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Dp(3) (p ≥ 5) CAN BE CHARACTERIZED BY
ITS ORDER COMPONENTS

BY

HUAGUO SHI (Sichuan), ZHANGJIA HAN (Sichuan) and
GUIYUN CHEN (Chongqing)

Abstract. Let G be a finite group, and M = Dp(3) (p ≥ 3). It is proved that G ∼= M
if G and M have the same order components.

1. Introduction. Let G be a finite group. The prime graph of G, de-
noted by Γ (G), is defined in [32] as follows: its vertices are the primes di-
viding the order of G, and two vertices p and q are joined by an edge if and
only if there is an element in G of order pq. The set of all connected com-
ponents of the graph Γ (G) is denoted by T (G) = {πi(G) | i = 1, . . . , t(G)}
where t(G) is the number of connected components of Γ (G), and if G is of
even order, we always assume that 2 belongs to π1(G) (see [3]). The order
components of non-abelian simple groups with disconnected prime graph
have been obtained in [3]. For a positive integer n, we denote by π(n) the
set of all primes dividing n. Obviously the order of the group G can be ex-
pressed as the product of m1, . . . ,mt(G), where mi is a positive integer with
π(mi) = πi(G); such mi are called the order components of G in [3].

In 1987, J. G. Thompson proposed the following conjecture (Problem
12.39 in [28]). Let M be a non-abelian simple group. If G is a finite group
satisfying Z(G) = 1 and N(G) = N(M), where N(G) = {n ∈ N | G has a
conjugacy class C such that |C| = n}, then G ∼= M .

Let πe(G) denote the set of orders of elements of G. W. J. Shi [29]
proposed the following conjecture in 1990: if M is a finite non-abelian simple
group such that |G| = |M | and πe(G) = πe(M) then G ∼= M . In [5], it was
proved that if M is a simple group with disconnected prime graph and G
is a finite group satisfying the conditions of J. G. Thompson’s conjecture
then OC(G) = OC(M), where OC(G) = {m1, . . . ,mt(G)} is the set of order
components of G. Obviously, if G is a finite group satisfying the conditions
of W. J. Shi’s conjecture, then OC(G) = OC(M) too. As a consequence,
these two conjectures hold for a simple group M which can be characterized
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by its order components consisting of at least of two elements. Hence, it is
an important problem to find out those simple groups satisfying the above
mentioned properties.

It is known that the following simple groups with disconnected prime
graphs can be characterized by their order components: a finite simple group
with at least three prime graph components [5], sporadic simple groups [3],
Suzuki–Ree groups [6], G2(q) where q ≡ 0 (mod 3) [4], E8(q) [1], PSL2(q) [7],
3D4(q) [8], 2Dn(3), 9 ≤ n = 2m + 1 6= p [9], 2Dp+1(2), 5 ≤ p 6= 2m − 1 [30],
Ap where p and p−2 are primes [12], PSL(5, q) [13], PSL(3, q) where q is an
odd prime power [14], PSL(3, q) for q = 2n [15], F4(q) where q is even [16],
C2(q) where q > 5 [17], PSU5(q) [18], PSU(3, q) for q > 5 [19], 2D4(q) [22],
2E6(q) [24], E6(q) [23], PSL(p, q) [20], PSU(p, q) [25], PSL(p + 1, q) [26],
PSU(p+ 1, q) [21], Cp(2) [31].

In this paper, we continue this work and prove the following theorem:

Theorem. Let M = Dp(3) (p ≥ 5 is a prime). If a finite group G has
the same order components as M , then G ∼= M .

2. Preliminary results

Lemma 1. Suppose that t(G) ≥ 2. If H is a πi-subgroup of G and H�G,

then
∏t(G)
j=1, j 6=imi | |H| − 1.

Proof. For any x ∈ H, x 6= 1, by the definition of order components,

CG(x) is a πi-subgroup, and
∏t(G)
j=1, j 6=imi is a divisor of |G : CG(x)|, i.e.,∏t(G)

j=1, j 6=imi divides the length of the conjugacy class of x. Since H �G, H

contains the complete G-conjugacy class of x. Hence
∏t(G)
j=1, j 6=imi | |H| − 1

by the class equation.

In fact, Lemma 1 and its proof is a generalization of Lemma 6 of [3].

Lemma 2 ([2, Theorem 2]). Let G be a 2-Frobenius group of even order.
Then t(G) = 2 and G has a normal series 1 �H �K �G such that |K/H|
= m2, |H| · |G/K| = m1, |G/K| | |K/H| − 1, and H is nilpotent.

Lemma 3 ([32, Lemma 3]). If M is a simple group with t(M) = 2, G is
a finite group and OC(G) = OC(M), then one of the following holds:

(1) G is a Frobenius group or 2-Frobenius group.
(2) G has a normal series 1�H �K �G such that H is a nilpotent π1-

group, K/H is a non-abelian simple group, the odd order component
of M is equal to one of those of K/H, G/K is a cyclic π1-group,
and |G/K| | |Out(K/H)|.

Lemma 4 ([33]). Let p be a prime and n ≥ 2 be a natural number. Then
there exists a prime divisor r of pn− 1 which does not divide pm− 1 for any



Dp(3) (p ≥ 5) AND ITS ORDER COMPONENTS 259

natural number m ≤ n, except the cases n = 6, p = 2 or n = 2, p + 1 a
power of 2. Such an r is called a primitive prime divisor of pn − 1.

Of course a primitive prime divisor of pn − 1 cannot divide pn + 1 or
pm − 1 for n -m.

Lemma 5 ([11, Remark]). The only solution of the equation pm−qn = 1
is 32 − 23 = 1, where p, q are primes and m,n > 1.

Lemma 6 ([27, Lemma 1]). If n ≥ 6 is a natural number, then there
exist at least s(n) primes pi such that (n+ 1)/2 < pi < n, where

s(n) =



6 for n ≥ 49,

5 for 42 ≤ n ≤ 47,

4 for 38 ≤ n ≤ 41,

3 for 18 ≤ n ≤ 37,

2 for 14 ≤ n ≤ 17,

1 for 6 ≤ n ≤ 13.

Let p be a prime number and a a natural number. We denote the power
of p in the prime factorization of a by ap, and if ap = pn, then we write
pn ‖ a. Of course pn ‖ a means that pn | a and pn+1 - a.

Lemma 7 ([31, Lemmas 7–9]). Suppose that p is a prime, q > 1 and set
e = min{d > 0 : p | qd−1}. Assume that qe = 1+prk, p - k, s =

∏n
i=1(q

i−1),
t is a natural number and pu ‖ t. If p > 2 or r > 2, then pr+u ‖ qet − 1,
sp < qnp/(p−1) and sp < q1.5n if p = 2.

Definition 1. Suppose that a and f are two integers. If f | a and
(f, a/f) = 1, then f is called a Hall factor of a.

Lemma 8 ([10, Theorem 1]). If q is a power of a prime number, and
c =

∏n
i=1(q

2i − 1) or (qn ± 1)
∏n−1
i=1 (q2i − 1), then there exists a Hall factor

f of c satisfying:

(1) If n ≥ 23, then f > q8n.
(2) If n = 22, then f > q7n.
(3) If 18 ≤ n ≤ 21, then f > q6n.
(4) If 16 ≤ n ≤ 17, then f > q5n.
(5) If 14 ≤ n ≤ 15, then f > q4n.

Moreover, if the prime factorization of f is
∏t
k=1 r

δk
k , then

rδkk ≤
qn−1 − 1

q − 1
.
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3. Proof of the theorem. Because M = Dp(3) (p ≥ 5 is a prime),
and G has the same order components with M , the even order component
of G is m1 = 2 · 3p(p−1)

∏p−1
i=1 (32i − 1), and the odd order component is

m2 = (3p − 1)/2.

We divide the proof into several cases based on Lemma 3 and Tables 1–4
which were obtained in [3].

Table 1. Order components of Lie type simple groups G with t(G) ≥ 3 (except E8(q))

Group orcmp 1 orcmp 2 orcmp 3 orcmp 4

Ap, 3 · 4 · · · (p− 3)(p− 1) p− 2 p
p, p− 2 primes

A1(q), 4 | q + 1 q + 1 q (q − 1)/2

A1(q), 4 | q − 1 q − 1 q (q + 1)/2

A1(q), 4 | q q q + 1 q − 1

G2(q), 3 | q q6(q2 − 1)2 q2 + q + 1 q2 − q + 1
2G2(q), q3(q2 − 1) q −

√
3q + 1 q +

√
3q + 1

q = 32m+1

2Dp(3) 3p(p−1) (3p−1 − 1) (3p−1 + 1)/2 (3p + 1)/4
p = 2n + 1, n ≥ 2
2Dp+1(2), 2p(p+1) (2p − 1) 2p + 1 2p+1 + 1
p = 2n − 1, n ≥ 2 ·

∏p−1
i=1 (22i − 1)

F4(q), 2 | q, q > 2 q24(q6 − 1)2(q4 − 1)2 q4 + 1 q4 − q2 + 1
2B2(q) q2 q +

√
2q + 1 q −

√
2q + 1 q − 1

E7(2) 263 · 311 · 52 · 73 73 127
·11 · 13 · 17 · 19 · 31 · 43

E7(3) 223 · 363 · 52 · 73 · 112 · 133 757 1093
·19 · 37 · 41 · 61 · 73 · 547

A2(4) 26 5 7 9

A2(2) 8 3 7
2A5(2) 215 · 36 · 5 7 11
2E6(2) 236 · 39 · 52 · 72 · 11 13 17 19
2F4(q) q12(q4 − 1)(q3 + 1) q2 −

√
2q3+ q2 +

√
2q3+

q = 22m+1, m ≥ 1 ·(q2 + 1)(q − 1) q −
√

2q + 1 q +
√

2q + 1

Table 2. Order components of E8(q)

Group E8(q), q ≡ 0, 1, 4 (mod 5)

orcmp 1 q120(q18 − 1)(q14 − 1)(q12 − 1)2(q10 − 1)2(q8 − 1)2(q4 + q2 + 1)

orcmp 2 q8 + q7 − q5 − q4 − q3 + q + 1

orcmp 3 q8 − q7 + q5 − q4 + q3 − q + 1

orcmp 4 q8 − q4 + 1

orcmp 5 q8 − q6 + q4 − q2 + 1
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Table 2 (cont.)

Group E8(q), q ≡ 2, 3 (mod 5)

orcmp 1 q120(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)

·(q8 − 1)(q4 + 1)(q4 + q2 + 1)

orcmp 2 q8 + q7 − q5 − q4 − q3 + q + 1

orcmp 3 q8 − q7 + q5 − q4 + q3 − q + 1

orcmp 4 q8 − q4 + 1

Table 3. Order components of Lie type simple groups G with t(G) = 2 (p an odd prime)

Group orcmp 1 orcmp 2

Alt(n), n 6= 5, 6, 3 · 4 · · · (p− 1)(p− 2) · · ·n p

n = p, p + 1 or p + 2

not both n, n−2 primes

Ap−1(q) qp(p−1)/2 ∏p−1
i=2 (qi − 1) (qp−1)/(q−1)(p, q−1)

Ap(q), q − 1 | p− 1 qp(p+1)/2 ∏p−1
i=2 (qi − 1)(qp+1 − 1) qp − 1/q − 1

Bn(q) or Cn(q) qn
2

(qn − 1)
∏n−1

i=1 (q2i − 1) (qn − 1)/(2, q − 1)
n = 2m, m ≥ 2

Bp(q) or Cp(q), 3p2(3p − 1)
∏n−1

i=1 (32i − 1) (3p − 1)/2
p an odd prime, q = 2, 3

Dp(q), p ≥ 5, q = 3, 5 qp(p−1) ∏p−1
i=1 (q2i − 1) (qp − 1)/(q − 1, 4)

Dp+1(3), p ≥ 3 3p(p+1)(3p+1−1)
∏p−1

i=1 (32i−1)(3p+1) (3p − 1)/2

E6(q) q36(q12 − 1)(q3 − 1)(q8 − 1)
·(q6 − 1)(q5 − 1)(q2 − 1) (q6+q3+1)/(3, q−1)

F4(q), q odd q24(q6 − 1)(q8 − 1)(q4 − 1)(q2 − 1) q4 − q2 + 1
·(q2 − 1)(q4 + q2 + 1)

G2(q), 3 | q − 1 q3(q6 − 1)2(q2 + q + 1) q2 − q + 1

G2(q), 3 | q + 1 q3(q6 − 1)2(q2 − q + 1) q2 + q + 1
2Ap−1(q) qp(p−1)/2 ∏p−1

i=2 (qi − (−1)i) (qp+1)/(q+1)(p, q+1)

2Ap(q), q + 1 | p + 1 qp(p+1)/2 ∏p−1
i=2 (qi − (−1)i)(qp+1 − 1) (qp + 1)/(q + 1)

2Dn(q), n = 2m, m ≥ 2 qn(n−1) ∏n−1
i=1 (q2i − 1) (qn + 1)/(2, q − 1)

(n, q) 6= (p + 1, 2)

2Dp(3), p≥5, p 6=2n+1 3p(p−1) ∏p−1
i=1 (32i − 1) (3p + 1)/4

2Dp+1(2), p 6= 2m − 1 2p(p+1) ∏p−1
i=1 (22i−1)(2p+1)(2p+1+1) 2p − 1

2Dn(3), n = 2m + 1, 3n(n+1) ∏n−2
i=1 (32i−1)(3n+1)(3n−1−1) (3n−1 + 1)/2

n not a prime
3D4(q) q12(q4 + q2 + 1)(q6 − 1)(q5 + 1) q4 − q2 + 1
2E6(q) q36(q12 − 1)(q8 + 1)(q6 − 1)(q5 + 1) (q6−q3+1)/(3, q+1)

·(q3 + 1)(q2 − 1)
2F4(2)′ 211 · 33 · 52 13
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Table 4. Order components of sporadic simple groups G

Group orcmp 1 orcmp 2 orcmp 3 orcmp 4 orcmp 5 orcmp 6

M11 24 · 32 5 11

M12 26 · 33 · 5 11

M22 27 · 32 5 7 11

M23 27 · 32 · 5 · 7 11 23

M24 210 · 33 · 5 · 7 11 23

J1 23 · 3 · 5 7 11 19

J2 27 · 33 · 52 7

J3 27 · 35 · 5 17 19

J4 221 · 33 · 5 · 7 · 113 23 29 31 37 43

HS 29 · 32 · 53 7 11

Ru 214 · 33 · 53 · 7 · 13 29

Suz 213 · 37 · 52 · 7 11 13

He 210 · 33 · 52 · 73 17

ON 29 · 34 · 5 · 73 11 19 31

McL 27 · 36 · 53 · 7 11

Ly 28 · 37 · 56 · 7 · 11 31 37 61

Co1 221 · 39 · 54 · 72 · 11 · 13 23

Co2 218 · 36 · 53 · 7 11 23

Co3 210 · 37 · 53 · 7 · 11 23

F22 217 · 39 · 52 · 7 · 11 13

F23 218 · 313 · 52 · 7 · 11 · 13 17 23

F ′24 221 · 316 · 52 · 73 · 11 · 13 17 23 29

M 246 · 330 · 59 · 76 · 112 · 132

·17 · 19 · 23 · 29 · 31 · 47 41 59 71

B 241 · 331 · 56 · 72

·11 · 13 · 17 · 19 · 23 31 47

Th 215 · 310 · 53 · 72 · 13 19 31

HN 214 · 36 · 56 · 7 · 11 19

Case 1. We prove that G cannot be a Frobenius group or a 2-Frobenius
group.

Subcase 1.1. If G is a Frobenius group with Frobenius kernel H and
complement K, then |H| = m1 and |K| = m2. There exists a primitive prime
divisor r of 32(p−1)−1 by Lemma 4. Let Sr ∈ Sylr(H). Then |Sr| | (3p−1+1)/2
and Sr �G. Thus |Sr| ≡ 1 (mod m2) by Lemma 1, which is impossible.

Subcase 1.2. If G is a 2-Frobenius group, there is a normal series
1 � H � K � G such that H is a nilpotent π1-group, |K/H| = m2, and
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|G/K| | |K/H| − 1 = 3(3p−1 − 1)/2. Hence 3p−1 + 1 | |H|. Again there exists
a primitive prime divisor r of 32(p−1) − 1. Considering the order of a Sylow
r-subgroup of H, we come to a contradiction by the same reasoning as in
Subcase 1.1.

From Subcases 1.1 and 1.2 and Lemma 3 we deduce that G has the
following properties:

(1) There is a normal series 1 �H �K �G such that K/H is a simple
group, H and G/K are π1-groups and H is nilpotent.

(2) The odd order component of G is one of those of K/H, consequently
t(K/H) ≥ 2. Hence K/H may be one of the simple groups listed in
Tables 1–4.

Case 2. We prove that K/H is not isomorphic to E7(2), E7(3), A2(2),
A2(4), 2A5(2), 2E6(2), 2F4(2)′ or one of the sporadic simple groups.

This follows from the fact that no group mentioned above has an order
component of the form (3p − 1)/2, for any prime p ≥ 5, which is one of the
odd order components of M .

Case 3. We prove that K/H � An.
Indeed, otherwise An has an odd component equal to (3p − 1)/2. Thus

|A(3p−1)/2| | |An| | |Dp(3)|. By Lemma 6, there exist at least six primes pi
satisfying (3p + 1)/4 < pi < (3p− 1)/2 since p ≥ 5. But there exists at most
one prime divisor p′ of |Dp+1(3)| satisfying (3p + 1)/4 < p′ < (3p − 1)/2, a
contradiction to |A(3p−1)/2| | |Dp(3)|.

Case 4. We prove that K/H � An(q), 2An(q), E6(q), E8(q), F4(q),
2F4(q),

2E6(q).

Subcase 4.1. If K/H ∼= A1(q), then (3p − 1)/2 is equal to q, q ± 1
or (q ± 1)/2. In each of these cases, q ≤ 3p, hence |K/H| < 33p. Write
q = rf . Then |G/K| < 3p for 23

p/2 > 3p and |G/K| | |Out(K/H)| = 2f since
|Out(A1(r

f ))| = 2f .
If p ≥ 14 then there exists a Hall factor g of |G| = 3p(p+1)(3p − 1)

·
∏p−1
i=1 (32i − 1) satisfying g > 34p. Moreover, for any prime r′ | g we have

gr′ < (3p−1)/2 by Lemma 8. Clearly (g, |H|) 6= 1. Now let p′ be a prime such
that p′ | (g, |H|) and let Sp′ ∈ Sylp′(G). Then Sp′ is a normal π1-subgroup of
G and |Sp′ | < (3p − 1)/2, which contradicts Lemma 1.

By a trivial calculation we can show that p′ cannot be 5, 7, 11 or 13.

Subcase 4.2. If K/H ∼= Ap′(q) (q−1 | p′−1), then we have (3p−1)/2 =

(qp
′ − 1)/(q − 1). Obviously q 6= 2, and hence qp

′ ≥ 3p.
If p′ ≥ 5, one has qp

′(p′+1)/2 ≥ 33p; then Lemma 7 implies that q is
a power of 3. But 3p − 3 = 2(qp

′−1 + qp
′−2 + · · · + q). Thus q = 3 and

p = p′. Therefore |K/H| = 3p(p+1)/2
∏p
i=1(3

i+1 − 1). On the other hand,
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since |G/K| | |Out(K/H)| = |Out(Ap(3))| = 4, we have 3p−1 + 1 | |H|. Take
a primitive prime r of 32(p−1) − 1, and let Sr ∈ Sylr(H). By Lemma 2, we
have Sr � G. Once again Lemma 1 yields |Sr| ≡ 1 (mod (3p − 1)/2). But
|Sr| | 3p−1 + 1, a contradiction.

By a trivial calculation we can show that p′ cannot be 2 or 3.

Subcase 4.3. If K/H ∼= Ap′−1(q), then (qp
′ − 1)/((q − 1)(p′, q − 1)) =

(3p − 1)/2. Here q 6= 2, and so qp
′ ≥ 3p.

If p′ ≥ 7, then qp
′(p′−1)/2 ≥ 33p, hence q is a power of 3 by Lemma 7. Since

(qp
′−1)/((q−1)(p′, q−1)) = (3p−1)/2, one has q3 | 3p. Thus (q−1)(p′, q−1) ≡

2 (mod q3). Therefore q = 3 and p = p′, which means that 3p−1 + 1 | |H|.
Take a primitive prime r of 32(p−1) − 1, and let Sr ∈ Sylr(H). By Lemma 2
we find that Sr � G, and |Sr| ≡ 1 (mod (3p − 1)/2) by Lemma 1. But
|Sr| | 3p−1 + 1, a contradiction.

By a trivial calculation we can show that p′ cannot be 2, 3 or 5.

Subcase 4.4. If K/H ∼= 2Ap′−1(q), then we have (3p − 1)/2 =

(qp
′
+ 1)/((q + 1)(p′, q + 1)), and qp

′
> 3p.

If p′ ≥ 7, we have qp
′(p′−1)/2 > 33p. Hence q is a power of 3 by Lemma 7.

Since (qp
′
+ 1)/((q + 1)(p′, q + 1)) = (3p − 1)/2, one has q3 | 3p, and hence

(q + 1)(p′, q + 1) + 2 ≡ 0 (mod q3), a contradiction.
By a trivial calculation we can show that p′ cannot 2, 3 or 5.

Subcase 4.5. If K/H ∼= 2Ap′(q), then (3p − 1)/2 = (qp
′
+ 1)/(q + 1),

and qp
′
> 3p.

If p′ ≥ 5, then qp
′(p′+1)/2 > 33p. So q is a power of 3 by Lemma 7. Since

(qp
′−1)/((q−1)(p′, q−1)) = (3p−1)/2, we have q3 | 3p, and hence q+3 ≡ 0

(mod q3), a contradiction.
If p′ is 2, 3 or 5, we get a contradiction by a trivial calculation.

Subcase 4.6. If K/H ∼= E6(q), then (q6+q3+1)/(3, q−1) = (3p−1)/2.
Hence q9 > 3p and q36 > 34(p−1). Therefore q is a power of 3 by Lemma 7,
and so 2(q6 + q3) = 3p − 3, a contradiction.

If K/H ∼= 2E6(q), then (q6 − q3 + 1)/(3, q − 1) = (3p − 1)/2, hence
q9 > 3p, so q36 > 34(p−1). Therefore q is a power of 3 by Lemma 7, and so
2(q6 − q3) = 3p − 3, a contradiction.

If K/H ∼= F4(q), then q4 − q2 + 1 = (3p − 1)/2. Hence q4 > 3p−1 and
q24 > 33(p−1). Therefore q is a power of 3 by Lemma 7 and so 2(q4 − q2) =
3p − 3, a contradiction.

If K/H ∼= 2F4(q), q = 22m+1 (m ≥ 1), then q2 ±
√

2q2 + q ±
√

2q + 1 =
(3p − 1)/2. Hence 2q2 > (3p − 1)/2, as q2 > 3p−2. Therefore q12 > 34(p−1)

since p ≥ 5, and so q is a power of 3 by Lemma 7, a contradiction.
If K/H ∼= E8(q), then (3p − 1)/2 equals q8 + q7 − q5 − q4 − q3 + q + 1,

or q8 − q7 + q5 − q4 + q3 − q + 1, or q8 − q4 + 1, or q8 − q6 + q4 − q2 + 1.
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Hence q10 > 3p, so q120 > 34p. Therefore q is a power of 3 by Lemma 7, a
contradiction.

Case 5. We prove that K/H � Bn(q), Cn(q).

Subcase 5.1. If K/H ∼= Cp′(2), then 2p
′ − 1 = (3p − 1)/2, so 2p

′+1 − 1
= 3p, which contradicts Lemma 5.

Subcase 5.2. If K/H ∼= Bp′(3) or Cp′(3), then (3p−1)/2 = (3p
′ −1)/2,

thus p = p′, hence |Bp(3)| and |Cp(3)| are divisors of |Dp(3)|, which is
impossible.

Subcase 5.3. If K/H ∼= Bn(q) or Cn(q) (q odd, 4 ≤ n = 2m), then
(qn + 1)/2 = (3p − 1)/2, and furthermore qn+1 > 3p. Noticing that n ≥ 4,

one sees that qn
2
> 33p. By Lemma 7, q is a power of 3, which contradicts

qn + 1 = 3p − 1.

Case 6. We prove that K/H � 2Dn(q).

Subcase 6.1. If K/H ∼= 2Dp′(3) (5 ≤ p′ 6= 2k + 1), then (3p − 1)/2 =

(3p
′
+ 1)/4, so that 2 · 3p − 3p

′
= 3, a contradiction.

If K/H ∼= 2Dn(3), where 9 ≤ n = 2k+1 is not a prime, then (3p−1)/2 =
(3n−1 + 1)/2, and we have 2 · (3p − 3n−1) = 3, which is impossible.

If K/H ∼= 2Dp′(3), where 5 ≤ p′ = 2k + 1, then (3p − 1)/2 = (3p
′
+ 1)/4,

hence 4 · 3p − 2 · 3p′ = 6, which is impossible.

Subcase 6.2. If K/H ∼= 2Dp′+1(2) (p′ 6= 2m − 1), then (3p − 1)/2 =

2p
′ − 1, 3p = 2p

′+1 − 1, which contradicts Lemma 5.
If K/H ∼= 2Dp′+1(2) (3 ≤ p′ = 2k − 1), then (3p − 1)/2 = 2p

′ − 1, hence

2p
′+1 − 3p = 1, a contradiction to Lemma 5.

Subcase 6.3. If K/H ∼= 2Dn(q) (2 ≤ n = 2k), then we have (3p−1)/2 =
(qn + 1)(2, q − 1), hence qn+1 > 3p.

If n ≥ 8, we have qn(n−1) > 33p. By Lemma 7, it follows that q is a power
of 3, which contradicts (3p − 1)/2 = (qn + 1)(2, q − 1).

Case 7. We prove that K/H � G2(q),
2G2(q) (q = 32k+1), 3D4(q).

Subcase 7.1. If K/H ∼= G2(q), then (3p − 1)/2 = q2 ± q + 1.
If 3 | q, then q = 3 by the above equations, but this is impossible.
If q 6≡ 1 (mod 3), then q6 > 33(p−1). Because q6 divides |G2(q)|, by

Lemma 8, we have 3 | q. For the same reason as above, we get a contradiction.
If K/H ∼= 2G2(q) (q = 32k+1), then (3p − 1)/2 = q ±

√
3q + 1. It follows

that 3p − 3 = 2 · (q ±
√

3q), a contradiction obviously.

Subcase 7.2. If K/H ∼= 3D4(q), then q4 − q2 + 1 = (3p − 1)/2, hence
q4 > 3p−1, so q12 > 33(p−1). Therefore q is a power of 3 by Lemma 7. Further
2(q4 − q2) = 3p − 3, a contradiction.
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Case 8. We prove that K/H � 2B2(q) (4 ≤ q = 22k+1).
Indeed, otherwise (3p−1)/2 = q±

√
2q+ 1 or q−1. Clearly (3p−1)/2 6=

q − 1.
If (3p − 1)/2 = q ±

√
2q + 1, then 3(3p−1 − 1) = 2k+2(2k ± 1). Hence

2k | p−1 by Lemma 7. Furthermore, for k ≥ 4, 2k+2(2k±1) = 3(3p−1−1) >

3p−1 > 32
k
> 22

k
> 22k+3 > 2k+2(2k ± 1), a contradiction. By calculation

we can prove that k cannot be 1, 2 or 3.

Case 9. Concluding the proof.
From Cases 1–8 and Lemma 3 we deduce that K/H is isomorphic to one

of Dn(q).
If K/H ∼= Dp′+1(3) (p′ ≥ 3), then (3p − 1)/2 = (3p

′ − 1)/2, and hence
p = p′. Therefore |Dp+1(3)| | |Dp(3)|, a contradiction.

If K/H ∼= Dp′(5) (p′ ≥ 5), then (5p
′ − 1)/4 = (3p − 1)/2, and 5p

′
> 3p.

Therefore 5p
′(p′−1) > 33(p+1), which contradicts Lemma 7.

So K/H ∼= Dp′(3) and (3p
′ − 1)/2 = (3p − 1)/2. It is easy to see that

p = p′, and hence K/H ∼= Dp(3). Therefore H = 1 and thus G ∼= M .
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