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A LAW OF THE ITERATED LOGARITHM FOR
GENERAL LACUNARY SERIES

BY

CHARLES N. MOORE and XIAOJING ZHANG (Manhattan, KS)

Abstract. We prove a law of the iterated logarithm for sums of the formPN
k=1 akf(nkx) where the nk satisfy a Hadamard gap condition. Here we assume that

f is a Dini continuous function on Rn which has the property that for every cube Q of
sidelength 1 with corners in the lattice Zn, f vanishes on ∂Q and has mean value zero
on Q.

1. Introduction. It has long been appreciated that the partial sums
of lacunary series exhibit many of the properties of sums of independent
random variables. This is evidenced by many results in analysis which give
central limit theorem type behavior or laws of the iterated logarithm (LILs)
for lacunary series. In this paper we will show an analysis LIL. We recall
the classical LIL of Kolmogorov [K]:

Theorem 1.1. Let Sm =
∑m

k=1Xk where {Xk} is a sequence of real-
valued independent random variables. Let sm be the variance of Sm. Suppose
sm →∞ and

|Xm|2 ≤
Kms

2
m

log log(ee + s2m)

for some sequence of constants Km → 0. Then, almost surely,

lim sup
m→∞

Sm√
2s2m log log sm

= 1.

This was first proved for Bernoulli random variables by Khintchine. In
[SZ2] Salem and Zygmund considered the case when the Xk are replaced by
functions ak cosnkx on [−π, π] and gave an upper bound (≤ 1) result; this
was extended to the full upper and lower bound by Erdős and Gál [EG].

Takahashi [T1] extends the result of Salem and Zygmund: Consider a
real measurable function f satisfying f(x + 1) = f(x),

	1
0 f(x) dx = 0, and

suppose nk is a lacunary sequence of integers, that is, there is a number q
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such that

(1.1)
nk+1

nk
> q > 1

for every k = 1, 2, . . . . Suppose that f ∈ Lipα, 0 < α ≤ 1. Then

(1.2) lim sup
N→∞

∑N
k=1 f(nkt)√
N log logN

≤ C a.e.

Several authors: Dhompongsa [D], Takahashi [T2], and Péter [P], have con-
sidered versions of this with a gap condition weaker than (1.1). Closely
related is the central limit theorem for trigonometric series due to Salem
and Zygmund [SZ1] and central limit theorems for more general lacunary
sequences of Gaposhkin [G] and Aistleitner and Berkes [AB]. In this pa-
per we will generalize the LIL of Takahashi (1.2). We will retain the gap
condition (1.1) but broaden the class of functions f.

We need to introduce some notation and terminology. Throughout, a
cube Q ⊆ Rn will be called dyadic if it has the form

Q = [k12l, (k1 + 1)2l)× · · · × [kn2l, (kn + 1)2l)

for some l, k1, . . . , kn ∈ Z; for such a cube Q we say that Q has sidelength 2l

and denote this as `(Q) = 2l. We will use the notation |Q| for the Lebesgue
measure of Q.

For m ∈ Z we let Fm denote the set of all dyadic cubes in Rn of side-
length 2−m, and F will denote the set of all dyadic cubes in Rn of side-
length ≤ 1. By a slight abuse of notation, we will also use Fm to denote
the σ-field generated by the set of all dyadic cubes in Rn of sidelength 2−m.
(The usage will be clear from the context.) For x ∈ Rn we also define
Fx = {Q+ x : Q ∈ F} and Fxm = {Q+ x : Q ∈ Fm}.

Definition 1.2. If f is a function on Rn we define the modulus of con-
tinuity ω of f as ω(f, δ) = sup{|f(x)− f(y)| : |x− y| < δ}. When f is clear
from context, we will write ω(f, δ) = ω(δ). We say that f is Dini continuous
if

(1.3)
1�

0

ω(δ)
δ

dδ <∞.

It is easy to see if the integral in (1.3) is finite, then
	c
0(ω(δ)/δ) dδ is finite

for any c > 0. In this paper we will show:

Theorem 1.3. Suppose f is a Dini continuous function on Rn with
the property that f(x) = 0 whenever any coordinate of x is an integer,
and

	
Q f(x) dx = 0 whenever Q ∈ F0. Let (nk) be a sequence of positive

numbers satisfying the lacunarity condition nk+1/nk ≥ q > 1 and (ck) be
a sequence in Rn. Then there exists a constant C, depending only on n, q,
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and the quantity
	1
0(ω(δ)/δ) dδ, such that for any sequence (ak) of numbers

with Am =
√∑m

k=1 |ak|2 →∞ as m→∞, we have

lim sup
m→∞

|
∑m

k=1 akf(nkx+ ck)|√
A2
m log logA2

m

≤ C a.e.

Notice that we do not assume the nk are integers, nor do we assume
any periodicity of f . We do not know the best possible value of C in this
inequality.

Corollary 1.4. Suppose f(x) is a Dini continuous function on R satis-
fying f(x+ 1) = f(x) and

	1
0 f(x) dx = 0. Then with nk, ak and ck as in the

theorem,

lim sup
m→∞

|
∑m

k=1 akf(nkx+ ck)|√
A2
m log logA2

m

≤ C a.e.

Proof. The conditions on f imply that there exists a c ∈ [0, 1] with
f(c) = 0. Then f(c+m) = 0 for every integer m. Consider g(x) = f(x+ c);
this satisfies the hypotheses of the theorem.

The proof of the theorem will use a reduction to dyadic martingales.
This is not the first time such a theorem has been proved using martingale
techniques (e.g. see Péter [P]), but the approach here is very different. In
Section 2 we will collect some definitions and lemmas which will be used to
prove the theorem in Section 3.

2. Some lemmas

Lemma 2.1. Let n1 < n2 < · · · be an infinite sequence of positive num-
bers satisfying the lacunarity condition nk+1/nk ≥ q > 1, k = 1, 2, . . . . If
0 < α < β then

(2.1)
∑

α≤nk≤β
1 ≤ log(βq/α)

log q
.

Proof. Let k0 be defined by the inequality nk0 < α ≤ nk0+1 (put n0 = 0)
and i ≥ 0 be defined by the inequality nk0+i ≤ β < nk0+i+1. If i = 0 then
(2.1) is true. If i ≥ 1 then we have β ≥ nk0+i ≥ qi−1nk0+1 ≥ qi−1α. Hence
βq/α ≥ qi and (2.1) follows immediately.

Lemma 2.2. Suppose k ≥ 1 and 2k−1 ≤ nk < 2k. For any cube J ⊂ Rn

with `(J) = 1/nk, there exists a unique dyadic cube Q of sidelength 1/2k

which contains the center of J . Consequently, J ⊆ Q̃ where Q̃ is concentric
with Q and `(Q̃) = 3`(Q).

Proof. Because the dyadic cubes of sidelength 1/2k are disjoint and
cover Rn, there is a unique cube Q with `(Q) = 1/2k containing the center
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of J. Let cJ and cQ denote the centers of J and Q respectively. Then if
x ∈ J ,

|x− cQ| ≤ |x− cJ |+ |cJ − cQ| ≤
√
n

2 · 2k−1
+
√
n

2 · 2k
=

3
√
n

2 · 2k
,

and hence J ⊂ Q̃.

The following is from Chang, Wilson and Wolff [CWW], where we refer
the reader for the proof.

Lemma 2.3. There is a positive integer N , x1, . . . , xN ∈ Rn and disjoint
subsets Bj of F such that{

Q ∈ F : `(Q) ≤ 1
8

}
=

N⋃
j=1

Bj

and

• if Q ∈ Bj, then Q̃ ⊆ Q′ for a unique Q′ ∈ Fxj with `(Q′) = 8`(Q);
• if Q1, Q2 ∈ Bj and Q1 6= Q2, then Q′1 6= Q′2.

Lemma 2.4. Let J be a cube in Rn and let χJ(x) denote the indicator
function of J. Suppose f is a function which vanishes on ∂J. Then

sup
|x−y|≤δ

|f(x)χJ(x)− f(y)χJ(y)| ≤ sup
|x−y|≤δ

|f(x)− f(y)|.

Consequently, ω(χJf, δ) ≤ ω(f, δ) and χJf is Dini continuous if f is.

Proof. Suppose x, y ∈ Rn with |x − y| ≤ δ. If x 6∈ J and y 6∈ J , or if
both x, y ∈ J , then we easily obtain |f(x)χJ(x) − f(y)χJ(y)| ≤ ω(f, δ). If
x ∈ J but y 6∈ J , then choose z = tx+ (1− t)y, t ∈ [0, 1], with z ∈ ∂J. Then
f(z) = 0 whenever |z − x| ≤ δ, and so

|f(x)χJ(x)− f(y)χJ(y)| = |f(x)− 0| = |f(x)− f(z)| ≤ ω(f, δ).

Lemma 2.5. If f is Dini continuous then for any c > 0,
∞∑
l=1

ω(c2−l) ≤ 2
c�

0

ω(δ)
δ

dδ.

Proof. Indeed,

c�

0

ω(δ)
δ

dδ =
∞∑
l=0

c/2l�

c/2l+1

ω(δ)
δ

dδ ≥
∞∑
l=0

c/2l�

c/2l+1

ω(c/2l+1)
c/2l

dδ =
1
2

∞∑
l=1

ω(c2−l).

Lemma 2.6. Let Q be a dyadic cube in Rn and let Q(l), l = 1, . . . , 2n,
be the dyadic subcubes of Q obtained by bisecting the edges of Q. Suppose f
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is Dini continuous on Q with modulus of continuity ω. Then for each l,∣∣∣∣ 1
|Q(l)|

�

Q(l)

f(y) dy − 1
|Q|

�

Q

f(y) dy
∣∣∣∣ ≤ ω(

√
n `(Q)).

Proof. Without loss of generality take l = 1. Then∣∣∣∣ 1
|Q(1)|

�

Q(1)

f(y) dy − 1
|Q|

�

Q

f(y) dy
∣∣∣∣

=
∣∣∣∣ 1
|Q(1)|

�

Q(1)

f(y) dy −
2n∑
k=1

1
2n|Q(k)|

�

Q(k)

f(y) dy
∣∣∣∣

=
∣∣∣∣ 1
2n|Q(1)|

2n∑
k=1

�

Q(1)

f(y) dy −
�

Q(k)

f(y) dy
∣∣∣∣ ≤ ω(

√
n `(Q)).

Definition 2.7. Suppose Q ∈ F0. A dyadic martingale on Q is a se-
quence {gm}∞m=0 of integrable functions on Q such that each gm is Fm
measurable and gm = E(gm+1|Fm) for every m. Here E(gm+1|Fm) de-
notes the conditional expectation: E(gm+1|Fm)(x) = (1/|Q|)

	
Q gm+1 dy if

x ∈ Q ∈ Fm. For k ≥ 1, set dk = gk − gk−1, and we also define the square
function Sfm = (

∑m
k=1E(d2

k|Fk−1))1/2.

Lemma 2.8 (Upper half LIL for dyadic martingales). If fm is a dyadic
martingale on Q then

lim sup
m→∞

|fm|√
2(Sfm)2 log log(Sfm)

≤ 1

almost surely on the set where S(fm)→∞.
Lemma 2.8 is a special case of a much more general martingale LIL due

to Stout [S]. We only need this version, which is much simpler to show. (See
[CWW, Corollary 3.2], for a proof.)

3. The proof of the theorem. According to Lemma 2.1, we can as-
sume that for each k ≥ 1, there exists exactly one nk with 2k−1 ≤ nk <
2k. We may also assume that a1 = a2 = 0. For m ≥ 1, let fm(x) :=∑m+2

k=3 akf(nkx+ ck).
For k = 1, 2, . . . , define Gk as the set of cubes in Rn of the form[
−ck1 + l1

nk
,
−ck1 + l1 + 1

nk

)
× · · · ×

[
−ckn + ln

nk
,
−ckn + ln + 1

nk

)
,

where ck = (ck1, . . . , ckn), and l1, . . . , ln are in Z. Then f(nkx+ ck) vanishes
on ∂J for each J ∈ Gk. Note that Rn is covered by a disjoint union of cubes
in Gk.
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For a cube Q ∈ Fk, of sidelength `(Q) = 1/2k, define

(3.1)

λQ(x) =
{
akf(nkx+ ck)χJ(x) if Q contains the center of a cube J ∈ Gk,
0 otherwise.

Note that each Q ∈ Fk contains the center of at most one J ∈ Gk and that
some cubes Q ∈ Fk may not contain the center of any cube in Gk, in which
case λQ = 0. By Lemma 2.2, suppλQ ⊆ Q̃. Apply Lemma 2.3 to decompose
F into the disjoint families Bj .

For 1 ≤ j ≤ N , and for each Q ∈ Fxj , let

f
(j)
Q (x) =

{
λQ0(x) if Q = Q′0 for some Q0 ∈ Bj ,
0 otherwise.

Then for all Q ∈ Fxj ,

(3.2) supp f (j)
Q ⊆ Q

and

(3.3)
�

Q

f
(j)
Q (x) dx = 0.

We then define

(3.4) Λ(j)
m (x) =

∑
Q∈Bj

2−m−2≤`(Q)≤2−3

λQ(x) =
∑

Q∈Fxj

2−m+1≤`(Q)≤1

f
(j)
Q (x),

so that with this notation

(3.5) fm(x) =
N∑
j=1

Λ(j)
m (x) =

N∑
j=1

∑
Q∈Bj

2−m−2≤`(Q)≤2−3

λQ(x).

Define dyadic martingales g(j) ={g(j)
m }∞m=0 by g(j)

m =E(Λ(j)
m |F

xj
m ), m≥1,

and g
(j)
0 = 0. To see that g(j) is a martingale, note that

E(g(j)
m+1|F

xj
m ) = E(Λ(j)

m+1|F
xj
m ) = E(Λ(j)

m |F
xj
m ) +

∑
Q∈Fxj : `(Q)=2−m

E(f (j)
Q |F

xj
m )

and the terms in the sum vanish due to (3.2) and (3.3). This is a small
abuse of terminology, because the g(j) are defined on all of Rn, which is not
a probability space. However, the restriction of g(j) to each cube Q ∈ Fxj

of sidelength 1 is a martingale on the probability space Q, and Rn can be
exhausted by a countable number of such cubes.

For x ∈ Rn, let us denote by Q
xj
m (x) the unique dyadic cube of side-

length 2−m in Fxj containing x. Then, using (3.5), the definition of the g(j),
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and (3.4), we have∣∣∣fm(x)−
N∑
j=1

g(j)
m (x)

∣∣∣ ≤ N∑
j=1

∑
Q∈Fxj

2−m+1≤`(Q)≤1

|f (j)
Q (x)− E(f (j)

Q |F
xj
m )(x)|

≤
N∑
j=1

∑
Q∈Fxj

2−m+1≤`(Q)≤1

1
|Qxj

m (x)|

�

Q
xj
m (x)

|f (j)
Q (x)− f (j)

Q (y)| dy.

If `(Q) = 2−k, k ≤ m− 1, and y ∈ Qxj
m (x), then by the definition of f (j)

Q ,

and that of λQ in (3.1), and by Lemma 2.4,

|f (j)
Q (x)− f (j)

Q (y)| ≤ |ak+3|ω(nk+3

√
n `(Qxj

m (x))).

Thus,∣∣∣fm(x)−
N∑
j=1

g(j)
m (x)

∣∣∣ ≤ N∑
j=1

m−1∑
k=0

|ak+3|ω(nk+3

√
n `(Qxj

m (x)))

≤
N∑
j=1

m+2∑
k=3

|ak|ω
(√

n
2k

2m

)
= N

m+2∑
k=3

|ak|ω
(

8
√
n

2k−3

2m

)

≤ N
(m+2∑
k=3

|ak|2
)1/2

(m+2∑
k=3

ω

(
8
√
n

2k−3

2m

)2)1/2

= CAm+2,

where for the last inequality we have used Lemma 2.5.
We now estimate the square functions of the martingales g(j)

k . For 1 ≤
j ≤ N , let d(j)

k = |g(j)
k − g

(j)
k−1|, k = 1, 2, . . . . Then, using Lemma 2.6,

|d(j)
k (x)| = |E(Λ(j)

k |F
xj

k )(x)− E(Λ(j)
k−1|F

xj

k−1)(x)|

= |E(Λ(j)
k |F

xj

k )(x)− E(Λ(j)
k |F

xj

k−1)(x)|

=
∣∣∣∣ 1
|Qxj

k (x)|

�

Q
xj
k (x)

Λ
(j)
k (y) dy − 1

|Qxj

k−1(x)|

�

Q
xj
k−1(x)

Λ
(j)
k (y) dy

∣∣∣∣
≤

∑
Q∈Fxj

2−k+1≤`(Q)≤1

∣∣∣∣ 1
|Qxj

k (x)|

�

Q
xj
k (x)

f
(j)
Q (y) dy − 1

|Qxj

k−1(x)|

�

Q
xj
k−1(x)

f
(j)
Q (y) dy

∣∣∣∣
≤

k−1∑
l=0

|al+3|ω(nl+3

√
n `(Qxj

k (x))) ≤
k+2∑
l=3

|al|ω
(√

n
2l

2k

)
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≤
(k+2∑
l=3

|al|2ω
(

8
√
n

2l−3

2k

))1/2(k+2∑
l=3

ω

(
8
√
n

2l−3

2k

))1/2

≤M
(k+2∑
l=3

|al|2ω
(

8
√
n

2l−3

2k

))1/2

.

Then

(Sg(j)
m (x))2 =

m∑
k=1

E((d(j)
k )2|Fk−1) ≤M2

m∑
k=1

k+2∑
l=3

|al|2ω
(

8
√
n

2l−3

2k

)

≤M2
m+2∑
l=3

|al|2
m∑

k=l−2

ω

(
8
√
n

2l−3

2k

)
≤M2M

m+2∑
l=3

|al|2

= M3A2
m+2.

Therefore,

lim sup
m→∞

|
∑m+2

k=1 akf(nkx+ ck)|√
A2
m+2 log logA2

m+2

≤ lim sup
m→∞

|fm(x)−
∑N

j=1 g
(j)
m (x)|√

A2
m+2 log logA2

m+2

+ lim sup
m→∞

∑N
j=1 |g

(j)
m (x)|√

A2
m+2 log logA2

m+2

≤ lim sup
m→∞

C√
log logA2

m+2

+
N∑
j=1

lim sup
m→∞

|g(j)
m (x)|√

A2
m+2 log logA2

m+2

=
N∑
j=1

lim sup
m→∞

|g(j)
m (x)|√

A2
m+2 log logA2

m+2

.

For j fixed,

lim sup
m→∞

|g(j)
m (x)|√

(Sg(j)
m (x))2 log log(Sg(j)

m (x))2
≤
√

2

almost surely on the set {Sg(j)
m (x) → ∞} by Lemma 2.8. But then, for

such x, (Sg(j)
m (x))2 ≤M3A2

m+2 and hence

lim sup
m→∞

|g(j)
m (x)|√

A2
m+2 log logA2

m+2

≤ C

almost surely on this set. Because {Sg(j)
m (x) is bounded} = {|g(j)

m (x)| is
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bounded} almost surely (see [BG]),

lim sup
m→∞

|g(j)
m (x)|√

A2
m+2 log logA2

m+2

= 0

almost surely on the set {Sg(j)
m (x) is bounded} and we obtain the conclusion

of the theorem.
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