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GENERALIZED RIESZ PRODUCTS PRODUCED FROM
ORTHONORMAL TRANSFORMS

BY

NIKOLAOS ATREAS (Thessaloniki) and ANTONIS BISBAS (Kozani)

Abstract. Let Mp = {mk}p−1
k=0 be a finite set of step functions or real valued

trigonometric polynomials on T = [0, 1) satisfying a certain orthonormality condition.
We study multiscale generalized Riesz product measures µ defined as weak-∗ limits of
elements µN ∈ VN (N ∈ N), where VN are pN -dimensional subspaces of L2(T) spanned
by an orthonormal set which is produced from dilations and multiplications of elements
of Mp and

⋃
N∈N VN = L2(T). The results involve mutual absolute continuity or sin-

gularity of such Riesz products extending previous results on multiscale Riesz prod-
ucts.

1. Introduction. Riesz products provide a strong tool for the con-
struction of singular measures on compact Abelian groups. In 1918 F. Riesz
proved that the pointwise limit of the sequence of functions

(1.1) fN (x) =

x�

0

N∏
n=1

(1 + cos(2π4nγ)) dγ

is a continuous function f of bounded variation on T whose Fourier–Stieltjes
coefficients do not vanish at infinity. Hereafter we denote by T the quo-
tient R/Z. We identify elements of the space L2(T) with 1-periodic functions
over R. The space L2(T) is equipped with the usual inner product 〈·, ·〉L2

and norm ‖ · ‖L2 . Also we denote by ‖ · ‖∞ the norm in the space of all
measurable essentially bounded functions on T.

Over the years Riesz’s original construction was broadened and many
examples of measures with desired properties were produced. Let us briefly
discuss the basic modifications and extensions of (1.1). A. Zygmund [16] in-
troduced a bounded sequence {aj}j∈N of coefficients and a sequence {λj}j∈N
of scales and he proved that the sequence

µN (γ) =

N∏
j=1

(1 + aj cos(2πλjγ))

2010 Mathematics Subject Classification: Primary 42A55; Secondary 42C10.
Key words and phrases: generalized Riesz products, multiscale transforms.

DOI: 10.4064/cm126-2-1 [141] c© Instytut Matematyczny PAN, 2012



142 N. ATREAS AND A. BISBAS

converges to a measure µ in the weak-∗ topology of the Banach algebraM(T)
of all bounded measures on T. In addition a characterization of mutual abso-
lute continuity or singularity of two such measures was established according
to whether the sequence {aj}j∈N was square summable or not. This was the
first of the so-called dichotomy results (see [5, 15] and references therein).
Another basic modification of (1.1) was to replace the generator function
cos(2πγ) with another generator function [2, 3, 10, 11].

If the sequence {λj} of scales satisfies λj = pj for some p ≥ 2 and if
H : T → R is a bounded function satisfying

	
TH(γ) dγ = 0 then we may

define partial multiscale Riesz polynomials by

(1.2) µN (γ) =
N−1∏
j=0

(1 + ajH(pjγ)),

provided that {aj}j∈N is a sequence in R such that 1 + ajH(γ) ≥ 0 for
any γ ∈ T. In this direction the authors of [2] worked with real valued step

functions H =
∑p−1

k=0 ak1[k/p,(k+1)/p) satisfying a0 + · · · + ap−1 = 0, where

1A is the characteristic function of a subset A of the real line. In this case
weak-∗ convergence of µN is obtained from the property that the span of

the set {1[k/pN ,(k+1)/pN )(·)}
pN−1
k=0 is dense in L2(T) for sufficiently large N .

For a more general selection of H, weak-∗ convergence of (1.2) is established
under an additional lacunarity assumption; see also [13] and [4] for related
dichotomy results.

Definition (1.2) establishes a bridge between Riesz products and cer-
tain multiscale constructions, like wavelets. In [9] certain measures were
induced by representations of the Cuntz relations and proved to dictate
the wavepacket analysis in L2(R), whereas in [7] Riesz products were con-
structed as a by-product of a multiresolution analysis on L2(R, (dx)s), where
(dx)s is the Hausdorff measure. In [1] Haar-type Riesz products were con-
structed from properly selected dilation and translation operators on ma-
trices.

Notice that we can use more than one generator to construct Riesz prod-
ucts. In this case we talk about generalized Riesz products. In [6, 8, 14]
trigonometric generalized Riesz product measures

dρ(γ) =
( ∞∏
j=1

Pmj (λjγ)
)
dγ

were studied, where Pm(γ) =
∑
|k|<m cm,ke

ikγ is a positive trigonometric

polynomial supported in Ij = {mλj : |m| < mj} and Ij is a dissociate
sequence in the sense that every integer m admits at most one decomposition
as a sum

∑
jmj , mj ∈ Ij and mj = 0 for all but a finite number of j’s. We
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mention here the important role of the trigonometric system {e2πinγ}n∈Z
(which is an orthonormal basis of L2(T)) for establishing convergence and
dichotomy results in this direction.

Motivated by the aforementioned works on multiscale Riesz product mea-
sures (especially [2]) and trigonometric generalized Riesz product measures,
in this paper we construct multiscale generalized Riesz product measures

(1.3) dµ(γ) =
( ∞∏
j=0

( p−1∑
k=0

cj,kmk(p
jγ)
))

dγ

as a by-product of an orthonormal transform on L2(T). Here the functions
mk are assumed to be either step functions or real valued trigonometric
polynomials on T satisfying a certain orthonormality condition (see (2.1)

for details) and c = {cj = {cj,k}p−1k=0 : j ∈ N} is a sequence in Rp with a
certain bound.

In Section 2 we use the above functions mk as generators of an or-
thonormal basis of L2(T) produced from dilations and multiplications of
the generators mk and we obtain a multiscale analysis of L2(T) which is
reminiscent of (although different from) a multiresolution analysis of L2(T).
In other words we construct a nested sequence {VN}N∈N, VN ⊂ VN+1, of
pN -dimensional subspaces of L2(T) so that each VN is the span of an or-
thonormal set produced from dilations and multiplications of the generators
mk and

⋃
N∈N VN = L2(T). In Section 3 we define our generalized Riesz

product measures (1.3) as weak-∗ limits of elements µN ∈ VN . Based on this
interpetation we use the results of Section 2 to obtain statements involving
weak-∗ convergence, continuity and mutual absolute continuity or singular-
ity of such measures. Finally in Section 4 we present examples which show
that our construction extends previous work on multiscale Riesz products
[2] to a richer family of measures.

2. On a class of orthonormal transforms on L2(T). Let p ≥ 2 be
a natural number andMp = {mk : k = 0, . . . , p− 1} be a set of measurable
functions on T such that for almost every γ in T with respect to the Lebesgue
measure we have

(2.1)
1

p

p−1∑
j=0

mr

(
γ + j

p

)
ms

(
γ + j

p

)
= δr,s, r, s = 0, . . . , p− 1,

where δr,s is the Kronecker delta. A straightforward consequence of (2.1)
is that Mp is an orthonormal set in L2(T). This orthonormality condition
on Mp usually appears in subband coding schemes and wavelet analysis.
Indeed if (2.1) holds then a multiresolution analysis of L2(R) can be obtained
(see [7]).
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For eachMp as above and for any i ∈ N we define a new set of functions
on T by

(2.2) m̃k(γ) =
i−1∏
j=0

m
ε
(k)
j

(pjγ), k = 0, . . . , pi − 1,

where k = (ε
(k)
i−1 . . . ε

(k)
0 )p is the unique expression of k in base p, i.e. k =∑i−1

j=0 ε
(k)
j pj and ε

(k)
j ∈ {0, . . . , p− 1} are the digits of k in base p.

Lemma 1. For any i ∈ N the set Mp,i = {m̃k}p
i−1
k=0 is orthonormal in

L2(T).

Proof. Let

Sj : L2(T)→ L2(T), Sjf(γ) = mj(γ)f(pγ).

Then (2.1) implies that S∗jSl = δl,jI, where S∗j is the adjoint operator of Sj
and I is the identity operator (see the proof of Lemma 2.1 in [9]). Therefore
if k, l = 0, . . . , pi − 1 and m̃k, m̃l are as in (2.2) then

〈m̃k, m̃l〉L2 =
〈
(S
ε
(k)
0

S
ε
(k)
1

. . . S
ε
(k)
i−2

)m
ε
(k)
i−1

, (S
ε
(l)
0

S
ε
(l)
1

. . . S
ε
(l)
i−2

)m
ε
(l)
i−1

〉
L2

=
〈
(S∗
ε
(l)
i−2

S∗
ε
(l)
i−3

. . . S∗
ε
(l)
0

S
ε
(k)
0

S
ε
(k)
1

. . . S
ε
(k)
i−2

)m
ε
(k)
i−1

,m
ε
(l)
i−1

〉
L2

= δ
ε
(k)
0 ,ε

(l)
0

. . . δ
ε
(k)
i−2,ε

(l)
i−2

〈
m
ε
(k)
i−1

,m
ε
(l)
i−1

〉
L2
.

Since the set Mp is orthonormal, the proof is complete.

From now on we write Ωj,N for the p-adic intervals [j/pN , (j + 1)/pN
)
,

j = 0, . . . , pN − 1. The space of all real valued step functions with constant
values on Ωj,1 (j = 0, . . . , p − 1) will be denoted by Sp. Also for odd p we
define Tp = {

∑
|n|≤(p−1)/2 ane

2πinγ : an ∈ C}, the space of all trigonometric

polynomials of order ≤(p− 1)/2.

Definition 1. Let Mp = {mk}p−1k=0 be a set of real valued functions
satisfying (2.1) and let Sp, Tp be as above. If m0 = 1T and if Mp ⊂ Sp or
Mp ⊂ Tp then we say that Mp is an admissible set.

Note 1. The term admissible set is borrowed from [2, Def. 4].

Example 1. Let U = {Uk,j : k, j = 0, . . . , p− 1} be a p× p matrix over
R such that the matrix (1/

√
p)U is orthonormal and the first row of U is

constant with entries U0,j = 1 for any j = 0, . . . , p−1. Then (2.1) holds and
the functions

(2.3) mk =

p−1∑
j=0

Uk,j1Ωj,1 , k = 0, . . . , p− 1,

form an admissible set.
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Example 2. Let p be an odd number and U = {Uk,j : k, j = 0, . . . , p−1}
be a p× p unitary matrix whose first row satisfies U0,j = 1 for j = (p− 1)/2
and U0,j = 0 otherwise. Then the set Mp defined by

mk(γ) =

p−1∑
j=0

Uk,je
2πi(j−(p−1)/2)γ

is admissible provided that the elements mk are real valued. For p = 3 and

U =

 0 1 0

1/
√

2 0 1/
√

2

−i/
√

2 0 i/
√

2

 ,

we obtain the admissible set M3 = {1,
√

2 cos(2πγ),
√

2 sin(2πγ)}.
Proposition 1. Let Mp be an admissible set as above and {Vi}i∈N,

Vi ⊂ Vi+1, be a nested sequence of pi-dimensional subspaces of L2(T) spanned
by the orthonormal sets Mp,i as in Lemma 1. Then

⋃
i∈N Vi = L2(T).

Proof. Let N ∈ N. Clearly
⋃N
i=1 Vi = VN . First we consider the case

Mp ⊂ Sp. Then m̃k, k = 0, . . . , pN − 1, are step functions with constant
values on Ωj,N (j = 0, . . . , pN − 1) and from Lemma 1 we deduce that they
form an orthonormal set in SpN . In other words, VN coincides with SpN .
Since for large N the space SpN is dense in L2(T), the proof is complete. If
Mp ⊂ Tp then it is easy to see that VN coincides with the space TpN (of all

trigonometric polynomials of order (pN − 1)/2), so
⋃
N∈N VN = L2(T).

Remark 1. Proposition 1 enables us to build multiscale transforms
on L2(T) from admissible sets Mp based on a dilation operator Dp :
L2(T) → L2(T), Dpf(γ) = f(pγ), and a set of multiplication operators
Ti : L2(T) → L2(T), Tif(γ) = mi(γ)f(γ), i = 0, . . . , p − 1. Indeed the ba-
sis elements m̃k of the pi+1-dimensional space Vi+1 result from the basis
elements of the coarse space Vi by

m̃k(γ) =

i∏
j=0

m
ε
(k)
j

(pjγ) = m
ε
(k)
0

(γ)

i∏
j=1

m
ε
(k)
j

(pjγ)

= m
ε
(k)
0

(γ)m̃[k/p](pγ) = (T
ε
(k)
0

Dp)m̃[k/p](γ), k = 0, . . . , pi+1 − 1,

where [x] is the floor of a real number x. Observe that the difference from
a multiresolution analysis of L2(T) is the use of multiplication operators Ti
instead of the usual translation operator.

3. Generalized Riesz products produced from admissible sets.
In this section we produce a class of generalized Riesz product measures
dµ(γ) = (

∏
j≥0 fj(p

jγ)) dγ, where the functions fj are linear combinations
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of elements in a certain admissible set Mp and dγ is the usual Lebesgue
measure on T (see Definition 2 and Theorem 1 below for details). Also we
give a characterization of mutual absolute continuity or singularity of two
such measures.

Let BR = {d = {d0, . . . , dp−1} : ‖d‖2 ≤ R} be the closed R-disk in Rp.

Definition 2. Let Mp = {mk}p−1k=0 be an admissible set as above and

c = {cj = {cj,k}p−1k=0}j∈N be a sequence in BR for some R <
√
p such that

cj,0 = 1 and
∑p−1

k=0 cj,kmk(γ) ≥ 0 for any j ∈ N and γ ∈ T. For any N ∈ N
we call the function

(3.1) µN (γ) =

N−1∏
j=0

( p−1∑
k=0

cj,kmk(p
jγ)
)

a partial generalized Riesz polynomial with respect to the pair (Mp, c).

Lemma 2. Let µN be a partial generalized Riesz polynomial with respect

to a pair (Mp, c) and Mp,N = {m̃k}p
N−1
k=0 be as in Lemma 1. Then:

(i) µN (γ) =
∑pN−1

k=0 bkm̃k(γ), where bk =
∏N−1
j=0 c

j,ε
(k)
j

. In other words

µN ∈ VN , where VN is defined in Proposition 1.
(ii) Let N,M ∈ N with N < M . Fix 0 ≤ s ≤ N . Then for any 0 ≤ i < ps

we have

�

Ωi,s

(M−1∏
j=N

( p−1∑
k=0

cj,kmk(p
jγ)
))

dγ =
1

ps
.

Proof. (i) Direct calculation from (3.1) taking into account (2.2).

(ii) Let N,M and s be as above. Using (i) we have

M−1∏
j=N

( p−1∑
k=0

cj,kmk(p
j−sγ)

)
=

M−1−s∏
j=N−s

( p−1∑
k=0

ds(j, k)mk(p
jγ)
)

=
∑

l∈Is,N,M

bs(l)m̃l(γ),

where ds(j, k) = cj+s,k, bs(l) =
∏M−1−s
j=0 ds(j, ε

(l)
j ) =

∏M−1
j=N c

j,ε
(l)
j−s

and

Is,N,M = {0 ≤ l ≤ pM−1−s : l = (ε
(l)
M−1−s, . . . , ε

(l)
N−s, 0, . . . , 0)}. Since

m̃0(γ) = 1T(γ) and Mp,M−1−s is orthonormal we have

〈m̃0, m̃l〉L2 =
�

T

m̃l(γ) dγ = 0
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for all l 6= 0. Therefore

�

Ωi,s

(M−1∏
j=N

( p−1∑
k=0

cj,kmk(p
jγ)
))

dγ =
1

ps

�

T

(M−1∏
j=N

( p−1∑
k=0

cj,kmk(p
j−sγ)

))
dγ

=
1

ps

�

T

( ∑
l∈Is,N,M

bs(l)m̃l(γ)
)
dγ =

bs(0)

ps
=

1

ps

(recall that cj,0 = 1, see Def. 2).

Theorem 1. The sequence {µN}N∈N of partial generalized Riesz poly-
nomials with respect to a pair (Mp, c) converges weak-∗ to a continuous
probability measure

dµ(γ) =
( ∞∏
j=0

( p−1∑
k=0

cj,kmk(p
jγ)
))

dγ

called the generalized Riesz product measure associated with the pair (Mp, c).

Proof. Let f be a continuous function on T. We shall prove that
{
	
T f(γ)µN (γ) dγ} is a Cauchy sequence in C. For any ε > 0 we can find

a 1-Lipschitz continuous function h such that ‖f − h‖∞ < ε/2. If we take
N = 0 in Lemma 2(ii) we see that ‖µM‖L1 =

	
T µM (γ) dγ = 1 for any

M ∈ N and so if µ exists then µ(T) = 1. Using these observations and the
above selection of h, for any N,M ∈ N with N < M we have∣∣∣ �

T

f(γ)(µM (γ)− µN (γ)) dγ
∣∣∣ < ε+

∣∣∣ �
T

h(γ)(µM (γ)− µN (γ)) dγ
∣∣∣.

Let PN be the orthogonal projection from L2(T) to VN as in Proposition 1.
Then for the above h and for any ε′ > 0 we can find a sufficiently large
N such that ‖PNh − h‖∞ < ε′/2 pointwise on T (recall that PNh is either
a step function if Mp ⊂ Sp or a trigonometric polynomial if Mp ⊂ Tp).
Therefore�

T

h(γ)(µM (γ)− µN (γ)) dγ =
�

T

(h(γ)− PNh(γ))(µM (γ)− µN (γ)) dγ

+
�

T

PNh(γ)(µM (γ)− µN (γ)) dγ.

The first term on the right hand side is bounded by ε′, while the second

term vanishes, because by Lemma 2(i) we have µM − µN =
∑pM−1

k=pN
bkm̃k

and so µM − µN ∈ V ⊥N . Therefore µ converges weak-∗.

For the continuity of µ take a sufficiently large N and consider an el-
ement γ0 ∈ T. Obviously γ0 belongs to a p-adic interval Ωi,N for some
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i = 0, . . . , pN − 1. Using Lemma 2(ii) (for s = N) we compute

µ({γ0}) ≤ µ(Ωi,N ) = lim
M

�

Ωi,N

µM (γ) dγ(3.2)

≤ ‖µN‖∞ lim
M

�

Ωi,N

(M−1∏
j=N

( p−1∑
k=0

cj,kmk(p
jγ)
))
dγ =

‖µN‖∞
pN

.

From (2.1) we deduce that the matrix

M(γ) =

{
1
√
p
mk

(
γ + j

p

)}p−1
k,j=0

is unitary for a.e. γ in T and so M∗(γ)M(γ) = Ip, where M∗(γ) is the

Hermitian transpose of M(γ). Hence
∑p−1

k=0

∣∣mk

(γ+j
p

)∣∣2 = p for any j =

0, . . . , p − 1 and for a.e. γ in T, or equivalently
∑p−1

k=0 |mk(γ
′)|2 = p for a.e.

γ in T.

Now we apply the Cauchy–Schwarz inequality and the above estimate
to get ‖µN‖∞ ≤ (R

√
p)N , where R is as in Definition 2. Indeed,

|µN (γ)| =
N−1∏
j=0

∣∣∣ p−1∑
k=0

cj,kmk(p
jγ)
∣∣∣ ≤ N−1∏

j=0

(R
√
p) = (R

√
p)N .

Substituting this estimate in (3.2) we obtain µ({γ0}) ≤ (R/
√
p)N → 0

because R <
√
p by assumption (see Def. 2). Therefore µ is continuous.

In order to prove that two generalized Riesz product measures as above
are mutually singular we need the following

Lemma 3. Let dµ(γ) = (
∏∞
j=0(

∑p−1
k=0 cj,kmk(p

jγ))) dγ be a generalized

Riesz product measure as in Theorem 1. Then:

(i) For any j ∈ N we have
	
Tmk(p

jγ) dµ = cj,k, k = 0, . . . , p− 1.

(ii) If j, j′ ∈ N and j 6= j′ we have
	
Tmk(p

jγ)mk′(p
j′γ) dµ = cj,kcj′,k′

for k, k′ = 0, . . . , p− 1.

Proof. (i) Fix j ∈ N and take M > j. Then for any k = 0, . . . , p− 1,

�

T

mk(p
jγ) dµ = lim

M

�

T

m̃kpj (γ)µM (γ) dγ = lim
M

pM−1∑
i=0

bi
�

T

m̃kpj (γ)m̃i(γ) dγ

= bkpj‖m̃kpj‖22 = bkpj = cj,k

(recall (2.2) and use Lemma 2(i)).
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(ii) Take M > max{j, j′}. Since j 6= j′ we have mk(p
jγ)mk′(p

j′γ) =
m̃kpj+k′pj′ (γ) and so we work as above to obtain
�

T

mk(p
jγ)mk′(p

j′γ) dµ = bkpj+k′pj′‖m̃kpj+k′pj′‖
2
2 = bkpj+k′pj′ = cj,kcj′,k′ .

Theorem 2. Let µ, ν be continuous generalized Riesz product measures
with respect to (Mp, c) and (Mp,d) respectively. If there exists at least one
index 1 ≤ k0 ≤ p− 1 such that

(3.3)
∑
j∈N
|cj,k0 − dj,k0 |2 =∞,

then µ and ν are mutually singular.

Proof. We modify the proof in [12, pp. 68–69] (see also [15]). Take ε > 0
and select M ∈ N such that M > 1/ε. By (3.3) we can find a natural number

n0 such that for any N > n0 we have zN =
∑N−1

j=0

∑p−1
k=1 |cj,k − dj,k|

2 > M .

Set qj,k = (cj,k − dj,k)/zN . Then
∑N−1

j=0

∑p−1
k=1 qj,k(cj,k − dj,k) = 1 and

(3.4)
N−1∑
j=0

p−1∑
k=1

|qj,k|2 <
1

M
< ε.

Now we define

fN (γ) =

N−1∑
j=0

p−1∑
k=1

qj,k(mk(p
jγ)− cj,k),

hN (γ) =
N−1∑
j=0

p−1∑
k=1

qj,k(mk(p
jγ)− dj,k),

and compute
�

T

|fN (γ)|2 dµ

=

N−1∑
j,j′=0

p−1∑
k,k′=1

qj,kqj′,k′
�

T

(mk(p
jγ)− cj,k)(mk′(p

j′γ)− cj′,k′) dµ

=
N−1∑
j=0

p−1∑
k,k′=1

qj,kqj,k′
�

T

(mk(p
jγ)− cj,k)(mk′(p

jγ)− cj′,k′) dµ

+
N−1∑

j,j′=0,j 6=j′

p−1∑
k,k′=1

qj,kqj′,k′
�

T

(mk(p
jγ)− cj,k)(mk′(p

j′γ)− cj′,k′) dµ.

From Lemma 3 we deduce that the second term on the right hand side
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vanishes. Therefore using the Cauchy–Schwarz inequality and Lemma 3(i)
we obtain

�

T

|fN (γ)|2 dµ =
N−1∑
j=0

�

T

∣∣∣ p−1∑
k=1

qj,k(mk(p
jγ)− cj,k)

∣∣∣2 dµ
≤

N−1∑
j=0

( p−1∑
k=1

|qj,k|2
) �

T

p−1∑
k=1

|mk(p
jγ)− cj,k|2 dµ

=
N−1∑
j=0

( p−1∑
k=1

|qj,k|2
) �

T

p−1∑
k=1

(|mk(p
jγ)|2 − |cj,k|2) dµ

=

N−1∑
j=0

( p−1∑
k=1

|qj,k|2
) �

T

(
(p− 1)−

p−1∑
k=1

|cj,k|2
)
dµ < (p− 1)ε,

where the last bound follows from (3.4) and the fact that

�

T

p−1∑
l=1

|mk(p
jγ)|2 dµ =

p−1∑
k=1

‖m̃kpj‖2L2
= p− 1.

The same estimate holds for hN , i.e.
	
T |hN (γ)|2 dν(γ) < (p− 1)ε. Let Ef =

{γ ∈ T : limN→∞ fN (γ) = 0} and Eg = {γ ∈ T : limN→∞ hN (γ) = 0}.
Since

(3.5) hN (γ)− fN (γ) =
N−1∑
j=0

p−1∑
k=1

qj,k(cj,k − dj,k) = 1

for any N , we deduce that the sets Ef and Eg are disjoint. Furthermore
from �

Ef

|fN (γ)|2 dµ+
�

T−Ef

|fN (γ)|2 dµ =
�

T

|fN (γ)|2 dµ→ 0

and (3.5) we deduce that µ is concentrated on Ef . Using the same arguments
we deduce that ν is concentrated on Eg. Since these two sets are disjoint, µ
and ν are mutually singular.

Theorem 3. Let µ be a continuous generalized Riesz product measure
with respect to a pair (Mp, c). If

∑∞
j=0 |cj,k|2 <∞ for any k = 1, . . . , p− 1

then µ is absolutely continuous with respect to the Lebesgue measure; other-
wise it is singular with respect to the Lebesgue measure.

Proof. We follow the proof in [15]. The singularity part is derived from
Theorem 2 because the Lebesgue measure ν corresponds to the case dj,k = 0
for any k = 1, . . . , p − 1 and j ∈ N. Now if

∑∞
j=0 |cj,k|2 < ∞ for every
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k = 1, . . . , p− 1, from Lemma 2(i) we obtain

‖µN‖2L2
=

pN−1∑
k=0

|bk|2 =
( p−1∑
ε0=0

· · ·
p−1∑

εN−1=0

)N−1∏
j=0

|cj,εj |2

=

N−1∏
j=0

p−1∑
k=0

|cj,k|2 ≤
∞∏
j=0

(
1 +

p−1∑
k=1

|cj,k|2
)
<∞.

Therefore {µN}N∈N is convergent in L2(T) and hence in L1(T), and the
result follows.

4. Applications

4.1. Bernoulli measures. Let µ be a generalized Riesz product mea-
sure with respect to a pair (Mp, c), where the generators mk ∈Mp are step
functions produced from a p× p unitary matrix U as in (2.3). Using matrix
notation we can write

(4.1) Mp = UXp,

where the sets Mp and Xp = {1[0,1/p), . . . ,1[(p−1)/p,1)} are considered as
1× p column vectors.

Let us consider a Bernoulli scheme, i.e. a sequence {Xj}j∈N of in-
dependent random variables such that each random variable Xj may
take p outcomes (states) with probabilities Pj = {pj,0, . . . , pj,p−1} satis-

fying
∑p−1

i=0 pj,i = 1 for every j ∈ N. Using (4.1) we can easily verify
that this process can be expressed by a generalized Riesz product mea-
sure

(4.2) dµ(γ) =
( ∞∏
j=0

( p−1∑
k=0

(PjU
∗)kmk(p

jγ)
))

dγ.

Notice that
∑p−1

k=0 |(PjU
∗)k|2 = p

∑p−1
k=0 |pj,k|

2 and so if
∑p−1

k=0 |pj,k|
2 < 1 for

any j, then µ is continuous in accordance with the related assumption of
Theorem 1.

We mention that the generalized Riesz product (4.2) is a natural gener-
alization of the multiscale Riesz product construction presented in [2] and
covers well known classes of Riesz products such as the Rademacher Riesz
products [3]. We mention two illustrative examples.

(i) Non-homogeneous Cantor measures. Let p = 3 and Pj = {pj,0, 0, pj,1}
with pj,0 + pj,1 = 1 and p2j,0 + p2j,1 < 1. Consider an admissible set M3

whose elements are produced from (2.3) and are defined for any γ ∈ T by
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m0(γ) = 1T(γ) and

m1(γ) =

{
1/
√

2, γ ∈ [0, 1/3) ∪ [2/3, 1),

−
√

2, γ ∈ [1/3, 2/3),

m2(γ) =


√

3/
√

2, γ ∈ [0, 1/3),

−
√

3/
√

2, γ ∈ [2/3, 1),

0, otherwise.

Then the corresponding generalized Riesz product (4.2) is

dµ(γ) =
( ∞∏
j=0

(
1 +

1√
2
m1(3

jγ) +

√
3

2
(pj,0 − pj,1)m2(3

jγ)
))

dγ

and produces an inhomogeneous Cantor measure not covered by [2]. We
note that in [2] the authors were not able to construct inhomogeneous Can-
tor measures. This is due to the fact that they dealt with multiscale Riesz
products (1.2) produced from dilations of only one function. Here we use
more than one generator and we obtain a richer family of measures. In this
spirit our generalized Riesz product measures provide a natural generaliza-
tion of [2].

(ii) Generalized Rademacher Riesz products. For any p > 2 and γ ∈ T
define generators mk ∈Mp as in (2.3) by m0(γ) = 1T(γ) and

ml(γ) =



√
p√

(p− l)(p− l + 1)
, γ ∈ [0, (p− l)/p),

−
√
p(p− 1)√
p− l + 1

, γ ∈ [(p−1)/p, (p− l+1)/p),

0, otherwise,

1 ≤ l < p,

and consider the corresponding generalized Riesz product

dµ(γ) =
( ∞∏
j=0

( p−1∑
k=0

cj,kmk(p
jγ)
))

dγ.

If cj,k = 0 whenever k = 2, . . . , p− 1 then we obtain the (normalized) p-adic
Rademacher Riesz product defined in [3].

4.2. Trigonometric measures. For odd p we may work as in Ex-
ample 2 to produce an admissible set Mp such that m0(γ) = 1T(γ),
mk(γ) =

√
2 cos(2πkγ) whenever k = 1, . . . , (p− 1)/2 and mk(γ) =√

2 sin(2π(k − (p− 1)/2)γ) whenever k = (p− 1)/2 + 1, . . . , p − 1. Then
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the corresponding trigonometric Riesz product measure can be written as

dµ(γ) =
( ∞∏
j=0

(
1+
√

2

(p−1)/2∑
k=1

(cj,k cos(2πkpjγ)+cj,k+(p−1)/2 sin(2πkpjγ))
))
dγ.

For example if p = 3, cj,2 = 0 and cj,1 = 1/
√

2 then we obtain Jorgensen’s
example [7, pp. 160].
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