

(1) if s2 = s3 = 0, then |s1| = |t|; if s1 = t, then p = 1 satisfies x = pyp,
and if s1 = −t, then p = j satisfies x = pyp;

(2) otherwise

p =

√
t+ s1

2t
− s3

√
t− s1

2t(s22 + s23)
j + s2

√
t− s1

2t(s22 + s23)
k

satisfies x = pyp.

Note that in (2), p is well-defined as t± s1 ≥ 0 follows from ‖x‖ = ‖y‖, and
s22 + s23 6= 0.

Proof. Since ‖x‖ = ‖y‖, there exists a rotation in =H that takes y to x.
Computing the angle and axis of the rotation by elementary linear algebra,
we deduce the result from the fact that if u ∈ S(=H), then q = θc + θsu has
the property that z 7→ qzq is a rotation with angle 2θ around u. (The claim
can also be verified by direct computation.)

Once the representative of A = Hkl(c, d) in the canonical cross-section
has been determined by Lemma 7.2, the following proposition gives an ex-
plicit construction of an isomorphism to A from its representative.

Proposition 7.4. Let A = Hkl(c, d) with c, d ∈ S(H) and let Hkl(a, b)
be the representative of A in the canonical cross-section, with a, b given in
terms of (α, β, γ) by (2.5).

If 0 ∈ {α, β, γ}, then the map ρ : Hkl(a, b) → A, z 7→ εδpzp, is an
isomorphism, where (ε, δ) ∈ C2

2 and p ∈ S(H) are given as follows.

(1) If α = β = 0, then ε = sgn(<(c)), δ = sgn(<(d)), and p = 1.
(2) If α = 0 and β 6= 0, then ε = sgn(<(c)), and

(i) if β 6= π/2, then δ = sgn(<(d)),
(ii) if β = π/2, then δ can be chosen freely,

and p is given by Lemma 7.3 upon setting y = =(b) and x = δ=(d).
(3) If α 6= 0 and β = 0, then δ = sgn(<(d)), and

(i) if α 6= π/2, then ε = sgn(<(c)),
(ii) if α = π/2, then ε can be chosen freely,

and p is given by Lemma 7.3 upon setting y = =(a) and x = ε=(c).
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(4) If 0 /∈ {α, β} and γ = 0, then

(i) if α 6= π/2, then ε = sgn(<(c)) and δ = ε sgn(〈=(c),=(d)〉),
(ii) if α = π/2 and β 6= π/2, then δ = sgn(<(d)) and ε =

δ sgn(〈=(c),=(d)〉),
(iii) if α = β = π/2, then ε can be chosen freely, and δ =

ε sgn(〈=(c),=(d)〉),
and p is given by Lemma 7.3 upon setting y = =(a) and x = ε=(c).

If 0 /∈ {α, β, γ}, then ρ : Hkl(a, b)→ A, defined by

i 7→ δ=(c)
αs

, j 7→ εαs=(d)− δβsγc=(c)
αsβsγs

,

is an isomorphism, where

(1) if α 6= π/2, then ε = sgn(<(c)), and

(i) if β 6= π/2, then δ = sgn(<(d)) sgn(βc),
(ii) if β = π/2 and γ 6= π/2, then δ = ε sgn(〈=(c),=(d)〉),
(iii) if β = γ = π/2, then δ can be chosen freely;

(2) if α = π/2 /∈ {β, γ}, then δ = sgn(<(d)) and ε = δ sgn(〈=(c),=(d)〉);
(3) if α = π/2 and π/2 ∈ {β, γ}, then ε can be chosen freely, and

(i) if β = π/2 6= γ, then δ = ε sgn(〈=(c),=(d)〉),
(ii) if γ = π/2 6= β, then δ = sgn(<(d)),
(iii) if β = γ = π/2, then δ can be chosen freely.

Remark 7.5. The fact that conjugation by a unit norm quaternion pre-
serves the real part and inner product implies that <(c), <(d) and 〈=(c),=(d)〉
are non-zero whenever this is required for the sign function to be defined,
and that Lemma 7.3 is applicable wherever claimed.

Proof of Proposition 7.4. To prove the statements where 0 ∈ {α, β, γ}
it suffices, by Proposition 7.1, to check that the given ε, δ and p satisfy
c = εpap and d = δpbp, which is straightforward.

For the cases where 0 /∈ {α, β, γ}, we instead use the fact that by Propo-
sition 7.1 there exist such ε, δ and p, and that an isomorphism is given
by z 7→ εδpzp. The image of i under this isomorphism is then determined
by =(c) = εp=(a)p, since =(a) = αsi with αs 6= 0. This, together with
=(d) = εp=(b)p, determines the image of j since =(b) = βsγci + βsγsj with
βsγs 6= 0. The listed values of ε and δ are readily checked. Since by Theo-
rem 2.2 there are no more cases, the proof is complete.

Note how the construction of an isomorphism involves a number of
choices, and different choices may give different isomorphisms. This is of
no importance in this context, as any morphism φ from an absolute valued
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algebra C to an algebra A = Hkl(c, d) ' Hkl(a, b) = A′ factors uniquely over
any isomorphism ρ : A′ → A.
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