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ENTROPY OF A DOUBLY STOCHASTIC MARKOV OPERATOR
AND OF ITS SHIFT ON THE SPACE OF TRAJECTORIES

BY

PAULINA FREJ (Wroc law)

Abstract. We define the space of trajectories of a doubly stochastic operator on
L1(X,µ) as a shift space (XN, ν, σ), where ν is a probability measure defined as in the
Ionescu–Tulcea theorem and σ is the shift transformation. We study connections between
the entropy of a doubly stochastic operator and the entropy of the shift on the space of
trajectories of this operator.

1. Doubly stochastic operators, transition probabilities and en-
tropy. Let (X,B, µ) be a probability space. By a doubly stochastic operator
we mean a linear operator T : L1(µ)→ L1(µ) which satisfies:

(i) Tf is positive for every positive f ∈ L1(µ),
(ii) T1 = 1 (where 1(x) = 1 for all x ∈ X),

(iii)
	
Tf dµ =

	
f dµ for every f ∈ L1(µ).

The class of all doubly stochastic operators contains Koopman operators of
measure preserving transformations on X and, even more generally, Markov
operators defined by measure preserving transition probabilities by the for-
mula

(1.1) Tf(x) =
�
f(y)P (x, dy)

(we recall that a transition probability on (X,B) is a function P : X ×B →
[0, 1] such that P (x, ·) is a probability measure for each x ∈ X and P (·, B)
is a measurable function for each B ∈ B; a transition probability preserves
µ if µ(A) =

	
P (x,A) dµ(x) for all A ∈ B). In the latter case, the Ionescu–

Tulcea theorem implies that there is a probability measure ν on the product
space XN, N = {0, 1, 2, . . .}, whose values on cylinder sets are given by

ν(A0×A1×· · ·×An×XN) =
�

A0

�

A1

. . .
�

An

P (xn−1, dxn) . . . P (x0, dx1)µ(dx0)
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for all A0, . . . , An ∈ B (see e.g. [N]). Note that in terms of the operator T
the above formula takes the following form:

ν(A0 ×A1 × · · · ×An ×XN) =
�
1A0 · T (1A1 · T (1A2 · · · · · T1An) . . . ) dµ.

Let σ : XN → XN be the shift transformation, i.e. (σx)n = xn+1 for x =
(xn)n∈N ∈ XN. It is easy to verify that since a transition probability P
preserves µ, the measure ν is σ-invariant. The probability space (XN, ν) will
be called the space of trajectories of the doubly stochastic Markov operator T
defined by (1.1).

We continue the study of entropy of doubly stochastic operators started
in [DF]. We take a closer look at the definition of entropy introduced in [FF],
relating it to the entropy of the shift on the space of trajectories. In the lit-
erature one can find various generalizations of the notion of entropy: see e.g.
[AF], [CNT], [GLW], [M], [MR] and [V]. By the results of [DF], all defini-
tions of entropy of a doubly stochastic operator T which follow standard
construction steps and satisfy some natural conditions concerning mono-
tonicity, subadditivity, continuity and compatibility with the classical Shan-
non entropy, lead to the same quantity hµ(T ). Such are entropies defined in
[AF], [DF], [GLW], [M]. However, these entropies differ in the choice of the
basic entropy Hµ of a collection of functions, independent of the dynamics
induced by an operator.

In [FF] it was shown that the formula which we use in the current paper
(see Def. 1.1(3)) is also a version of operator entropy in the sense of [DF]. Our
main Theorem 2.5 and its corollaries are valid only for this specific definition
of Hµ, but it may serve as a tool in proving theorems on the general entropy
hµ(T ). We remark that though we assume that the operator T is induced by
a transition probability, the results apply directly to all doubly stochastic
operators on standard Borel spaces, as it is well known that on such spaces
each doubly stochastic operator is of the form (1.1) (see [N]). In the general
case, one can represent a doubly stochastic operator T as a Markov operator
on the space of all continuous functions on a compact Hausdorff space X̃
(see [D] or [H] for details; a similar technique was also used in the proof
of Lemma 3.2 in [DF]). It is easy to verify that such operators are always
induced by transition probabilities. Moreover, if we transport a measure µ
from X to X̃, this representation will preserve the entropy of T .

Throughout the article, (X,B, µ) is a probability space, ‖ ·‖ denotes the
L1 norm on the space of integrable functions on (X,B, µ), λ is the Lebesgue
measure on the unit interval and η : [0, 1] → R is the function defined by
η(x) = −x log x for x ∈ (0, 1] and η(0) = 0 (log means logarithm to base 2).
We replace partitions, used in the classical definition of the entropy of a
measure preserving transformation, by finite sequences of functions from X
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to [0, 1], which we call families. For a measurable function f : X → [0, 1]
let Af = {(x, t) ∈ X × [0, 1] : t ≤ f(x)} and denote by Af the partition of
X × [0, 1] consisting of Af and its complement. Recall that the refinement
(or join) of partitions α and β is the partition α ∨ β consisting of all sets
A ∩ B, where A ∈ α, B ∈ β. For a finite collection of partitions α1, . . . , αn
we write

∨n
i=1 αi or

∨
i∈I αi, I = {1, . . . , n}, for their refinement which is

the collection of all sets A1 ∩ · · · ∩ An, where Ai ∈ αi. For a family F of
measurable functions we define AF =

∨
f∈F Af . Denote by At the t-section

of A ⊂ X × [0, 1] at t, i.e. At = {x ∈ X : (x, t) ∈ A}, and by A t
F the

partition of X consisting of all t-sections At, where A ∈ AF . Let Hµ(α) be
the Shannon entropy of a partition α.

Definition 1.1. For a family F of measurable functions on X we define

(1) the entropy of F at level t ∈ [0, 1] by

Hµ(F , t) = Hµ(A t
F ),

(2) the upper and lower entropy of a doubly stochastic operator T with
respect to F at level t ∈ [0, 1],

hµ(T,F , t) = lim sup
n→∞

1

n
Hµ

( n−1∨
i=0

A t
T iF

)
,

hµ(T,F , t) = lim inf
n→∞

1

n
Hµ

( n−1∨
i=0

A t
T iF

)
,

(3) the static entropy of F by

Hµ(F ) =

1�

0

Hµ(F , t)λ(dt),

(4) the entropy of a doubly stochastic operator T with respect to F by

hµ(T,F ) = lim
n→∞

1

n
Hµ(Fn),

where Fn is the concatenation of F , TF , . . . , Tn−1F . (The exis-
tence of the above limit was proved in [FF].)

Note that for each measurable set A ⊂ X × [0, 1] the function t 7→
µ(At) is measurable, hence Hµ(F , t) = −

∑
A∈AF

µ(At) log(µ(At)) is also
measurable and the above integral is well defined.

2. Operator entropy vs. entropy on the space of trajectories.
For a (measurable) function g : X → [0, 1] and t ∈ [0, 1] let 1{g≥t} ∈ L1(µ)
be the characteristic function of the set {x ∈ X : g(x) ≥ t} and abbreviate
1X by 1.



208 P. FREJ

Lemma 2.1. Let F be a family of measurable functions on X with ranges
in [0, 1]. For every ε > 0 there exist l ∈ N and a set τ ⊂ [0, 1] such that

(1) ‖1{T l+nf≥t} − Tn1{T lf≥t}‖ < ε for every f ∈ F , n ∈ N and t ∈
[0, 1] \ τ ,

(2) λ(τ) ≤ ε.

Proof. Fix ε > 0. Clearly, we may assume that ε = 1/k for some positive
integer k. Let r denote the cardinality of F . For a function g : X → [0, 1]
and numbers a, b satisfying 0 ≤ a < b ≤ 1 define gba := (g ∨ a) ∧ b, where ∨
and ∧ denote pointwise maximum and minimum, respectively. By Lemma
2.3 from [DF] we can choose l ∈ N such that for each g ∈ T lF , n ∈ N and
every pair a < b,

(2.1) ‖Tn(gba)− (Tng)ba‖ <
ε3

35r
.

Take a partition ζ of [0, 1] into 33k2r subintervals I0, I1, . . . of equal length
∆=ε2/(33r). We assume that the intervals are enumerated so that inf I0=0
and sup Ii−1 = inf Ii for i > 0. Notice that for each f ∈ F there are at
most 9k intervals Ii such that µ((T lf)−1(Ii)) ≥ ε/9. Thus, the number of
intervals such that this inequality holds for at least one element of F is at
most 9kr.

For each t ∈ [0, 1] consider the interval I(t) = Ii−1 ∪ Ii ∪ Ii+1 such that
t ∈ Ii. Denote the endpoints of I(t) by at and bt (at < bt). Let τ be the
union of all Iis such that the measure of the preimage of at least one of
Ii−1, Ii, Ii+1 under some T lf , f ∈ F , is greater than or equal to ε/9. It is
easy to see that λ(τ) ≤ 3 ·∆ · 9kr = ε.

Fix t ∈ [0, 1] \ τ and set

FT lf (x) =
(T lf)btt (x)− t

bt − t
and GT lf (x) =

(T lf)tat(x)− at
t− at

.

Then

(2.2) FT lf ≤ 1{T lf≥t} ≤ GT lf

and

‖GT lf − FT lf‖ ≤ µ((T lf)−1(I(t))) < ε/3.

Because the operator T is positive, from (2.2) we have

TnFT lf ≤ Tn1{T lf≥t} ≤ TnGT lf

for every n ∈ N, and since T is an L1-contraction it follows that

‖Tn1{T lf≥t} − TnFT lf‖ ≤ ‖TnGT lf − TnFT lf‖ ≤ ‖GT lf − FT lf‖ < ε/3.
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Similarly, we can write

FTn+lf =
(Tn+lf)btt − t

bt − t
≤ 1{Tn+lf≥t} ≤

(Tn+lf)tat − at
t− at

= GTn+lf .

We now prove that

‖FTn+lf − TnFT lf‖ < ε/9 and ‖GTn+lf − TnGT lf‖ < ε/9.

Indeed, using (2.1) and the fact that |bt − t| ≥ ∆ we obtain

‖FTn+lf − TnFT lf‖ =

∥∥∥∥(Tn+lf)btt − t
bt − t

− Tn
(

(T lf)btt − t
bt − t

)∥∥∥∥
=

1

|bt − t|
‖(Tn+lf)btt − Tn(T lf)btt ‖ <

1

∆

ε3

35r
=
ε

9
.

In an analogous way we can show that ‖GTn+lf − TnGT lf‖ < ε/9. Now we
obtain

‖FTn+lf − 1{Tn+lf≥t}‖ ≤ ‖FTn+lf −GTn+lf‖
≤ ‖FTn+lf − TnFT lf‖+ ‖TnFT lf − TnGT lf‖

+ ‖TnGT lf −GTn+lf‖ <
ε

9
+
ε

3
+
ε

9
=

5ε

9
.

Finally,

‖1{Tn+lf≥t} − Tn1{T lf≥t}‖ ≤ ‖1{Tn+lf≥t} − FTn+lf‖+ ‖FTn+lf − TnFT lf‖
+ ‖TnFT lf − Tn1{T lf≥t}‖

<
5ε

9
+
ε

9
+
ε

3
= ε.

Below we show that the choice of τ in the previous lemma is in some
sense uniform.

Lemma 2.2. Let F be a family of measurable functions on X with ranges
in [0, 1]. For every ε > 0 there exist l0 ∈ N and a set τ ⊂ [0, 1] such that

(1) ‖1{T l+nf≥t} − Tn1{T lf≥t}‖ < ε for every f ∈ F , l ≥ l0, n ∈ N and
t ∈ [0, 1] \ τ ,

(2) λ(τ) ≤ ε.
Proof. For 1

2ε we find τ and l0 using the previous lemma. Then, for every
f ∈ F , l ≥ l0, n ∈ N and t ∈ [0, 1] \ τ ,

‖1{T l+nf≥t} − Tn1{T lf≥t}‖

≤ ‖1{T l+nf≥t} − T l−l0+n1{T l0f≥t}‖+ ‖T l−l0+n1{T l0f≥t} − T
n
1{T lf≥t}‖

≤ ‖1{T l0+(l−l0+n)f≥t}−T
l−l0+n1{T l0f≥t}‖+‖T

l−l01{T l0f≥t}−1{T l0+(l−l0)f≥t}‖
< ε.
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The following definition was stated in [DF] in order to consider continuity
of entropy.

Definition 2.3. Let r′ ≤ r. For two families of measurable functions,
F = {f1, . . . , fr} and G = {g1, . . . , gr′}, their L1-distance is defined by

dist(F ,G) = min
π

{
max
1≤i≤r

�
|fi − gπ(i)| dµ

}
,

where the minimum is taken over all permutations π of {1, . . . r} and where G
is considered an r-element family by setting gi ≡ 0 for r′ < i ≤ r.

It is easy to prove that for any measurable functions f , f ′, g and g′,

(2.3) ‖f ∧ g − f ′ ∧ g′‖ ≤ ‖f − f ′‖+ ‖g − g′‖.
To simplify notation we denote the partition A t

T lF
of X by A t

l . Let 1A t
l

denote the family of all functions 1A, where A ∈ A t
l .

Lemma 2.4. Let F be a family of measurable functions on X with ranges
in [0, 1]. For every ε > 0 there exist l0 ∈ N and a set τ ⊂ [0, 1] such that

(1) dist(Tn1A t
l
,1A t

l+n
) < ε for every l ≥ l0, n ∈ N and t ∈ [0, 1] \ τ ,

(2) λ(τ) ≤ ε.
Proof. Let F = {f1, . . . , fr}. Fix ε > 0. We use the previous lemma to

find l0 ∈ N and τ ⊂ [0, 1] for ε/(r2r) in place of ε. For every l each element

of 1A t
l

may be represented as the minimum of r functions gl,t1 , . . . , g
l,t
r , where

gl,ti is either 1{T lfi≥t} or 1−1{T lfi≥t}. After r successive applications of (2.3)
we obtain

‖gl+n,t1 ∧ · · · ∧ gl+n,tr − Tngl,t1 ∧ · · · ∧ T
ngl,tr ‖ < ε/2r

for all l ≥ l0, n ∈ N and t ∈ [0, 1] \ τ , provided that in the above formula

the functions gl+n,ti and gl,ti are of the same type for i = 1, . . . , r, i.e.

(2.4)

{
gl+n,ti = 1{T l+nfi≥t},

gl,ti = 1{T lfi≥t},
or

{
gl+n,ti = 1− 1{T l+nfi≥t},

gl,ti = 1− 1{T lfi≥t}.

Notice that gl,t1 ∧ · · · ∧ g
l,t
r ≤ gl,ti for every i = 1, . . . , r and since T is positive

we have Tn(gl,t1 ∧ · · · ∧ g
l,t
r ) ≤ Tngl,ti for each i. Hence

Tn(gl,t1 ∧ · · · ∧ g
l,t
r ) ≤ Tngl,t1 ∧ · · · ∧ T

ngl,tr

≤ gl+n,t1 ∧ · · · ∧ gl+n,tr + |Tngl,t1 ∧ · · · ∧ T
ngl,tr − g

l+n,t
1 ∧ · · · ∧ gl+n,tr |.

In particular,

(2.5)
�

A

(Tn(gl,t1 ∧ · · · ∧ g
l,t
r )− gl+n,t1 ∧ · · · ∧ gl+n,tr ) dµ < ε/2r

for any set A ∈ B.
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The sum of all functions of the form gl+n,t1 ∧ · · · ∧ gl+n,tr and the sum of

all Tn(gl,t1 ∧ · · · ∧ g
l,t
r ) are equal (they are both 1). Suppose that for some

pair of functions f = gl+n,t1 ∧ · · · ∧ gl+n,tr , f̃ = Tn(gl,t1 ∧ · · · ∧ g
l,t
r ) we have

�
|f − f̃ | dµ ≥ ε.

Since �
|f − f̃ | dµ =

�

{f≥f̃}

(f − f̃) dµ+
�

{f̃>f}

(f̃ − f) dµ,

and since by (2.5) we have
	
{f̃>f}(f̃ − f) dµ < ε/2r, it follows that

�

{f≥f̃}

(f − f̃) dµ > ε(1− 1/2r).

But then summing over the remaining pairs (excluding f̃ − f) we obtain

0 =
�

{f≥f̃}

∑
(Tn(gl,t1 ∧ · · · ∧ g

l,t
r )− gl+n,t1 ∧ · · · ∧ gl+n,tr ) dµ+

�

{f≥f̃}

(f̃ − f) dµ

< (2r − 1) · ε/2r − ε(1− 1/2r) = 0,

a contradiction.Thus�
|gl+n,t1 ∧ · · · ∧ gl+n,tr − Tn(gl,t1 ∧ · · · ∧ g

l,t
r )| dµ < ε

for all pairs of functions satisfying (2.4).

Theorem 2.5. Let σ be the shift transformation on the space of trajec-
tories (XN, ν). For almost all t ∈ [0, 1],

hµ(T,F , t) = hµ(T,F , t) = lim
l→∞

hν(σ,A t
l ×XN).

Proof. Clearly,

hµ(T,F , t) = hµ(T, T lF , t), hµ(T,F , t) = hµ(T, T lF , t).

Fix ε > 0. For any n, l ∈ N and t ∈ [0, 1], from standard properties of
entropy of a partition (see e.g. [P]) it follows that

Hν

(n−1∨
i=0

σ−i(A t
l ×XN)

)
≤ Hν

(n−1∨
i=0

A t
l+i ×XN

)
+Hν

(n−1∨
i=0

σ−i(A t
l ×XN)

∣∣∣ n−1∨
i=0

A t
l+i ×XN

)
≤ Hν

(n−1∨
i=0

A t
l+i ×XN

)
+
n−1∑
i=0

Hν

(
σ−i(A t

l ×XN)︸ ︷︷ ︸
Li

∣∣∣ A t
l+i ×XN︸ ︷︷ ︸

Pi

)
.
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Notice that
∨n−1
i=0 A t

l+i ×XN = {A×XN : A ∈
∨n−1
i=0 A t

l+i} and

(2.6) ν(A×XN) =
�

A

1 dµ = µ(A),

hence

Hν

(n−1∨
i=0

A t
l+i ×XN

)
= Hµ

(n−1∨
i=0

A t
l+i

)
.

We denote by µB and νB×XN the conditional measures of µ and ν with
respect to B ⊂ X and B ×XN, respectively. By (2.6),

Hν(Li |Pi) =
∑

B∈A t
l+i

µ(B) ·Hν
B×XN (Li).

For any measurable A,B ⊂ X,

ν(B ×Xi−1 ×A×XN) =
�
1B · T (1 · . . . · T (1 · T1A) . . .) dµ =

�

B

T i1A dµ.

Hence

Hν
B×XN (Li) =

∑
A∈A t

l

η

(
ν(B ×Xi−1 ×A×XN)

µ(B)

)
=
∑
A∈A t

l

η
( �
B

T i1A dµB

)
.

We continue the calculation of the conditional entropy:

Hν(Li |Pi) =
∑

B∈A t
l+i

µ(B)
∑
A∈A t

l

η
( �
T i1A dµB

)

= −
∑

B∈A t
l+i

∑
A∈A t

l

( �

B

T i1A dµ · log

	
B T

i
1A dµ

µ(B)

)

=
∑

B∈A t
l+i

( ∑
A∈A t

l

η
( �

B

T i1A dµ
)
− η(µ(B))

)
=

∑
B∈A t

l+i

∑
A∈A t

l

η
( �

B

T i1A dµ
)
−Hµ(A t

l+i).

By Lemma 2.4, for any positive δ < ε there exists l0 ∈ N and a subset
τ ⊂ [0, 1] with λ(τ) ≤ δ such that dist(T i1A t

l
,1A t

l+i
) < δ for every l > l0,

i ∈ N and t ∈ [0, 1] \ τ . Then, for every pair of sets A ∈ A t
l , B ∈ A t

l+i

either |µ(B) −
	
B T

i
1A dµ| < δ or

	
B T

i
1A dµ < δ, so for a suitable choice

of δ (and appropriate l0 and τ) the entropies of the probability vectors
{µ(B) : B ∈ A t

l+i} and {
	
B T

i
1A dµ : A ∈ A t

l , B ∈ A t
l+i} differ by less

than ε. Finally, we get

Hν

( n−1∨
i=0

σ−i(A t
l ×XN)

)
≤ Hµ

( n−1∨
i=0

A t
l+i

)
+ nε
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for l large enough, n ∈ N and all t except for a set τ of measure ε. Dividing
by n and taking the lower limit over n we get

hν(σ,A t
l ×XN) ≤ hµ(T, T lF , t) + ε = hµ(T,F , t) + ε

for l large enough and t 6∈ τ . Notice that on the left hand side the lower
limit is a limit, since we compute the entropy of a transformation. Letting l
go to infinity, we obtain

lim sup
l→∞

hν(σ,A t
l ×XN) ≤ hµ(T,F , t) + ε

for t ∈ [0, 1] \ τ . Since ε was taken arbitrarily,

lim sup
l→∞

hν(σ,A t
l ×XN) ≤ hµ(T,F , t)

for almost all t.

On the other hand, we analogously estimate

Hµ

( n−1∨
i=0

A t
l+i

)
≤ Hν

( n−1∨
i=0

σ−i(A t
l ×XN)

)
(2.7)

+
n−1∑
i=0

Hν(A t
l+i ×XN |σ−i(A t

l ×XN)).

Now

(2.8) Hν(A t
l+i ×XN |σ−i(A t

l ×XN))

=
∑
A∈A t

l

(
ν(Xi−1 ×A×XN)

∑
B∈A t

l+i

η

(
ν(B ×Xi−2 ×A×XN)

ν(Xi−1 ×A×XN)

))

=
∑
A∈A t

l

�
T i1A dµ︸ ︷︷ ︸
µ(A)

·
∑

B∈A t
l+i

η

(	
B T

i
1A dµ	

T i1A dµ

)

= −
∑
A∈A t

l

∑
B∈A t

l+i

�

B

T i1A dµ
(

log
�

B

T i1A dµ− logµ(A)
)

=
∑
A∈A t

l

∑
B∈A t

l+i

η
( �

B

T i1A dµ
)
−Hµ(A t

l ).

Notice that

Hµ(A t
l ) =

∑
A∈A t

l

η
( �
T i1A dµ

)
,

so, as before, there exist τ ⊂ [0, 1] with λ(τ) ≤ ε and l0 ∈ N such that
the right hand side of (2.8) is less than or equal to ε if only l ≥ l0 and
t ∈ [0, 1] \ τ . Dividing both sides of (2.7) by n and taking the upper limit



214 P. FREJ

over n we obtain

hµ(T,F , t) = hµ(T, T lF , t) ≤ hν(σ,A t
l ×XN) + ε

for t ∈ [0, 1] \ τ and so

hµ(T,F , t) ≤ lim inf
l→∞

hν(σ,A t
l ×XN)

for almost all t. Hence,

hµ(T,F , t) ≤ lim inf
l→∞

hν(σ,A t
l ×XN)

≤ lim sup
l→∞

hν(σ,A t
l ×XN) ≤ hµ(T,F , t) λ-a.e.,

and the assertion follows.

It follows from the above theorem that for almost all t one can define
the entropy of T with respect to F at level t by the formula

(2.9) hµ(T,F , t) = lim
n→∞

1

n
Hµ(Fn, t).

Corollary 2.6. We have

hµ(T,F ) =

1�

0

hµ(T,F , t)λ(dt) = lim
l→∞

1�

0

hν(σ,A t
l ×XN)λ(dt).

Proof. Let r be the cardinality of F . Since the entropy of a partition is
bounded by the logarithm of its cardinality and the partition AFn consists
of at most 2nr elements, the function n−1Hµ(Fn, t) is bounded from above
by a constant r. By Lebesgue’s Dominated Convergence Theorem,

hµ(T,F ) = lim
n→∞

1

n

1�

0

Hµ(Fn, t)λ(dt) =

1�

0

lim
n→∞

1

n
Hµ(Fn, t)λ(dt)

=

1�

0

hµ(T,F , t)λ(dt) =

1�

0

lim
l→∞

hν(σ,A t
l ×XN)λ(dt).

As before, the cardinality of Al, hence of A t
l , is bounded by 2r, so that

hν(σ,A t
l × XN) ≤ r. Using Lebesgue’s theorem again, we can interchange

the integration and taking the limit to obtain the assertion.

Corollary 2.7. If T is a doubly stochastic operator and σ the shift
transformation on the space of its trajectories then

hµ(T ) ≤ hν(σ).

Proof. Since for any partition A of X,

hν(σ,A ×XN) ≤ hν(σ),
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the right hand side of the formula in Corollary 2.6 is less than or equal to
the entropy of σ. Thus using Corollary 2.6 we obtain

hµ(T ) = sup
F
hµ(T,F ) ≤ hν(σ).

It is easy to see that equality holds in Corollary 2.7 for pointwise gen-
erated operators, because in this case the entropy of an operator is equal
to the Kolmogorov–Sinai entropy of a generating transformation (see [DF]),
which is isomorphic to the shift on the space of trajectories. On the other
hand, equality fails to hold for nonpointwise operators even in the following
simple example. Consider a space X consisting of two points and an oper-
ator T given by a 2 × 2 matrix with all entries 1/2. Since each function is
transformed by T to a constant, the entropy hµ(T ) is 0. But the space of all
trajectories constitutes a Bernoulli shift with entropy 1 (recall that we use
logarithm to base 2).
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50-370 Wroc law, Poland
E-mail: Paulina.Frej@pwr.wroc.pl

Received 11 July 2011;
revised 27 February 2012 (5525)


	Doubly stochastic operators, transition probabilities and entropy
	Operator entropy vs. entropy on the space of trajectories

