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FINITE GROUPS OF OTP PROJECTIVE REPRESENTATION TYPE

BY

LEONID F. BARANNYK (Słupsk)

Abstract. Let K be a field of characteristic p > 0, K∗ the multiplicative group of K
and G = Gp×B a finite group, where Gp is a p-group and B is a p′-group. Denote by KλG
a twisted group algebra of G over K with a 2-cocycle λ ∈ Z2(G,K∗). We give necessary
and sufficient conditions for G to be of OTP projective K-representation type, in the sense
that there exists a cocycle λ ∈ Z2(G,K∗) such that every indecomposable KλG-module
is isomorphic to the outer tensor product V #W of an indecomposable KλGp-module V
and a simple KλB-module W . We also exhibit finite groups G = Gp × B such that, for
any λ ∈ Z2(G,K∗), every indecomposable KλG-module satisfies this condition.

0. Introduction. Let K be a field of characteristic p > 0 and G =
Gp×B a finite group, where Gp is a Sylow p-subgroup and |Gp| > 1, |B| > 1.
Given µ ∈ Z2(Gp,K∗) and ν ∈ Z2(B,K∗), the map µ × ν : G × G → K∗

defined by
(µ× ν)x1b1,x2b2 = µx1,x2 · νb1,b2 ,

for all x1, x2 ∈ Gp, b1, b2 ∈ B, belongs to Z2(G,K∗). Every cocycle λ ∈
Z2(G,K∗) is cohomologous to µ × ν, where µ is the restriction of λ to
Gp ×Gp and ν is the restriction of λ to B ×B.

From now on, we suppose that each cocycle λ ∈ Z2(G,K∗) under consid-
eration satisfies the condition λ = µ× ν, and all KλG-modules are assumed
to be left and finite-dimensional (as vector spaces over K).

Let λ = µ × ν ∈ Z2(G,K∗) and {ug : g ∈ G} be a canonical K-basis of
KλG. Then {uh : h ∈ Gp} is a canonical K-basis of KµGp and {ub : b ∈ B}
is a canonical K-basis of KνB. Moreover, if g = hb, where g ∈ G, h ∈ Gp,
b ∈ B, then ug = uhub = ubuh. It follows that KλG ∼= KµGp ⊗K KνB.

Given a KµGp-module V and a KνB-module W , we denote by V # W
the KλG-module whose underlying vector space is V ⊗K W with the KλG-
module structure given by

uhb(v ⊗ w) = uhv ⊗ ubw,
for all h ∈ Gp, b ∈ B, v ∈ V , w ∈ W , and extended to KλG and V ⊗K W
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by K-linearity. The module V # W is called the outer tensor product of V
and W (see [21, p. 122]).

We recall from [7, p. 10] the following definitions.

(a) The algebra KλG is defined to be of OTP representation type if
every indecomposable KλG-module is isomorphic to the outer tensor
product V # W , where V is an indecomposable KµGp-module and
W is a simple KνB-module.

(b) A group G = Gp×B is defined to be of OTP projective K-representa-
tion type if there exists a cocycle λ ∈ Z2(G,K∗) such that the algebra
KλG is of OTP representation type.

(c) A group G = Gp × B is said to be of purely OTP projective K-
representation type if KλG is of OTP representation type for any
λ ∈ Z2(G,K∗).

In [13] Brauer and Feit proved that if K is algebraically closed, then the
group algebra KG is of OTP representation type. Blau [10] and Gudyvok
[17, 18] have independently shown that if K is an arbitrary field, then KG
is of OTP representation type if and only if Gp is cyclic or K is a splitting
field for B. Gudyvok [19, 20] also investigated a similar problem for group
rings SG, where S is a complete discrete valuation ring. In [3, 6], the results
of Blau and Gudyvok are generalized to the twisted group rings SλG, where
G = Gp×B, S = K or S is a complete discrete valuation ring of characteristic
p > 0. Let S = K[[X]] be the ring of formal power series in the indeterminate
X with coefficients in the field K. In [7], necessary and sufficient conditions
on G and K are given for G to be of OTP projective S-representation type
and of purely OTP projective S-representation type.

In the present work we determine finite groups G = Gp×B of OTP pro-
jective K-representation type and of purely OTP projective K-representa-
tion type.

Denote by lB the product of all pairwise distinct prime divisors of |B|.
Unless stated otherwise, we assume that if Gp is non-abelian, then [K(ε) : K]
is not divisible by p, where ε is a primitive lBth root of 1. This condition is
satisfied if K contains a primitive qth root of 1 for every prime q dividing |B|
such that the characteristic p divides q − 1. For simplicity of presentation,
we set

i(K) =
{
t if [K : Kp] = pt,
∞ if [K : Kp] =∞.

Let s be the number of invariants of the abelian group Gp/G
′
p, and D

the subgroup of Gp such that G′p ⊂ D and D/G′p = soc(Gp/G′p). Suppose
that if p 6= 2, s = i(K) + 1, G′p is cyclic and D is a non-abelian group
of exponent p, then |D : Z(D)| = p2, where Z(D) is the center of D. We
prove in Theorem 3.1 that the group G = Gp × B is of OTP projective
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K-representation type if and only if one of the following three conditions is
satisfied:

(i) s ≤ i(K) and G′p is cyclic;
(ii) s = i(K) + 1, G′p is cyclic and there exists a cyclic subgroup T of

Gp such that G′p ⊂ T and Gp/T has i(K) invariants;
(iii) K is a splitting field for KνB for some ν ∈ Z2(B,K∗).

We also prove in Proposition 3.6 that if G = Gp×B is abelian, then G is
of OTP projective K-representation type if and only if one of the following
conditions is satisfied:

(i) s ≤ i(K) + 1;
(ii) B has a subgroup H such that B/H is of symmetric type and K con-

tains a primitive mth root of 1, where m = max{exp(B/H), expH}.
Now suppose that K is an arbitrary field of characteristic p. We establish

in Proposition 3.11 that if every prime divisor of |B′| is also a divisor of
|B : B′|, then G = Gp × B is of purely OTP projective K-representation
type if and only if either Gp is cyclic, or K = Kq and K contains a primitive
qth root of 1, for each prime q dividing |B|.

In the general case, a finite group G = Gp×B is of purely OTP projective
K-representation type if and only if either Gp is cyclic, or there exists a finite
central group extension 1→ A→ B̂ → B → 1 such that any projective K-
representation of B lifts projectively to an ordinary K-representation of B̂
and K is a splitting field for B̂ (Theorem 3.12).

Let t(K∗) denote the torsion subgroup of the multiplicative group K∗

of K. Assume that either t(K∗) = t(K∗)q for every prime q dividing |B′|, or
every prime divisor of |B′| is also a divisor of |B : B′|. Then G is of purely
OTP projective K-representation type if and only if either Gp is cyclic, or
there exists a covering group B̂ of B over K such that K is a splitting field
for B̂ (Proposition 3.13).

1. Preliminaries. Throughout the paper, we use the standard group
representation theory notation and terminology introduced in the mono-
graphs by Alperin [1], Benson [9], Curtis and Reiner [14], and Karpilovsky
[21, 22]. The books by Karpilovsky give a systematic account of the pro-
jective representation theory. For classical problems and solutions of group
representation theory, we refer to [1, 9, 14] and to the old and nice papers
[11, 12]. A background of the representation theory of finite-dimensional alge-
bras can be found in the monographs by Assem, Simson and Skowroński [2],
Drozd and Kirichenko [16], Simson [23], and Simson and Skowroński [24],
where among other things the representation types (finite, tame, wild) of
finite groups and algebras are discussed.
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In particular, we use the following notation: p ≥ 2 is a prime; K is a
field of characteristic p, Kq = {αq : α ∈ K}; K∗ is the multiplicative group
of K; t(K∗) is the torsion subgroup of K∗; o(ξ) is the order of ξ ∈ t(K∗);
G = Gp × B is a finite group, where Gp is a p-group, B is a p′-group,
|Gp| > 1 and |B| > 1; H ′ is the commutant of a group H, Z(H) is the center
of H, e is the identity element of H, |h| is the order of h ∈ H and expH is
the exponent of H; socA is the socle of an abelian group A. Let lB be the
product of all pairwise distinct prime divisors of |B|. Unless stated otherwise,
we assume that if Gp is non-abelian, then [K(ε) : K] is not divisible by p,
where ε is a primitive lBth root of 1. It is not difficult to see that [K(ε) : K]
is not divisible by p if and only if [K(ξ) : K] is not divisible by p, where
ξ is a primitive (expB)th root of 1. Given λ ∈ Z2(H,K∗), KλH denotes
the twisted group algebra of a group H over K with a 2-cocycle λ, and
radKλH the radical of KλH. A K-basis {uh : h ∈ H} of KλH satisfying
uaub = λa,buab for all a, b ∈ H is called canonical (corresponding to λ). If D
is a subgroup of a group H, the restriction of λ ∈ Z2(H,K∗) to D × D is
also denoted by λ. In this case, KλD is a subalgebra of KλH.

Throughout this paper we assume that all cocycle groups are defined
with respect to the trivial action of the underlying group on K∗. By The-
orem 4.7 in [21, p. 40], the embedding t(K∗) → K∗ induces an injective
homomorphism

H2(B, t(K∗))→ H2(B,K∗).

We shall identify H2(B, t(K∗)) with the subgroup of H2(B,K∗) which con-
sists of all cohomology classes containing cocycles of finite order.

Given µ ∈ Z2(Gp,K∗), the kernel Ker(µ) of µ is the union of all cyclic
subgroups 〈g〉 of Gp such that the restriction of µ to 〈g〉×〈g〉 is a coboundary.
We recall from [4, p. 196] that G′p ⊂ Ker(µ), Ker(µ) is a normal subgroup
of Gp and the restriction of µ to Ker(µ)×Ker(µ) is a coboundary.

LetM be a finite group,N a normal subgroup ofM and T = M/N . Given
µ ∈ Z2(T,K∗), denote by inf(µ) (see [21, p. 14]) the element of Z2(M,K∗)
defined by

inf(µ)a,b = µaN,bN for all a, b ∈M.

We have inf(µ)x,y = 1 for all x, y ∈ N . Therefore

K inf(µ)N = KN.

Let λ = inf(µ), {vaN : a ∈M} be a canonical K-basis of KµT corresponding
to µ, and {ua : a ∈ M} a canonical K-basis of KλM corresponding to λ.
The formula

f
(∑
a∈M

αaua

)
=
∑
a∈M

αavaN

defines a K-algebra epimorphism f : KλM → KµT with the kernel U :=
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KλM ·I(N), where I(N) is the augmentation ideal of the group algebra KN
(see [21, p. 88]). Hence KλM/U ∼= KµT . We recall that

I(N) =
⊕

x∈N\{e}

K(ux − ue).

Assume that N and M are groups. An extension of N by M is a short
exact sequence of groups

E : 1
ϕ−→ N → M̂ →M → 1.

If ϕ(N) is contained in the center of M̂ , then E is called a central extension.
If N and M are finite groups, then E is a finite extension.

Let V be a finite-dimensional vector space over K, GL(V ) the group of
all automorphisms of V , 1V the identity automorphism of V , M a finite
group, and let

1→ N → M̂
ψ−→M → 1

be a finite central group extension. Denote by π : GL(V ) → GL(V )/K∗1V
the canonical group epimorphism. Assume that Γ is an ordinary K-re-
presentation of M̂ in V with Γ (x) ∈ K∗1V for any x ∈ N . There exists
a projective K-representation ∆ of M in V such that the diagram

M̂
Γ−→ GL(V ) π−→ GL(V )/K∗1V

ψ↓ ↓ id

M
∆−→ GL(V ) π−→ GL(V )/K∗1V

is commutative.We say that∆ lifts projectively to the ordinaryK-representa-
tion Γ of M̂ . If |N | = |H2(M,K∗)| and any projective K-representation of
M lifts projectively to an ordinary K-representation of M̂ , then M̂ is called
a covering group of M over K [21, p. 138].

We recall that, for any cocycle λ ∈ Z2(Gp,K∗), the quotient algebra
KλGp/radKλGp is K-isomorphic to a field that is a finite purely inseparable
field extension of K [21, p. 74]. We call KλGp uniserial if the left regular
and the right regular KλGp-modules have a unique composition series. It
should be noted that some authors use the terminology “uniserial algebra”
to mean principal ideal algebras [16, p. 171] and serial algebras (see [15,
p. 505] and [16, p. 175]) that are Nakayama algebras [2, p. 168]. By the
Morita theorem in [15, p. 507], the algebra KλGp is uniserial if and only
if radKλGp = KλGp · v = v · KλGp for some v ∈ KλGp. By [16, p. 170],
the algebra KλGp is uniserial if and only if radKλGp is a principal left
(equivalently, right) ideal of KλGp.

We say that an algebra KλGp satisfies the Q-condition if there exists a
K-algebra epimorphism KλGp → KµT , where T is a p-group and T contains
an abelian subgroup A such that KµA is not a uniserial algebra.
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The following four facts are proved in [6].

Lemma 1.1. Let K be an arbitrary field of characteristic p, G = Gp×B,
µ ∈ Z2(Gp,K∗), ν ∈ Z2(B,K∗) and λ = µ×ν. If KµGp is a uniserial algebra
or K is a splitting field for KνB, then KλG is of OTP representation type.

Lemma 1.2. Let G = Gp×B, µ ∈ Z2(Gp,K∗), ν ∈ Z2(B,K∗), λ = µ×ν
and assume that KµGp satisfies the Q-condition. The algebra KλG is of OTP
representation type if and only if K is a splitting field for KνB.

Theorem 1.3. Let G = Gp × B, µ ∈ Z2(Gp,K∗), ν ∈ Z2(B,K∗),
λ = µ × ν and d = dimK(KµGp/radKµGp). Denote by D the subgroup of
Gp such that G′p ⊂ D and D/G′p = soc(Gp/G′p). Assume that if KµGp is not
uniserial, pd = |Gp : G′p| and |G′p| = p, then Ker(µ) 6= G′p or |D : Z(D)| ∈
{1, p2}. The K-algebra KλG is of OTP representation type if and only if
either KµGp is uniserial, or K is a splitting field for KνB.

Proposition 1.4. Let K be an arbitrary field of characteristic p, G =
Gp × B, ν ∈ Z2(B,K∗) and KλG = KGp ⊗K KνB. The K-algebra KλG
is of OTP representation type if and only if either Gp is cyclic, or K is a
splitting field for KνB.

2. On splitting fields for twisted group algebras. We say that an
abelian group is of symmetric type if it can be decomposed into a direct
product of two isomorphic subgroups.

Let G be an abelian group, F an arbitrary field, λ ∈ Z2(G,F ∗), {ug :
g ∈ G} a canonical F -basis of F λG corresponding to λ, Z the center of F λG
and H = {h ∈ G : uh ∈ Z}. Then H is a subgroup of G and Z = F λH.
Obviously

H = {h ∈ G : λh,g = λg,h for any g ∈ G}.

We call H the λ-center of G.

Proposition 2.1. Let G be abelian, λ ∈ Z2(G,F ∗), H the λ-center
of G, G = G/H and x̄ = xH for any x ∈ G. Assume that G 6= H.

(i) The algebra F λG may be viewed as a twisted group ring Z λ̄G of G
over the ring Z = F λH. Moreover

λ̄x̄,ȳ · λ̄−1
ȳ,x̄ ∈ t(F ∗) for all x, y ∈ G.

(ii) There exists a direct product decomposition G = C1 × · · · ×Cs such
that Ci = 〈āi〉 × 〈b̄i〉 is a qi-group of type (qnii , q

ni
i ),

Z λ̄G ∼= Z λ̄C1 ⊗Z · · · ⊗Z Z λ̄Cs
and
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(2.1) Z λ̄Ci =
q
ni
i −1⊕
j,k=0

Zvjāiv
k
b̄i

with
v
q
ni
i
āi = αivē, v

q
ni
i

b̄i
= βivē, vāivb̄i = εivb̄ivāi ,

where αi, βi ∈ Z, εi ∈ t(F ∗) and o(εi) = qnii for every i ∈ {1, . . . , s}.
(iii) G is a group of symmetric type and F contains a primitive mth root

of 1, where m = expG.

Proof. Let {g1, . . . , gr} be a cross section of H in G and g1 = e. Then

F λG = Zug1 ⊕ · · · ⊕ Zugr .
Put vḡi = ugi for every i ∈ {1, . . . , r}. The algebra F λG may be viewed as
a twisted group ring Z λ̄G of the group G over the ring Z with a canonical
Z-basis vḡ1 , . . . , vḡr . For any x, y ∈ G we have vx̄vȳ = ξvȳvx̄, where ξ ∈ t(F ∗).
The ring Z is the center of Z λ̄G. We also have

Z λ̄G ∼= Z λ̄Gq1 ⊗Z · · · ⊗Z Z λ̄Gqk ,
where Gqi is the Sylow qi-subgroup of G for each i ∈ {1, . . . , k}.

Let q be a prime and Gq = 〈x̄1〉× · · · × 〈x̄t〉 be a Sylow q-subgroup of G.
Assume that |x̄j | = qmj and m1 ≥ · · · ≥ mt. The set

{vk1x̄1
. . . vktx̄t : ki = 0, 1, . . . , qmi − 1 for every i ∈ {1, . . . , t}}

is a Z-basis of the algebra Z λ̄Gq. We have

vx̄1vx̄j = ξjvx̄jvx̄1

for any j ∈ {2, . . . , t}, where ξj ∈ F ∗ and o(ξj) ≤ qmj . If m1 > m2, then
vq
m2

x̄1
6= vē and v

qm2

x̄1
belongs to the center of Z λ̄G. Hence there exists an x̄j0

such that |x̄j0 | = qm1 and o(ξj0) = qm1 . Let j0 = 2 and ξ = ξ2. We have

vx̄1vx̄2 = ξvx̄2vx̄1 , vx̄ivx̄j = ξγijvx̄jvx̄i

for all i, j, where 0 ≤ γij < qm1 and o(ξγij ) ≤ max{|x̄i|, |x̄j |} for all i, j ∈
{1, . . . , t}.

Let ȳ1 = x̄1, ȳ2 = x̄2, ȳ3 = x̄α31
1 x̄α32

2 x̄3, . . . , ȳt = x̄αt11 x̄αt22 x̄t and

wȳ1 = vx̄1 , wȳ2 = vx̄2 , wȳ3 = vα31
x̄1
vα32
x̄2
vx̄3 , . . . , wȳt = vαt1x̄1

vαt2x̄2
vx̄t ,

where
αj1 = γ2j , αj2 = qm1 − γ1j

for every j ∈ {3, . . . , t}. Then
wȳ1wȳj = wȳjwȳ1 , wȳ2wȳj = wȳjwȳ2

for every j ∈ {3, . . . , t}, and Gq = 〈ȳ1〉 × · · · × 〈ȳt〉. Therefore

Z λ̄Gq ∼= Z λ̄G
(1)
q ⊗Z Z λ̄G

(2)
q ,
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where G(1)
q = 〈ȳ1〉 × 〈ȳ2〉, G

(2)
q = 〈ȳ3〉 × · · · × 〈ȳt〉 and Z λ̄G

(2)
q is Z-central.

By induction on t, we conclude that

Z λ̄Gq ∼= Z λ̄D1 ⊗Z · · · ⊗Z Z λ̄Dsq ,

where Dj is a q-group of type (qkj , qkj ) and Z λ̄Dj is a central Z-algebra of
the form (2.1), for any j ∈ {1, . . . , sq}.

The group Gq is of symmetric type. Hence G is a group of symmetric
type. The field F contains a primitive mqth root of 1, where mq = expGq.
It follows that F contains a primitive mth root of 1, where m = expG.

We note that Proposition 2.1 is a generalization of Theorem 2.12 in [22,
p. 375]. From Proposition 2.1 one can also deduce Corollary 1.12 in [22,
p. 368].

Proposition 2.2. Let B be an abelian p′-group, λ ∈ Z2(B,K∗), H the
λ-center of B and B = B/H. Assume that K is a splitting field for KλB.

(i) The field K contains a primitive (expH)th root of 1, and there exists
µ ∈ Z2(B,K∗) such that λ is cohomologous to inf(µ).

(ii) The algebra KλB is K-algebra isomorphic to Kµ1B × · · · × KµlB,
where l = |H|, µ1 = µ and KµiB is K-algebra isomorphic to Mn(K),
n2 = |B|, for every i ∈ {1, . . . , l}.

Proof. (i) K is a splitting field for Z = KλH. It follows that the restric-
tion of λ to H ×H is a coboundary and K contains a primitive (expH)th
root of 1. The algebra KλH is isomorphic to KH. We may assume that
KλH = KH. Denote by I(H) the augmentation ideal of KH. By Lemma
5.5 in [21, p. 91], KλB/KλB · I(H) ∼= KµB for some µ ∈ Z2(B,K∗) such
that λ is cohomologous to inf(µ).

(ii) Let l = |H|, e1, . . . , el be a complete system of primitive pairwise
orthogonal idempotents of Z and uhe1 = e1 for any h ∈ H. Then Zei is
K-algebra isomorphic to K and, by Proposition 2.1,

KλBei ∼= (Zei)σiB ∼= KµiB

for every i ∈ {1, . . . , l}. Moreover, Kµ1B ∼= KµB, KµiB is a central K-
algebra and K is a splitting field for KµiB for each i. Hence KµiB is K-
algebra isomorphic to Mn(K), n2 = |B|, for every i ∈ {1, . . . , l}.

Lemma 2.3. Let B be an abelian p′-group of symmetric type. Assume
that the field K contains a primitive (expB)th root of 1. Then there exists
a cocycle µ ∈ Z2(B, t(K∗)) such that KµB ∼= Mn(K), where n2 = |B|.

Proof. We may suppose that B is an abelian q-group of type (qr, qr),
where q 6= p. Let ξ be a primitive qrth root of 1, F a finite subfield of K
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which contains ξ, B = 〈x〉 × 〈y〉 and

FµB =
qr−1⊕
i,j=0

Fuixu
j
y, uq

r

x = ue, uq
r

y = ue, uxuy = ξuyux.

The F -algebra FµB is central. Since a finite division algebra is a field, FµB is
F -algebra isomorphic to Mn(F ), where n = qr. It follows that the K-algebra
KµB := K ⊗F FµB is K-isomorphic to Mn(K).

Proposition 2.4. Assume that B is an abelian p′-group and H is a
subgroup of B such that B := B/H is of symmetric type and K contains a
primitive mth root of 1, where m = max{expB, expH}. Let µ ∈ Z2(B,K∗)
and λ = inf(µ).

(i) If KµB is a central K-algebra then KλB can be decomposed into a
direct product of central twisted group algebras of B over K.

(ii) If µ ∈ Z2(B, t(K∗)) and KµB is a central K-algebra, then K is a
splitting field for the algebra KλB.

(iii) Let K contain a primitive (expB)th root of 1. If KµB is K-algebra
isomorphic to Mn(K), where n2 = |B|, then KλB is K-algebra iso-
morphic to the direct product of l copies of Mn(K), where l = |H|.

Proof. (i) Denote by {vbH : b ∈ B} a canonical K-basis of KµB corre-
sponding to µ and by {ub : b ∈ B} a canonicalK-basis ofKλB corresponding
to λ.

We have KλH = KH. If b ∈ B and h ∈ H then λb,h = µbH,H = 1
and λh,b = 1. It follows that ubuh = uhub. Therefore KH ⊂ Z(KλB).
Assume that ug ∈ Z(KλB) for certain g ∈ B. Then ugub = ubug for each
b ∈ B. Hence vgHvbH = vbHvgH for any b ∈ B. Since KµB is a central
K-algebra, gH = H and consequently Z(KλB) = KH. This means that
H is the λ-center of B. The field K is a splitting field for KH. It follows,
by Proposition 2.1, that KλB can be decomposed into a direct product of
central twisted group algebras of B over K.

(ii) Denote by F a finite subfield ofK which contains a primitivemth root
of 1 and all values of the cocycle µ. The algebra FµB is a central F -algebra.
By (i), F is a splitting field for F λB, since each finite division algebra is a
field. It follows that K is a splitting field for the algebra KλB ∼= K⊗F F λB.

(iii) By Theorem 6.1 in [25, p. 179], KλB can be decomposed into a
direct product of mutually isomorphic simple algebras over K. Since KµB
is a simple component of KλB, the algebra KλB is K-algebra isomorphic
to KµB × · · · ×KµB.

Proposition 2.5 ([7, p. 20]). Let B be an abelian p′-group. The field K
is a splitting field for some K-algebra KλB if and only if B has a subgroup



44 L. F. BARANNYK

H such that B/H is of symmetric type and K contains a primitive mth root
of 1, where m = max{exp(B/H), expH}.

Proof. Apply Propositions 2.1, 2.2, 2.4 and Lemma 2.3.

Proposition 2.6. Let K be a finite field of characteristic p, B an abelian
p′-group, λ ∈ Z2(B,K∗) and H the λ-center of B. The field K is a splitting
field for KλB if and only if the restriction of λ to H × H is a coboundary
and K contains a primitive (expH)th root of 1.

Proof. Apply Propositions 2.1 and 2.2.

Proposition 2.7. Let B be a nilpotent p′-group. If K is a splitting field
for some twisted group algebra of B over K, then K contains a primitive qth
root of 1 for each prime q that divides |B|.

Proof. Assume that K is a splitting field for an algebra KλB and K
does not contain a primitive qth root of 1 for a certain prime q dividing |B|.
Denote by Bq the Sylow q-subgroup of B. The center of Bq contains an
element b of order q. Let {ug : g ∈ B} be a canonical K-basis of KλB
corresponding to λ. Then ub lies in the center Z of KλB. Let {f1, . . . , fs}
be a complete system of pairwise orthogonal primitive idempotents of Z.
We have ub = β1f1 + . . . + βsfs, where βj ∈ K for every j ∈ {1, . . . , s}. If
uqb = γue, γ ∈ K∗, then γ = βqj for each j. It follows that β1 = · · · = βs and
ub = β1ue. This contradiction proves that K contains a primitive qth root
of 1 for each prime q that divides |B|.

Proposition 2.8. Let B be a p′-group.

(i) If the field K is a splitting field for all twisted group algebras of B
over K, then K = Kq and K contains a primitive qth root of 1 for
each prime q that divides |B : B′|.

(ii) If K = Kq and K contains a primitive qth root of 1 for any prime
q that divides |B|, then K is a splitting field for every twisted group
algebra of B over K.

(iii) Assume that every prime divisor of |B′| is also a divisor of |B : B′|.
Then K is a splitting field for any twisted group algebra of B over
K if and only if K = Kq and K contains a primitive qth root of 1
for each prime q that divides |B|.

Proof. (i) Let B 6= B′ and q be a prime divisor of |B : B′|. Denote by
D a normal subgroup of B such that |B/D| = q. Let B̃ := B/D = 〈xD〉,
α ∈ K∗ and

KµB̃ =
q−1⊕
i=0

KvixD, vqxD = αvD.
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Denote λ = inf(µ). There exists a K-algebra homomorphism of KλB onto
KµB̃. It follows that K is a splitting field for KµB̃. Hence α = βq for some
β ∈ K∗ and K contains a primitive qth root of 1.

(ii) Denote by n the order of a cohomology class [λ] ∈ H2(B,K∗). It
is well known that n divides |B|. Arguing as in the proof of Theorem 53.3
in [14, p. 359], we show that [λ] contains a cocycle α whose order is equal
to n. By Theorem 1.3 in [21, p. 137], there exists a central group extension
1→ A→ B̂ → B → 1 such that A is a cyclic group of order n and

KB̂ ∼=
n−1∏
i=0

KαiB.

Since any prime divisor of |B̂| is also a divisor of B, the field K contains a
primitive mth root of 1, where m = exp B̂. By the Brauer theorem, K is a
splitting field for KB̂. Hence K is a splitting field for KαB.

(iii) Apply (i) and (ii).

Proposition 2.9. Let B be a p′-group. The field K is a splitting field
for all twisted group algebras of B over K if and only if there exists a finite
central group extension 1→ A→ B̂ → B → 1 such that any projective K-re-
presentation of B lifts projectively to an ordinary K-representation of B̂ and
K is a splitting field for B̂.

Proof. Assume that K is a splitting field for all twisted group algebras
of B over K. By Proposition 2.8, K∗ = (K∗)m, where m is the exponent of
B/B′. In view of Corollary 2.5 in [21, p. 142], H2(B,K∗) = H2(B, t(K∗)).
Arguing as in the proof of Theorem 2.3 in [21, p. 141], we conclude that
there exists a finite central group extension 1→ A→ B̂ → B → 1 such that
the following conditions hold:

(i) If r is the exponent of A, then K∗ contains a primitive rth root of 1.
(ii) Every projective K-representation of B lifts projectively to an ordi-

nary K-representation of B̂.

By Theorem 4.2 in [21, p. 80], KB̂ ∼=
∏
iK

λiB. It follows that K is a
splitting field for KB̂. This completes the proof of the necessity.

Let us prove the sufficiency. The group algebra KA lies in the center of
KB̂, hence K contains a primitive mth root of 1, where m is the exponent
of A. It follows, by Theorem 4.2 in [21, p. 80] and Lemma 2.1 in [21, p. 139],
that KB̂ is K-algebra isomorphic to Kσ1B × · · · ×KσrB and every algebra
KλB is isomorphic to some KσiB. Hence K is a splitting field for every
twisted group algebra of B over K.

Proposition 2.10. Let B be a p′-group. Assume that either t(K∗) =
t(K∗)q for every prime q that divides |B′|, or every prime divisor of |B′| is
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also a divisor of |B : B′|. Then K is a splitting field for any twisted group
algebra of B over K if and only if there exists a covering group B̂ of B over
K such that K is a splitting field for B̂.

Proof. Assume that K is a splitting field for any twisted group algebra
of B over K. In view of Proposition 2.8, K = Kq for each prime q dividing
|B : B′|. It follows that t(K∗) = t(K∗)q for every prime q that divides B.
Arguing as in the proof of Theorem 53.3 in [14, p. 359], we show that each
cohomology class [λ] ∈ H2(B, t(K∗)) contains a cocycle whose order is equal
to the order of [λ]. In view of Theorem 2.3 in [21, p. 140], there exists a finite
central group extension 1→ A→ B̂ → B → 1 such that A ∼= H2(B, t(K∗))
and any projective K-representation of B lifts projectively to an ordinary
K-representation of B̂. By Corollary 2.5 in [21, p. 142], we have

H2(B,K∗) ∼= H2(B, t(K∗)).

Hence B̂ is a covering group of B over K. Theorem 4.2 in [21, p. 80] yields

KB̂ ∼=
∏
i

KσiB,

since K∗ contains a primitive (expA)th root of 1. It follows that K is a
splitting field for B̂. This proves the necessity.

The sufficiency follows from Proposition 2.9.

We note that in [25] Yamazaki proved Theorem 4.2 from [21, p. 80] while
Theorem 2.3 from [21, p. 140] and Corollary 2.5 from [21, p. 142] are proved
in [26].

3. Groups of OTP projective representation type. We recall that
K is a field of characteristic p and G = Gp × B is a finite group, where Gp
is a p-group, B is a p′-group and |Gp| 6= 1, |B| 6= 1. We assume that if Gp
is non-abelian then [K(ξ) : K] is not divisible by p, where ξ is a primitive
(expB)th root of 1.

Theorem 3.1. Let G = Gp × B, s be the number of invariants of the
group Gp/G

′
p and D the subgroup of Gp such that G′p ⊂ D and D/G′p =

soc(Gp/G′p). Assume that if p 6= 2, s = i(K) + 1, |G′p| = p and D is a
non-abelian group of exponent p, then |D : Z(D)| = p2. The group G is
of OTP projective K-representation type if and only if one of the following
conditions is satisfied:

(i) s ≤ i(K) and G′p is cyclic;
(ii) s = i(K) + 1, G′p is cyclic and there exists a cyclic subgroup T of

Gp such that G′p ⊂ T and Gp/T has i(K) invariants;
(iii) K is a splitting field for some KνB.
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Proof. Suppose (ii). Let G̃p = Gp/T . There is a cocycle σ ∈ Z2(G̃p,K∗)
such that KσG̃p is a field. Let µ = inf(σ). If V := KµGp · I(T ) then V is the
radical of KµGp and KµGp/V is K-algebra isomorphic to KσG̃p. Therefore
KµGp is a uniserial algebra. Let ν ∈ Z2(B,K∗) and λ = µ × ν. In view of
Theorem 1.3, KλG is of OTP representation type.

Arguing as in the case (ii) we prove that if (i) holds, then there exists a
cocycle λ ∈ Z2(G,K∗) such that KλG is of OTP representation type.

Assume that K is a splitting field for some KνB. Let KλG = KGp ⊗K
KνB. By Theorem 1.3, KλG is of OTP representation type.

If s ≥ i(K) + 2 or G′p is non-cyclic then KµGp is not a uniserial algebra
for any µ ∈ Z2(Gp,K∗). Moreover, in the case s ≥ i(K) + 2, we have
|Gp : G′p| ≥ p2d, where

d = dimK(KµGp/radKµGp).

Let ν ∈ Z2(B,K∗) and λ = µ × ν. By Theorem 1.3, an algebra KλG is of
OTP representation type if and only if K is a splitting field for KνB.

Assume now that s = i(K) + 1, G′p = 〈c〉 and Gp does not contain a
cyclic subgroup T such that G′p ⊂ T and Gp/T has i(K) invariants. Let
H = 〈cp〉 and Gp/G′p = 〈a1G

′
p〉 × · · · × 〈asG′p〉, where |ajG′p| = pnj for every

j ∈ {1, . . . , s}. We have

ap
nj

j ∈ H for each j ∈ {1, . . . , s}.
First, we examine the case p = 2. LetNr,t be the subgroup ofG2 generated by
the elements ar, at and c, where r, t ∈ {1, . . . , s} and r 6= t. If |Nr,t : G′2| = 4
and N ′r,t = G′2, then Nr,t is metacyclic. There exists a cyclic subgroup T
of Nr,t such that G′2 ⊂ T and G2/T has i(K) invariants, a contradiction.
Hence, if |Nr,t : G′2| = 4, we have [ar, at] ∈ H and

D/H = 〈cH〉 × 〈b1H〉 × · · · × 〈bsH〉,

where bj = a2nj−1

j for every j ∈ {1, . . . , s}. Each twisted group algebra of
the group D/H over the field K is non-uniserial. Consequently, every KµG2

satisfies the Q-condition. By Lemma 1.2, the group G = G2 × B is of OTP
projective K-representation type if and only if condition (iii) holds.

Now we consider the case p 6= 2. By [5, p. 288], |D′| ≤ p. If |G′p| ≥ p2

then D/H = 〈cH〉 × 〈b1H〉 × · · · × 〈bsH〉, where

bj = ap
nj−1

j for each j ∈ {1, . . . , s}.
Arguing as in the case p = 2, we conclude that G is of OTP projective
K-representation type if and only if condition (iii) holds. Let |G′p| = p. Then
expD = p. If D is abelian then, for any µ ∈ Z2(Gp,K∗), the algebra KµD is
not uniserial. Hence in this case every KµGp satisfies the Q-condition, and
Lemma 1.2 applies. Suppose that D is non-abelian. Then |D : Z(D)| = p2
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and, for every µ ∈ Z2(Gp,K∗), the algebra KµGp/K
µGp · radKG′p is not a

field. In view of Lemma 1.7 in [8, p. 177], KµGp is not a uniserial algebra.
By Theorem 1.3, G is of OTP projective K-representation type if and only
if condition (iii) holds.

Corollary 3.2. Let G = Gp ×B and K be an arbitrary perfect field of
characteristic p. The group G is of OTP projective K-representation type if
and only if Gp is cyclic or K is a splitting field for some KνB.

Corollary 3.3. Let G = Gp×B and [K : Kp] = p. Then G is of OTP
projective K-representation type if and only if either Gp is metacyclic or K
is a splitting field for some KνB.

Corollary 3.4. Let G = Gp × B, s be the number of invariants of
Gp/G

′
p and [K : Kp] = p2. The group G is of OTP projective K-representa-

tion type if and only if one of the following conditions is satisfied:

(i) s ≤ 2 and G′p is cyclic;
(ii) s = 3 and there exists a cyclic subgroup T of Gp such that G′p ⊂ T

and Gp/T has two invariants;
(iii) K is a splitting field for some KνB.

Proof. Keep the notation of Theorem 3.1. Assume that p 6= 2, s = 3,
|G′p| = p and D is a non-abelian group of exponent p. Moreover, let D/G′p =
〈b1G′p〉×〈b2G′p〉×〈b3G′p〉, G′p = 〈c〉 and [b1, b2] = c, [b1, b3] = cr, [b2, b3] = ct,
where 0 ≤ r, t < p. Set h = bt1b

−r
2 b3. Then b1h = hb1, b2h = hb2. It follows

that Z(D) is generated by h, c. Hence |D : Z(D)| = p2. Applying Theorem
3.1, we conclude that G is of OTP projective K-representation type if and
only if one of the present conditions (i)–(iii) is satisfied.

Corollary 3.5. Let G = Gp×B and [K : Kp] =∞. The group G is of
OTP projective K-representation type if and only if either G′p is cyclic, or
K is a splitting field for some KνB.

Proposition 3.6. Let G = Gp×B be an abelian group and s the number
of invariants of Gp. The group G is of OTP projective K-representation type
if and only if one of the following conditions is satisfied:

(i) s ≤ i(K) + 1;
(ii) B has a subgroup H such that B/H is of symmetric type and K con-

tains a primitive mth root of 1, where m = max{exp(B/H), expH}.
Proof. Apply Proposition 2.5 and Theorem 3.1.

Proposition 3.7. Let Gp be an abelian p-group, s the number of invari-
ants of Gp, B a nilpotent p′-group and G = Gp×B. Assume that K does not
contain a primitive qth root of 1 for some prime q dividing |B|. The group
G is of OTP projective K-representation type if and only if s ≤ i(K) + 1.
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Proof. Apply Proposition 2.7 and Theorem 3.1.

From now on, K denotes an arbitrary field of characteristic p.

Proposition 3.8. A group G = Gp × B is of purely OTP projective
K-representation type if and only if either Gp is cyclic, or K is a splitting
field for every twisted group algebra of B over K.

Proof. Let ν ∈ Z2(B,K∗) be an arbitrary cocycle and KλG = KGp ⊗K
KνB. By Proposition 1.4, KλG is of OTP representation type if and only if
either Gp is cyclic, or K is a splitting field for KνB. Assume now that Gp is
cyclic, µ ∈ Z2(Gp,K∗) is an arbitrary cocycle and λ = µ×ν. Since the alge-
bra KµGp is uniserial, by Lemma 1.1, KλG is of OTP representation type.

Proposition 3.9. Let G = Gp × B. Assume that K = Kq and K con-
tains a primitive qth root of 1 for each prime q that divides |B|. Then G is
of purely OTP projective K-representation type.

Proof. Apply Propositions 2.8 and 3.8.

Corollary 3.10. If K is a separably closed field then every group G =
Gp ×B is of purely OTP projective K-representation type.

Proposition 3.11. Let G = Gp × B. Assume that every prime divisor
of |B′| is also a divisor of |B : B′|. The group G is of purely OTP projective
K-representation type if and only if either Gp is cyclic, or K = Kq and K
contains a primitive qth root of 1 for each prime q that divides |B|.

Proof. Again apply Propositions 2.8 and 3.8.

Theorem 3.12. A group G = Gp × B is of purely OTP projective K-
representation type if and only if either Gp is cyclic, or there exists a finite
central group extension 1 → A → B̂ → B → 1 such that any projective K-
representation of B lifts projectively to an ordinary K-representation of B̂
and K is a splitting field for B̂.

Proof. Apply Propositions 2.9 and 3.8.

Proposition 3.13. Let G = Gp×B. Assume that either t(K∗) = t(K∗)q

for any prime q dividing |B′|, or every prime divisor of |B′| is also divisor
of |B : B′|. Then G is of purely OTP projective K-representation type if and
only if either Gp is cyclic, or there exists a covering group B̂ of B over K
such that K is a splitting field for B̂.

Proof. Apply Propositions 2.10 and 3.8.
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