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FINITE GROUPS OF OTP PROJECTIVE REPRESENTATION TYPE

BY

LEONID F. BARANNYK (Stupsk)

Abstract. Let K be a field of characteristic p > 0, K* the multiplicative group of K
and G = G, x B a finite group, where G, is a p-group and B is a p’-group. Denote by K*G
a twisted group algebra of G over K with a 2-cocycle A € Z2(G, K*). We give necessary
and sufficient conditions for G to be of OTP projective K-representation type, in the sense
that there exists a cocycle A € Z2(G, K*) such that every indecomposable K*G-module
is isomorphic to the outer tensor product V # W of an indecomposable K*G,-module V
and a simple K*B-module W. We also exhibit finite groups G = G)p x B such that, for
any \ € Z*(G,K*), every indecomposable K*G-module satisfies this condition.

0. Introduction. Let K be a field of characteristic p > 0 and G =
G)p x B a finite group, where G), is a Sylow p-subgroup and |G| > 1, |B| > 1.
Given pu € Z*(Gp, K*) and v € Z*(B,K*), the map u x v: G x G — K*
defined by

(M X V)xlbl,mgbg = Hzy,x0 " Vby,bas
for all x1,29 € Gy, b1,by € B, belongs to Z2(G, K*). Every cocycle A €
Z%(G,K*) is cohomologous to p x v, where p is the restriction of A to
G, x G, and v is the restriction of A to B x B.

From now on, we suppose that each cocycle A € Z2(G, K*) under consid-
eration satisfies the condition A = p x v, and all K*G-modules are assumed
to be left and finite-dimensional (as vector spaces over K).

Let A = p x v € Z*(G,K*) and {u,: g € G} be a canonical K-basis of
K*G. Then {uy,: h € G,} is a canonical K-basis of K*G), and {u,: b € B}
is a canonical K-basis of K¥B. Moreover, if g = hb, where g € G, h € G,
b € B, then uy = upup = upuy,. It follows that K \G = KrG, @k KVB.

Given a K*Gp-module V' and a K”B-module W, we denote by V # W
the K*G-module whose underlying vector space is V ®x W with the K*G-
module structure given by

uhb(v &® w) = upv Q Uwpw,
forall h € G, be B,veV,we W, and extended to K G and V @ W
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by K-linearity. The module V # W is called the outer tensor product of V
and W (see [21), p. 122]).
We recall from [7], p. 10] the following definitions.

(a) The algebra K G is defined to be of OTP representation type if
every indecomposable K*G-module is isomorphic to the outer tensor
product V' # W, where V is an indecomposable K*Gp,-module and
W is a simple K” B-module.

(b) A group G = G, x B is defined to be of OTP projective K -representa-
tion type if there exists a cocycle A € Z2(G, K*) such that the algebra
K*G is of OTP representation type.

(c) A group G = Gp, x B is said to be of purely OTP projective K-
representation type if K G is of OTP representation type for any
)€ Z2(G, K*).

In [I3] Brauer and Feit proved that if K is algebraically closed, then the
group algebra KG is of OTP representation type. Blau [10] and Gudyvok
[17, 18] have independently shown that if K is an arbitrary field, then KG
is of OTP representation type if and only if G, is cyclic or K is a splitting
field for B. Gudyvok [19, 20] also investigated a similar problem for group
rings SG, where S is a complete discrete valuation ring. In [3], [6], the results
of Blau and Gudyvok are generalized to the twisted group rings S*G, where
G = GpxB,S = K or S is a complete discrete valuation ring of characteristic
p > 0. Let S = K[[X]] be the ring of formal power series in the indeterminate
X with coefficients in the field K. In [7], necessary and sufficient conditions
on G and K are given for G to be of OTP projective S-representation type
and of purely OTP projective S-representation type.

In the present work we determine finite groups G' = G, x B of OTP pro-
jective K-representation type and of purely OTP projective K-representa-
tion type.

Denote by [p the product of all pairwise distinct prime divisors of |B]|.
Unless stated otherwise, we assume that if G, is non-abelian, then [K(¢): K]
is not divisible by p, where ¢ is a primitive [gth root of 1. This condition is
satisfied if K contains a primitive gth root of 1 for every prime ¢ dividing | B]
such that the characteristic p divides ¢ — 1. For simplicity of presentation,

we set ;
t if [K:KP|=
oo if [K : KP] = 0.

Let s be the number of invariants of the abelian group Gp/G;,, and D
the subgroup of Gy, such that G}, C D and D/G), = soc(G,/G},). Suppose
that if p # 2, s = i(K) + 1, G}, is cyclic and D is a non-abelian group
of exponent p, then |D : Z(D)| = p?, where Z(D) is the center of D. We
prove in Theorem that the group G = G, x B is of OTP projective
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K-representation type if and only if one of the following three conditions is
satisfied:

(i) s <i(K) and G}, is cyclic;
(ii) s = i(K) + 1, G}, is cyclic and there exists a cyclic subgroup T' of
Gy such that G}, C T and G)/T has i(K) invariants;
(iii) K is a splitting field for KV B for some v € Z2(B, K*).

We also prove in Proposition that if G = G, x B is abelian, then G is
of OTP projective K-representation type if and only if one of the following
conditions is satisfied:

() s <i(K)+1;
(ii) B has a subgroup H such that B/H is of symmetric type and K con-
tains a primitive mth root of 1, where m = max{exp(B/H),exp H}.

Now suppose that K is an arbitrary field of characteristic p. We establish
in Proposition that if every prime divisor of |B’| is also a divisor of
|B : B'|, then G = Gj, x B is of purely OTP projective K-representation
type if and only if either G, is cyclic, or K = K% and K contains a primitive
gth root of 1, for each prime ¢ dividing |B|.

In the general case, a finite group G = G, x B is of purely OTP projective
K-representation type if and only if either G, is cyclic, or there exists a finite
central group extension 1 — A — B — B — 1 such that any projective K-
representation of B lifts projectively to an ordinary K-representation of B
and K is a splitting field for B (Theorem .

Let t(K*) denote the torsion subgroup of the multiplicative group K*
of K. Assume that either ¢(K*) = t(K*)? for every prime ¢ dividing |B’|, or
every prime divisor of |B’| is also a divisor of |B : B’|. Then G is of purely
OTP projective K-representation type if and only if either G, is cyclic, or

there exists a covering group B of B over K such that K is a splitting field
for B (Proposition [3.13).

1. Preliminaries. Throughout the paper, we use the standard group
representation theory notation and terminology introduced in the mono-
graphs by Alperin [1], Benson [9], Curtis and Reiner [I4], and Karpilovsky
[21L 22]. The books by Karpilovsky give a systematic account of the pro-
jective representation theory. For classical problems and solutions of group
representation theory, we refer to [Il, [0 [14] and to the old and nice papers
[1T,12]. A background of the representation theory of finite-dimensional alge-
bras can be found in the monographs by Assem, Simson and Skowronski [2],
Drozd and Kirichenko [I6], Simson [23], and Simson and Skowroriski [24],
where among other things the representation types (finite, tame, wild) of
finite groups and algebras are discussed.
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In particular, we use the following notation: p > 2 is a prime; K is a
field of characteristic p, K7 = {a?: « € K}; K* is the multiplicative group
of K; t(K*) is the torsion subgroup of K*; o(§) is the order of £ € t(K™*);
G = G, x B is a finite group, where G, is a p-group, B is a p'-group,
|Gp| > 1 and |B| > 1; H' is the commutant of a group H, Z(H) is the center
of H, e is the identity element of H, |h| is the order of h € H and exp H is
the exponent of H; soc A is the socle of an abelian group A. Let I be the
product of all pairwise distinct prime divisors of | B|. Unless stated otherwise,
we assume that if G, is non-abelian, then [K(¢) : K] is not divisible by p,
where ¢ is a primitive [gth root of 1. It is not difficult to see that [K(¢) : K]
is not divisible by p if and only if [K (&) : K] is not divisible by p, where
¢ is a primitive (exp B)th root of 1. Given A\ € Z?(H,K*), K*H denotes
the twisted group algebra of a group H over K with a 2-cocycle A, and
rad K*H the radical of K*H. A K-basis {uj, : h € H} of K*H satisfying
UgUp = AgpUgp for all a,b € H is called canonical (corresponding to A). If D
is a subgroup of a group H, the restriction of A\ € Z2(H,K*) to D x D is
also denoted by \. In this case, K*D is a subalgebra of K H.

Throughout this paper we assume that all cocycle groups are defined
with respect to the trivial action of the underlying group on K*. By The-
orem 4.7 in [2I, p. 40|, the embedding t(K*) — K* induces an injective
homomorphism

H*(B,t(K*)) — H*(B,K*).
We shall identify H?(B,t(K*)) with the subgroup of H?(B, K*) which con-
sists of all cohomology classes containing cocycles of finite order.

Given pu € Z%(Gp, K*), the kernel Ker(u) of u is the union of all cyclic
subgroups (g) of G}, such that the restriction of p to (g) % (g) is a coboundary.
We recall from [4, p. 196] that G}, C Ker(u), Ker(u) is a normal subgroup
of G, and the restriction of p to Ker(u) x Ker(u) is a coboundary.

Let M be a finite group, N a normal subgroup of M and T'= M/N. Given
p € Z*(T, K*), denote by inf(u) (see [21, p. 14]) the element of Z2?(M, K*)
defined by

inf(p)ap = panpn  for all a,b € M.

We have inf(u),, =1 for all ,y € N. Therefore
K™MWN = KN.

Let A = inf(u), {van : @ € M} be a canonical K-basis of K*T corresponding
to p, and {u, : @ € M} a canonical K-basis of K*M corresponding to .

The formula
f(z aa“a) = Z QqUa N

acM a€eM
defines a K-algebra epimorphism f : K*M — KH*T with the kernel U :=
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KM M -I(N), where I(N) is the augmentation ideal of the group algebra K N
(see [211 p. 88]). Hence K*M /U = K*T. We recall that

IN)= P Klus—ue).

zeN\{e}

Assume that N and M are groups. An extension of N by M is a short
exact sequence of groups

E:I&N—>]\/4\—>M—>1.

If p(N) is contained in the center of ]\/4\, then F is called a central extension.
If N and M are finite groups, then E is a finite extension.

Let V' be a finite-dimensional vector space over K, GL(V') the group of
all automorphisms of V', 1y the identity automorphism of V, M a finite
group, and let

1—>N—>]/\4\£>M—>1

be a finite central group extension. Denote by 7 : GL(V) — GL(V)/K*1y
the canonical group epimorphism. Assume that I' is an ordinary K-re-
presentation of M in V with I'(x) € K*1y for any 2 € N. There exists
a projective K-representation A of M in V such that the diagram

M 5 GL(V) = GL(V)/K*ly

vl Lid
M 2 GL(V) = GL(V)/K*ly

is commutative. We say that A lifts projectively to the ordinary K-representa-
tion I" of M. If |IN| = |H?(M, K*)| and any projective K- representation of
M lifts projectively to an ordinary K-representation of M then M is called
a covering group of M over K [21| p. 138].

We recall that, for any cocycle A € Z2(GP,K *), the quotient algebra
K )‘Gp /rad K /\Gp is K-isomorphic to a field that is a finite purely inseparable
field extension of K [21], p. 74]. We call K’\Gp uniserial if the left regular
and the right regular K ’\Gp—modules have a unique composition series. It
should be noted that some authors use the terminology “uniserial algebra”
to mean principal ideal algebras [10, p. 171] and serial algebras (see [15],
p. 505] and [16, p. 175]) that are Nakayama algebras [2, p. 168|. By the
Morita theorem in [I5, p. 507|, the algebra K’\Gp is uniserial if and only
if rad K*\G), = K*G,, -v = v - K*G,, for some v € K*G,. By [I6, p. 170],
the algebra K ’\Gp is uniserial if and only if rad K )‘Gp is a principal left
(equivalently, right) ideal of K*G),.

We say that an algebra K )‘Gp satisfies the Q-condition if there exists a
K-algebra epimorphism K )‘Gp — K*T, where T is a p-group and T' contains
an abelian subgroup A such that K*A is not a uniserial algebra.
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The following four facts are proved in [6].

LEMMA 1.1. Let K be an arbitrary field of characteristic p, G = G, X B,
p € Z*Gp, K*), v € Z*(B,K*) and A = pxv. If K*G, is a uniserial algebra
or K is a splitting field for K¥B, then K G is of OTP representation type.

LEMMA 1.2. Let G = Gpx B, p € Z*(Gp, K*), v € Z*(B,K*), A\ = pxv
and assume that K*G,, satisfies the Q-condition. The algebra K*G is of OTP
representation type if and only if K is a splitting field for KV B.

THEOREM 1.3. Let G = G, x B, u € Z*(G,,K*), v € Z*(B,K*),
A= puxvand d= dimg(K'Gp/rad K*G)p). Denote by D the subgroup of
Gyp such that G}, C D and D /G, = soc(Gp/Gy,). Assume that if K*G), is not
uniserial, pd = |Gy : Gy| and |G| = p, then Ker(u) # Gy, or |D : Z(D)| €
{1,p?}. The K-algebra K*G is of OTP representation type if and only if
either KFG), is uniserial, or K is a splitting field for KV B.

PROPOSITION 1.4. Let K be an arbitrary field of characteristic p, G =
Gp x B, v € Z*(B,K*) and K*G = KG, ®k K"B. The K-algebra K*G
is of OTP representation type if and only if either G, is cyclic, or K is a
splitting field for KV B.

2. On splitting fields for twisted group algebras. We say that an
abelian group is of symmetric type if it can be decomposed into a direct
product of two isomorphic subgroups.

Let G be an abelian group, F an arbitrary field, A € Z*(G, F*), {u, :
g € G} a canonical F-basis of FAG corresponding to A, Z the center of FAG
and H = {h € G : uy € Z}. Then H is a subgroup of G and Z = F*H.
Obviously

H={heG: 4=\ forany g € G}.
We call H the A-center of G.

PROPOSITION 2.1. Let G be abelian, \ € Z*(G,F*), H the \-center
of G, G=G/H and z = zH for any v € G. Assume that G # H.

(i) The algebra F*G may be viewed as a twisted group ring Z7G of G
over the ring Z = FAH. Moreover

Mg /_\;1j ELF*) foralxz,yedG.

(ii) There exists a direct product decomposition G = C1 x --- x Cg such

that C; = (a;) x (b;) is a g;-group of type (¢, q"),
Zj‘é = Zj‘él Rz Ry Zj‘és

and
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|

4q;
0. — ik
(2.1) Z2’Ci= P zvl ok
.]7k:0
with o o
Vg, = Qile, Uy = Bive,  va,Vp, = EiVp Va,,

where o, B; € Z, &; € t(F*) and o(g;) = q;" for everyi € {1,...,s}.
(i) G is a group of symmetric type and F' contains a primitive mth root
of 1, where m = exp G.
Proof. Let {g1,...,9r} be a cross section of H in G and g; = e. Then
A
F'G=Zug @--- @ Zug,.
Put vg, = ug, for every i € {1,...,7}. The algebra FAG may be viewed as
a twisted group ring Z*G of the group G over the ring Z with a canonical
Z-basis vg,, . .., vg,. For any z,y € G we have vzvy = {vgvz, where € t(F™).
The ring Z is the center of Z*G. We also have
Z)\é = Z)\éql Rz Ry Z/\éqk,
where G, is the Sylow gi-subgroup of G for each i € {1,...,k}. B
Let g be a prime and G, = (Z1) x - - - x (%) be a Sylow g-subgroup of G.
Assume that |Z;| = ¢ and m; > --- > my. The set
{’U%’U;—Z tki=0,1,...,¢™ — 1 forevery i € {1,...,t}}
is a Z-basis of the algebra Z j‘éq. We have
Vz,Vz,; = ij:ijUa‘cl
for any j € {2,...,t}, where & € F* and o(&;) < ¢". If mi > ma, then
U%T2 # vg and U%TQ belongs to the center of Z)G. Hence there exists an Zj,
such that |Z;,| = ¢™ and o(&j,) = ¢"'. Let jo = 2 and £ = &. We have
V3, Uiy = &z, 0z, Vz,Vz; = g“%ﬂ@
for all 7,7, where 0 < ~;; < ¢ and 0(§77) < max{|z;|, |z;|} for all 4,5 €

,....th.

T — e A — e ] — X1 2032 2 7 — %l 02 o
Letyl—xl,yg—xQ,yg—xl Lo " T3y - -, Yt =T Ty xtand
_ — _— - _— ,031,,032,, IR 773 N 2 -
Wy = Vzy, Wy = VUzyy, Wyz = Vg, Vzy Uiz, .-y Wy = Vg VUzy Uzy,

where
a1 =25, Qj2=q"" —;
for every j € {3,...,t}. Then

Wy Wy; = Wy; Wy, s Wy Wiy, = Wy; Wy
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where @él) = (y1) X (y2), 622) = (y3) X --» x (g) and Zj‘égz) is Z-central.
By induction on ¢, we conclude that

Zj‘éq >~ 72’D1®yz - Rz Z;\ﬁsq,

where ﬁj is a g-group of type (¢*,¢") and Z )‘Ej is a central Z-algebra of
the form , for any j € {1,...,s4}.

The group G, is of symmetric type. Hence G is a group of symmetric
type. The field F' contains a primitive mgth root of 1, where my, = exp éq.
It follows that F' contains a primitive mth root of 1, where m = expG. =

We note that Proposition is a generalization of Theorem 2.12 in [22]
p. 375]. From Proposition one can also deduce Corollary 1.12 in [22]
p. 368|.

PROPOSITION 2.2. Let B be an abelian p'-group, A\ € Z*(B,K*), H the
A-center of B and B = B/H. Assume that K is a splitting field for K*B.

(i) The field K contains a primitive (exp H)th root of 1, and there exists
w € Z*(B, K*) such that X is cohomologous to inf(yu).

(ii) The algebra K*B is K-algebra isomorphic to KM B x --- x KMB,
where | = |H|, u1 = p and K* B is K -algebra isomorphic to M, (K),
n? = |B|, for everyi € {1,...,1}.

Proof. (i) K is a splitting field for Z = K*H. It follows that the restric-
tion of A to H x H is a coboundary and K contains a primitive (exp H)th
root of 1. The algebra K*H is isomorphic to K H. We may assume that
K H = KH. Denote by I(H) the augmentation ideal of K H. By Lemma
5.5 in [21, p. 91|, K*B/K*B - I(H) = KB for some u € Z?(B, K*) such
that A is cohomologous to inf ().

(ii) Let [ = |H]|, e1,...,e; be a complete system of primitive pairwise
orthogonal idempotents of Z and upe; = ey for any h € H. Then Ze; is
K-algebra isomorphic to K and, by Proposition [2.1]

K*Be; = (Ze;)' B~ K" B
for every i € {1,...,1}. Moreover, K*'B = KF*B, KM B is a central K-
algebra and K is a splitting field for K*B for each i. Hence K" B is K-
algebra isomorphic to M,,(K), n? = |B|, for every i € {1,...,l}. =

LEMMA 2.3. Let B be an abelian p'-group of symmetric type. Assume
that the field K contains a primitive (exp B)th root of 1. Then there exists
a cocycle p € Z*(B,t(K*)) such that K*B = M,,(K), where n? = |B].

Proof. We may suppose that B is an abelian g-group of type (¢",q"),
where ¢ # p. Let £ be a primitive ¢"th root of 1, F' a finite subfield of K
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which contains £, B = (z) x (y) and

-1
F*B = @ Fu;ujy, ugf = U, ugr =Ue, Uglly = EUyly.
i,j=0
The F-algebra F*B is central. Since a finite division algebra is a field, F*B is
F-algebra isomorphic to M,,(F), where n = ¢". It follows that the K-algebra

K'B := K @ FFB is K-isomorphic to M,,(K). =

PROPOSITION 2.4. Assume that B is an abelian p'-group and H is a
subgroup of B such that B := B/H is of symmetric type and K contains a
primitive mth root of 1, where m = max{exp B,exp H}. Let yu € Z%*(B, K*)
and A = inf(u).

(i) If K*B is a central K-algebra then K*B can be decomposed into a
direct product of central twisted group algebras of B over K.
(ii) If u € Z*(B,t(K*)) and K*B is a central K -algebra, then K is a
splitting field for the algebra K*B.
(iii) Let K contain a primitive (exp B)th root of 1. If KMB is K -algebra
isomorphic to M, (K), where n?> = |B|, then K B is K-algebra iso-
morphic to the direct product of | copies of Ml,,(K), where | = |H]|.

Proof. (i) Denote by {vpy : b € B} a canonical K-basis of K*B corre-
sponding to u and by {u, : b € B} a canonical K-basis of K*B corresponding
to A.

We have K*H = KH. If b € B and h € H then Ao = o = 1
and App = 1. It follows that wyup = wupup. Therefore KH C Z(K*B).
Assume that uy € Z(K*B) for certain ¢ € B. Then ugup, = upu, for each
b € B. Hence vggvpg = vpnvgn for any b € B. Since K*B is a central
K-algebra, gH = H and consequently Z(K*B) = KH. This means that
H is the A-center of B. The field K is a splitting field for K H. It follows,
by Proposition , that K*B can be decomposed into a direct product of
central twisted group algebras of B over K.

(ii) Denote by F' a finite subfield of K which contains a primitive mth root
of 1 and all values of the cocycle . The algebra F*B is a central F-algebra.
By (i), F is a splitting field for F*B, since each finite division algebra is a
field. It follows that K is a splitting field for the algebra K*B = K @ F*B.

(iii) By Theorem 6.1 in |25, p. 179], K*B can be decomposed into a
direct product of mutually isomorphic simple algebras over K. Since K*B
is a simple component of K*B, the algebra K*B is K-algebra isomorphic
to KFBx ---x K'B.

PROPOSITION 2.5 ([T, p. 20]). Let B be an abelian p'-group. The field K
is a splitting field for some K -algebra K*B if and only if B has a subgroup
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H such that B/H is of symmetric type and K contains a primitive mth root
of 1, where m = max{exp(B/H),exp H }.

Proof. Apply Propositions 2.1} 2.2} 2.4 and Lemma[2.3] =

PROPOSITION 2.6. Let K be a finite field of characteristic p, B an abelian
p'-group, X € Z*(B, K*) and H the A-center of B. The field K is a splitting
field for K*B if and only if the restriction of A\ to H x H is a coboundary
and K contains a primitive (exp H)th root of 1.

Proof. Apply Propositions and 2.2 =

PROPOSITION 2.7. Let B be a nilpotent p’'-group. If K is a splitting field
for some twisted group algebra of B over K, then K contains a primitive qth
root of 1 for each prime q that divides |B|.

Proof. Assume that K is a splitting field for an algebra K*B and K
does not contain a primitive gth root of 1 for a certain prime ¢ dividing |B|.
Denote by B, the Sylow g-subgroup of B. The center of B, contains an
element b of order ¢. Let {uy, : g € B} be a canonical K-basis of KB
corresponding to A. Then w lies in the center Z of K*B. Let {f,..., fs}
be a complete system of pairwise orthogonal primitive idempotents of Z.
We have up = f1fi + ...+ Bsfs, where §; € K for every j € {1,...,s}. If
uf = yue, v € K*, then y = ﬁg for each j. It follows that 8, = --- = 3, and
up = [1ue. This contradiction proves that K contains a primitive gth root
of 1 for each prime ¢ that divides |B|. =

PROPOSITION 2.8. Let B be a p'-group.

(i) If the field K is a splitting field for all twisted group algebras of B
over K, then K = K% and K contains a primitive qth root of 1 for
each prime q that divides |B : B'|.

(ii) If K = K9 and K contains a primitive qth root of 1 for any prime
q that divides |B|, then K is a splitting field for every twisted group
algebra of B over K.

(i) Assume that every prime divisor of |B'| is also a divisor of |B : B'|.
Then K is a splitting field for any twisted group algebra of B over
K if and only if K = K9 and K contains a primitive qth root of 1
for each prime q that divides |B).

Proof. (i) Let B # B’ and ¢ be a prime divisor of |B : B’|. Denote by
D a normal subgroup of B such that |B/D| = q. Let B := B/D = (zD),
o€ K* and
q—1
K“Ez@KUiD, vl = avp.
=0
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Denote A = inf(u). There exists a K-algebra homomorphism of K*B onto
K*"B. It follows that K is a splitting field for K*B. Hence o = 67 for some
0 € K* and K contains a primitive gth root of 1.

(i) Denote by n the order of a cohomology class [\] € H?(B, K*). It
is well known that n divides |B|. Arguing as in the proof of Theorem 53.3
in [14, p. 359|, we show that [A] contains a cocycle a whose order is equal
to n. By Theorem 1.3 in [2], p. 137|, there exists a central group extension
1— A— B— B— 1such that 4 is a cyclic group of order n and

n—1
KB =~ H K B.
=0

Since any prime divisor of |§\ is also a divisor of B, the field K contains a
primitive mth root of 1, where m = exp B. By the Brauer theorem, K is a
splitting field for K B. Hence K is a splitting field for K“B.

(iii) Apply (i) and (ii). =

PROPOSITION 2.9. Let B be a p'-group. The field K is a splitting field
for all twisted group algebras of B over K if and only if there exists a finite
central group extension 1 — A — B — B — 1 such that any projective K -re-

presentation of B lifts projectively to an ordinary K -representation of B and
K is a splitting field for B.

Proof. Assume that K is a splitting field for all twisted group algebras
of B over K. By Proposition K* = (K*)™, where m is the exponent of
B/B'. In view of Corollary 2.5 in [21], p. 142], H*(B, K*) = H?*(B,t(K*)).
Arguing as in the proof of Theorem 2.3 in [21, p. 141], we conclude that
there exists a finite central group extension 1 — A — B — B — 1 such that
the following conditions hold:

(i) If r is the exponent of A, then K* contains a primitive rth root of 1.
(ii) Every projective K-representation of B lifts projectively to an ordi-
nary K-representation of B.

By Theorem 4.2 in [21], p. 80], KB = [I, K*B. It follows that K is a
splitting field for K B. This completes the proof of the necessity.

Let us prove the sufficiency. The group algebra K A lies in the center of
KB , hence K contains a primitive mth root of 1, where m is the exponent
of A. It follows, by Theorem 4.2 in [21, p. 80] and Lemma 2.1 in |21}, p. 139],
that KB is K-algebra isomorphic to KB x --- x K?" B and every algebra
K*B is isomorphic to some K% B. Hence K is a splitting field for every
twisted group algebra of B over K. =

PROPOSITION 2.10. Let B be a p'-group. Assume that either t(K*) =
t(K*)? for every prime q that divides |B’|, or every prime divisor of |B'| is
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also a divisor of |B : B'|. Then K is a splitting field for any twisted group

algebra of B over K if and only if there exists a covering group B of B over
K such that K is a splitting field for B.

Proof. Assume that K is a splitting field for any twisted group algebra
of B over K. In view of Proposition K = K1 for each prime ¢ dividing
|B : B'|. Tt follows that ¢(K*) = ¢t(K*)? for every prime ¢ that divides B.
Arguing as in the proof of Theorem 53.3 in [14, p. 359|, we show that each
cohomology class [\] € H2(B,t(K*)) contains a cocycle whose order is equal
to the order of [A]. In view of Theorem 2.3 in [21] p. 140], there exists a finite
central group extension 1 — A — B — B — 1 such that A =~ H2(B, t(K*))
and any projective K-representation of B lifts projectively to an ordinary
K-representation of B. By Corollary 2.5 in [2I], p. 142], we have

H*(B,K*) = H*(B,t(K")).
Hence B is a covering group of B over K. Theorem 4.2 in |21], p. 80| yields
KB=][K"B,
%

since K* contains a primitive (exp A)th root of 1. It follows that K is a
splitting field for B. This proves the necessity.
The sufficiency follows from Proposition .

We note that in [25] Yamazaki proved Theorem 4.2 from [21] p. 80| while
Theorem 2.3 from [21], p. 140] and Corollary 2.5 from |21} p. 142| are proved
in [26].

3. Groups of OTP projective representation type. We recall that
K is a field of characteristic p and G = G, x B is a finite group, where G,
is a p-group, B is a p/-group and |Gp| # 1, |B| # 1. We assume that if G,
is non-abelian then [K(§) : K] is not divisible by p, where £ is a primitive
(exp B)th root of 1.

THEOREM 3.1. Let G = G, X B, s be the number of invariants of the
group Gp/G), and D the subgroup of Gy, such that G}, C D and D/G), =
soc(Gp/Gy,). Assume that if p # 2, s = i(K) + 1, |G| = p and D is a
non-abelian group of exponent p, then |D : Z(D)| = p?. The group G is
of OTP projective K -representation type if and only if one of the following
conditions is satisfied:

(i) s <i(K) and G}, is cyclic;
(ii) s = i(K) + 1, G}, is cyclic and there exists a cyclic subgroup T of
Gyp such that G}, C T and G,/T has i(K) invariants;
(iii) K is a splitting field for some KV B.
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Proof. Suppose (ii). Let ép = G,/T. There is a cocycle o € ZQ(CN{D7 K*)
such that K7G), is a field. Let = inf(o). If V := K#G,- I(T) then V is the
radical of K*G, and K*G),/V is K-algebra isomorphic to K "ép. Therefore
K*G), is a uniserial algebra. Let v € Z%(B, K*) and A = u x v. In view of
Theorem K*G is of OTP representation type.

Arguing as in the case (ii) we prove that if (i) holds, then there exists a
cocycle A € Z2(G, K*) such that K*G is of OTP representation type.

Assume that K is a splitting field for some K”B. Let K*G = KG, ®k
K" B. By Theorem K*G is of OTP representation type.

If s > i(K) + 2 or G}, is non-cyclic then K#G), is not a uniserial algebra
for any p € Z2*(Gp, K*). Moreover, in the case s > i(K) + 2, we have
|Gy : G| > p*d, where

d = dimg (K"Gp/rad K*G)).

Let v € Z%(B,K*) and A = pu X v. By Theorem an algebra K*G is of
OTP representation type if and only if K is a splitting field for K”B.

Assume now that s = i(K) + 1, G}, = () and G, does not contain a
cyclic subgroup T' such that G}, C T' and G}/T has i(K) invariants. Let
H = (c?) and Gp/G), = (a1G},) x - - x (asG}), where |a;GY| = p™ for every
j€e{l,...,s}. We have

a?n] € H foreachje{l,... s}

First, we examine the case p = 2. Let N,.; be the subgroup of G» generated by
the elements a,, a; and ¢, where r,t € {1,...,s} and r # ¢t. If [N, : G| =4
and Nj; = Gj, then N, is metacyclic. There exists a cyclic subgroup T
of Ny; such that G5 C T and G3/T has i(K) invariants, a contradiction.
Hence, if [N, : G4| = 4, we have [a,,a;] € H and

D/H = (cH) x (b1H) x --- x (bsH),

275~

where b; = a; " for every j € {1,...,s}. Each twisted group algebra of
the group D/H over the field K is non-uniserial. Consequently, every K*Go
satisfies the @-condition. By Lemma [I.2] the group G = G2 x B is of OTP
projective K-representation type if and only if condition (iii) holds.

Now we consider the case p # 2. By [5}, p. 288], |[D'| < p. If |G)| > p?
then D/H = (cH) x (bjH) x --- x (bsH), where

ni—1
bj:ajj?] for each j € {1,...,s}.

Arguing as in the case p = 2, we conclude that G is of OTP projective
K-representation type if and only if condition (iii) holds. Let |G},| = p. Then
exp D = p. If D is abelian then, for any p € Z2(G,, K*), the algebra K*D is
not uniserial. Hence in this case every K*G,, satisfies the ()-condition, and
Lemma applies. Suppose that D is non-abelian. Then |D : Z(D)| = p?
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and, for every p € Z*(Gp, K*), the algebra K*G,/K"G,), - rad KG), is not a
field. In view of Lemma 1.7 in [8, p. 177], K*G), is not a uniserial algebra.
By Theorem G is of OTP projective K-representation type if and only
if condition (iii) holds. m

COROLLARY 3.2. Let G = G, X B and K be an arbitrary perfect field of
characteristic p. The group G is of OTP projective K -representation type if
and only if Gy, is cyclic or K is a splitting field for some K"B.

COROLLARY 3.3. Let G =G, x B and [K : KP] = p. Then G is of OTP
projective K -representation type if and only if either G, is metacyclic or K
1s a splitting field for some K" B.

COROLLARY 3.4. Let G = Gp, x B, s be the number of invariants of
Gp/G), and [K : KP] = p?. The group G is of OTP projective K -representa-
tion type if and only if one of the following conditions is satisfied:

(i) s <2 and G, is cyclic;
(ii) s = 3 and there exists a cyclic subgroup T' of G, such that G;, cT

and G, /T has two invariants;
(iii) K is a splitting field for some KV B.

Proof. Keep the notation of Theorem Assume that p # 2, s = 3,
|G| = p and D is a non-abelian group of exponent p. Moreover, let D/G}, =
<51G;> X <b2G;> X <b3G;>, G;) = <C> and [bl, bz] =c, [bl, bg] =c", [bg, b3] = Ct,
where 0 < r,t < p. Set h = btlbgrbg. Then b1h = hbi, boh = hby. It follows
that Z(D) is generated by h,c. Hence |D : Z(D)| = p?. Applying Theorem
we conclude that G is of OTP projective K-representation type if and
only if one of the present conditions (i)—(iii) is satisfied. m

COROLLARY 3.5. Let G = G x B and [K : KP] = co. The group G is of
OTP projective K -representation type if and only if either G; s cyclic, or
K is a splitting field for some KV B.

PROPOSITION 3.6. Let G = G, x B be an abelian group and s the number
of mwvariants of G,. The group G is of OTP projective K -representation type
if and only if one of the following conditions is satisfied:

(i) 5 <i(K)+1,

(ii) B has a subgroup H such that B/H is of symmetric type and K con-
tains a primitive mth root of 1, where m = max{exp(B/H),exp H}.

Proof. Apply Proposition 2.5 and Theorem [3.1] =

PROPOSITION 3.7. Let G, be an abelian p-group, s the number of invari-
ants of Gp, B a nilpotent p'-group and G = G, x B. Assume that K does not
contain a primitive qth root of 1 for some prime q dividing |B|. The group
G is of OTP projective K -representation type if and only if s < i(K)+ 1.
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Proof. Apply Proposition 2.7 and Theorem .

From now on, K denotes an arbitrary field of characteristic p.

PROPOSITION 3.8. A group G = G, x B is of purely OTP projective
K -representation type if and only if either Gy, is cyclic, or K is a splitting
field for every twisted group algebra of B over K.

Proof. Let v € Z%(B, K*) be an arbitrary cocycle and K*\G = KG),®K
K" B. By Proposition |1.4, K*G is of OTP representation type if and only if
either G, is cyclic, or K is a splitting field for K¥B. Assume now that G, is

cyclic, u € Z?(G,, K*) is an arbitrary cocycle and A = pu x v. Since the alge-
bra K*G), is uniserial, by Lemma , K@ is of OTP representation type. m

PROPOSITION 3.9. Let G = G, x B. Assume that K = K% and K con-
tains a primitive qth root of 1 for each prime q that divides |B|. Then G is
of purely OTP projective K -representation type.

Proof. Apply Propositions 2.8 and [3.8] =

COROLLARY 3.10. If K is a separably closed field then every group G =
Gp x B is of purely OTP projective K -representation type.

PROPOSITION 3.11. Let G = G, x B. Assume that every prime divisor
of |B'| is also a divisor of |B : B'|. The group G is of purely OTP projective
K -representation type if and only if either G, is cyclic, or K = K% and K
contains a primitive qth root of 1 for each prime q that divides |B|.

Proof. Again apply Propositions 2.8 and [3.8] =

THEOREM 3.12. A group G = G, X B is of purely OTP projective K-
representation type if and only if either Gy, is cyclic, or there exists a finite

central group extension 1 — A — B — B — 1 such that any projective K -
representation of B lifts projectively to an ordinary K-representation of B
and K is a splitting field for B.

Proof. Apply Propositions 2.9 and [3.8] =

PROPOSITION 3.13. Let G = G, x B. Assume that either t(K*) = t(K*)?
for any prime q dwiding |B'|, or every prime divisor of |B'| is also divisor
of |B: B'|. Then G is of purely OTP projective K -representation type if and
only if either G, is cyclic, or there exists a covering group B of B over K
such that K is a splitting field for B.

Proof. Apply Propositions and 3.8 =
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