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STABILITY RESULTS FOR ROTATIONALLY INVARIANT
CONSTANT MEAN CURVATURE SURFACES

IN HYPERBOLIC SPACE

BY

MOHAMED JLELI (Riyadh)

Abstract. We prove the existence of many constant mean curvature surfaces of revo-
lution with two ends which are immersed or embedded in hyperbolic space. We also study
their stability.

1. Introduction. All constant mean curvature surfaces of revolution
in R3 were classified in [D]. In particular, Delaunay discovered a beau-
tiful one-parameter family of complete noncompact surfaces of constant
mean curvature one, now called the Delaunay surfaces. The elements of
this family which are embedded are called unduloids; all other elements,
which correspond to negative Delaunay parameters, are immersed and are
called nodoids.

The unduloids are stable in the sense that their global constant mean
curvature deformations all lead to other elements of this Delaunay family.
The same property is shared by nodoids only when the Delaunay parameter
is sufficiently close to zero. On the other hand, in [MP1] it is shown that
as the Delaunay parameter decreases to −∞, infinitely many new families
of complete, cylindrically bounded constant mean curvature surfaces bifur-
cate from this Delaunay family. The surfaces in these branches have only a
discrete symmetry group.

In 1981, Hsiang and Yu [HY] generalized Delaunay’s classification to the
hypersurfaces of revolution in higher dimensions which have constant mean
curvature equal to 1 and some symmetries. Specifically in Rn+1, for n > 3,
there exist two families of complete constant mean curvature hypersurfaces
of revolution. The elements of the first family are embedded in Rn+1 while
the second family constitutes a one-parameter family of immersed hyper-
surfaces.

Most of the results known for Euclidean spaces can be generalized to
other space forms. In particular, a representation formula for constant mean
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curvature surfaces in the hyperbolic 3-space H3 has been discovered by
Bryant [B]. This shows that, to some extent, constant mean curvature sur-
faces in H3 behave like minimal surfaces in R3. This is not surprising in
view of the local isometry between minimal surfaces in R3 and constant
mean curvature surfaces in H3 discovered by Lawson [L]. Beside the well-
known horospheres, which have one end, there exists a one-parameter family
of constant mean curvature surfaces of revolution with two ends which are
commonly known as “catenoid cousins” [B], referring to the fact that they
are related to catenoids through Lawson’s correspondence.

In this paper, we initiate the study of constant mean curvature surfaces
with two ends in the hyperbolic space H3. As in the Euclidean case, using
an argument based on solving a second order ordinary differential equa-
tion one easily shows that there exists a one-parameter family of embedded
constant mean curvature surfaces of revolution in H3. However, the other
one-parameter family of immersed not embedded constant mean curvature
surfaces of revolution has to be constructed. Specifically, we prove

Main Theorem 1.1. Let H > 1. There exists τH > 0 and a one-
parameter family of surfaces of revolution in the hyperbolic 3-space H3 de-
noted by Dτ for τ ∈ (−∞, 0) ∪ (0, τH ] such that for τ ∈ (0, τH ], the surface
Dτ is embedded and has mean curvature equal to H. For τ ∈ (−∞, 0), Dτ
also has mean curvature H but is only immersed rather than embedded.

The second part of the paper is devoted to proving a maximum principle
for the Jacobi operator associated with a Delaunay surface. However, for the
result to hold, we need to impose a lower bound on the Delaunay parameter
(τ ∈ [τH , 0) ∪ (0, τH ]), where τH depends only on the curvature H. More
precisely, we prove

Main Theorem 1.2. There exists τH < 0 such that for all τ ∈ (τH , 0)∪
(0, τH ], the Jacobi operator associated with the surface Dτ satisfies the max-
imum principle.

2. Constant mean curvature surfaces of revolution. We still con-
sider the upper-half-space model

H3 := {(x1, x2, y) ∈ R3 : y > 0},
endowed with the metric

ghyp :=
1

y2
(dx2

1 + dx2
2 + dy2) =

1

y2
gEucl,

and we fix the geodesic
ζ(t) = (0, 0, et).

The profile curve of the surface of revolution with constant mean curvature
equal to H > 1 in hyperbolic space is described, say in the vertical 2-
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dimensional plane {x1, y}, as a geodesic graph. The point ξ(t) in the profile
curve is at geodesic distance ρ(t) from the point ζ(t). Let ψ(t) be the angle

(
−−−→
Oζ(t),

−−−→
Oξ(t)). Then

sinh(ρ(t)) = tan(ψ(t)).

Using this notation, the constant mean curvature surfaces of revolution
(say around the y-axis) can be parameterized by

X : R× S1 → H3,

(t, θ) 7→
(
et sin(ψ(t)) cos(θ), et sin(ψ(t)) sin(θ), et cos(ψ(t))

)
.

Let us assume that the orientation of this surface is chosen so that the
unit inward normal vector field is given by

Nhyp(t, θ) :=
cos(ψ)√

1 + (∂tψ)2

(
−∂tg(t) cos(θ),−∂tg(t) sin(θ), ∂tf(t)

)
,

where

f(t) := et sin(ψ(t)) and g(t) := et cos(ψ(t)).

In the upper-half-space model, the mean curvature Hhyp of the surface
parameterized by X, endowed with the metric induced by ghyp, can be com-
pared with the mean curvature HEucl of the same surface, this time consid-
ered in R3, and hence endowed with the metric induced by gEucl. This is the
content of the following classical result whose proof can be found in [BE]
and [PP].

Theorem 2.1. Let Σ be a surface contained in the upper half-space.
We denote by z the height function and, if NEucl denotes the normal to the
surface in (R3, gEucl), we denote by N z

Eucl the vertical coordinate of NEucl

(the projection of NEucl onto the z-axis). Then the mean curvatures of Σ in
(H3, ghyp) and in (R3, gEucl) are related by

Hhyp = zHEucl +N z
Eucl.

It is easy to see that the first fundamental form, the normal vector and
the second fundamental form of the surface parameterized by X (endowed
with the metric induced by gEucl) are respectively given by:

I = e2t
(
(1 + (∂tψ)2)dt⊗ dt+ sin2(ψ)dθ ⊗ dθ

)
,

NEucl =
e−t√

1 + (∂tψ)2

(
−∂tg(t) cos(θ),−∂tg(t) sin(θ), ∂tf(t)

)
,

II =
et√

1 + (∂tψ)2

((
∂2
t ψ + (∂tψ)3 + ∂tψ

)
dt⊗ dt

− sin(ψ)(cos(ψ)− ∂tψ sin(ψ))dθ ⊗ dθ
)
.
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It follows at once from the above expressions that the mean curvature HEucl

of the surface parameterized by X satisfies

2HEucl =
−e−t

(1 + (∂tψ)2)3/2
(∂2
t ψ + (∂tψ)3 + ∂tψ) +

e−t(cos(ψ)− ∂tψ sin(ψ))

sin(ψ)(1 + (∂tψ)2)1/2
.

Finally, due to the last equation and Theorem 2.1, the mean curvature
of the surface parameterized by X is equal to the constant Hhyp > 1 if and
only if the scalar function ψ solves

(2.1) ∂2
t ψ −

1 + sin2(ψ)

sin(ψ) cos(ψ)
(1 + (∂tψ)2) +

2Hhyp

cos(ψ)
(1 + (∂tψ)2)3/2 = 0,

which is equivalent to the following Hamiltonian being constant:

(2.2) H(ψ, ∂tψ) :=
tan(ψ)

cos(ψ)
√

1 + (∂tψ)2
−Hhyp tan2(ψ).

In the rest of paper we write H for Hhyp.

2.1. Embedded constant mean curvature surfaces. It is easy to
show that there exists a one-parameter family of embedded constant mean
curvature surfaces of revolution in hyperbolic space. Indeed, there are two
special solutions of (2.1) which can be immediately determined.

For H > 1, we denote by cH the unique scalar in (0, π/2) such that

sin(cH) = H −
√
H2 − 1.

Then, the first solution is the constant solution ψ ≡ cH which corresponds
to the cone. The other explicit solution, corresponding to the horosphere, is
given by

ψ(t) = arccos

(√
H2 − 1

H
sinh(t)

)
for t ∈

(
0, sinh−1

(
πH

2
√
H2 − 1

))
.

These two solutions are the two end-points of a one-parameter family of so-
lutions of (2.2) which produce embedded constant mean curvature surfaces.

To describe this family it will be convenient to define a positive real τH
such that

2τ2
H =

1

H +
√
H2 − 1

.

Given τ ∈ (0, τH ], we define ε ∈ (0, cH ] by the identity

ε
√

1 + ε2 −Hε2 = τ2

and we define the function ψτ to be the unique solution of (2.1), with H > 1,
such that

tan(ψτ (0)) = ε and ∂tψτ (0) = 0.

Then
H(ψτ , ∂tψτ ) = τ2
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is constant along solutions of (2.1). Since the curve (ψτ , ∂tψτ ) is closed, it
is easy to show that the function t 7→ ψτ (t) is periodic with period Tτ given
by

Tτ := 2

η2�

η1

τ2 +Hη2

1 + η2

dη

f(η)
,

where η1 and η2 are the positive roots of

f(η) :=
(
(1−H2)η4 + (1− 2Hτ2)η2 − τ4

)1/2
.

We will denote by Dτ the surface of revolution parameterized by

Xτ (t, θ) =
(
et sin(ψτ (t)) cos(θ), et sin(ψτ (t)) sin(θ), et cos(ψτ (t))

)
.

By construction, Dτ is an embedded constant mean curvature surface of
revolution, which will be called an unduloid.

2.2. Immersed constant mean curvature hypersurfaces. Given
τ ∈ (−∞, 0), we define ε > 0 by the identity

ε
√

1 + ε2 +Hε2 = τ2

and we define the function ψ̄τ to be the unique solution of (2.1), with H
replaced by −H, such that ψ̄τ (0) = tan−1(ε) and ∂tψ̄τ (0) = 0. Using the
fact that

H(ψ̄τ , ∂tψ̄τ ) = τ2

is constant along solutions of (2.1), it is a simple exercise to show that ψ̄τ
is defined over the maximal interval (−T̄τ , T̄τ ), where

T̄τ := 2

η2�

η1

τ2 −Hη2

1 + η2

dη

g(η)
,

with η1 and η2 denoting the positive roots of

g(η) :=
(
(1−H2)η4 + (1 + 2Hτ2)η2 − τ4

)1/2
.

Furthermore, we have

lim
t→±T̄τ

ψ̄τ = − tan−1

(
τ√
H

)
and lim

t→±T̄τ
∂tψ̄τ = ±∞.

Now, for the same value of τ , we define ε̃ ∈ (1,+∞) by the identity

ε̃
√

1 + ε̃2 −Hε̃2 = −τ2.

This being done, we define the function ψ̃τ to be the unique solution of (2.1),
with H > 1 such that ψ̃τ (0) = tan−1(ε̃) and ∂tψ̃τ (0) = 0. Using the fact
that

H(ψ̃τ , ∂tψ̃τ ) = −τ2
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is constant along solutions of (2.1), as above there exists ψ̃τ which is defined
in (−T̃τ , T̃τ ), where

T̃τ := 2

η2�

η1

Hη2 − τ2

1 + η2

dη

h(η)
,

with η1 and η2 denoting the positive roots of

h(η) :=
(
(1−H2)η4 + (1 + 2Hτ2)η2 − τ4

)1/2
.

Furthermore, we have

lim
t→±T̃τ

ψ̃τ = − tan−1

(
τ√
H

)
and lim

t→±T̃τ
∂tψ̃τ = ∓∞.

Finally, the graph of the function ψ̄τ and the graph of the function ψ̃τ
defined above (once translated by T̃τ − T̄τ ) can be glued together to produce
a piece of constant mean curvature surface of revolution. Now we can extend
this piece of surface by periodicity to produce a complete immersed constant
mean curvature surface in H3. These surfaces will be referred to as nodoids.

3. Isothermal parameterization. The previous parameterization can
probably be used to investigate the geometric properties of the surfaces.
However, in our analysis, it will be more interesting to consider an isother-
mal type parameterization which obscures the geometric properties of the
surfaces, but is more convenient for analytical purposes.

Thus, we are now looking for surfaces of revolution which can be param-
eterized by

X(s, θ) =
(
ϕ(s)κ(s) cos(θ), ϕ(s)κ(s) sin(θ), κ(s)

)
for (s, θ) ∈ R × S1. The constant τ being fixed, the functions ϕ and κ are
determined by requiring that the surface parameterized by X have constant
mean curvature equal to H and the metric associated with the parameteri-
zation be conformal to the product metric on R× S1, namely

(3.1) (∂s(ϕκ))2 + (∂sκ)2 = ϕ2κ2.

This time, the first fundamental form g of the surface parameterized by
X in the hyperbolic space is given by

ghyp = ϕ2(ds⊗ ds+ dθ ⊗ dθ).
Since

(3.2) ϕ(s) = tan(ψ(t)) and e2t = κ2(s)(1 + ϕ2(s)),

it is easy to deduce that

(1 + (∂tψ)2)(ϕ∂sϕ+ (1 + ϕ2)κ−1∂sκ)2 = (1 + ϕ2)ϕ2,
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and

∂2
t ψ(ϕ∂sϕ +(1+ϕ2)κ−1∂sκ)4 = (1+ϕ2)(ϕ2∂2

sϕ (1+ϕ2)−ϕ(∂sϕ)2(1+2ϕ2)).

Due to (3.1), (3.2) and the last two equations, (2.1) can be rewritten as

(3.3) ∂2
sϕ− (1 + 2ϕ2)ϕ+ 2H(ϕ2∂sϕ+ (1 + ϕ2)ϕκ−1∂sκ) = 0.

Since the function ϕ is positive, we have

ϕ(s) := |τ |eσ(s)

for some scalar function s 7→ σ(s). Then (3.1) becomes

(3.4) (1 + τ2e2σ)(κ−1∂sκ)2 + 2τ2e2σ∂sσ(κ−1∂sκ) + τ2e2σ((∂sσ)2 − 1) = 0,

and (3.3) becomes

(3.5) ∂2
sσ− (1+2τ2e2σ− (∂sσ)2)+2H(τ2e2σ∂sσ+(1+ τ2e2σ)κ−1∂sκ) = 0.

Thus, in order to find constant mean curvature surfaces of revolution, we
have to solve (3.4) together with (3.5). This is the content of the next sub-
section.

3.1. The unduloids. Recall that we have defined the positive real num-
ber τH by

2τ2
H :=

1

H +
√
H2 − 1

.

For all τ ∈ (0, τH ], we define στ to be the unique smooth nonconstant
solution of

(3.6) (∂sσ)2 + τ2((Heσ + e−σ)2 − e2σ) = 1,

with the initial conditions ∂sσ(0) = 0 and σ(0) < 0. Next we define the
function κτ to be the unique solution of

(3.7) κ−1∂sκ = (H − ∂sσ + e−2σ)
τ2e2σ

1 + τ2e2σ
.

It is easy to check that στ and κτ satisfy (3.4) and (3.5). Moreover, the
function κτ is increasing since ∂sκτ > 0.

In particular, the surface parameterized by

Xτ (s, θ) :=
(
τeστ (s)κτ (s) cos(θ), τeστ (s)κτ (s) sin(θ), κτ (s)

)
,

for (s, θ) ∈ R × S1, is an embedded constant mean curvature surface of
revolution. It coincides with the surface defined in §2.1 and, as already
mentioned, this surface will be referred to as the unduloid of parameter τ .

Observe that the extreme element in this family which corresponds to
τ = τH is a cone, while, as τ tends to 0, the family of unduloids converges
to a sequence of spheres arranged along the y-axis.
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3.2. The nodoids. For all τ < 0, we define στ to be the unique smooth
nonconstant solution of

(3.8) (∂sσ)2 + τ2((Heσ − e−σ)2 − e2σ) = 1,

with the initial conditions ∂sσ(0) = 0 and σ(0) < 0. Next, we define the
function κτ to be the unique solution of

(3.9) κ−1∂sκ = (H − ∂sσ − e−2σ)
τ2e2σ

1 + τ2e2σ
.

Again, it is easy to check that στ and κτ satisfy (3.4) and (3.5). However,
this time the function κτ is not monotone anymore since ∂κτ changes sign.

Hence, the surface parameterized by

Xτ (s, θ) :=
(
−τeστ (s)κτ (s) cos(θ),−τeστ (s)κτ (s) sin(θ), κτ (s)

)
for (s, θ) ∈ R × S1, is an immersed constant mean curvature surface of
revolution. This surface coincides with the surface defined in §2.2 and will
be referred to as the nodoid of parameter τ .

4. The Jacobi operator. In this section, we define and study the
Jacobi operator associated with a Delaunay hypersurface in the hyperbolic
space. Recall that this surface can be parameterized as

R× S1 3 (s, θ) 7→ X(s, θ) :=
(
ϕ(s)κ(s) cos(θ), ϕ(s)κ(s) sin(θ), κ(s)

)
.

Assume that the orientation of this surface is chosen so that the unit normal
vector field is given by

(4.1) Nτ := ϕ−1
(
−∂sκ cos(θ),−∂sκ sin(θ), ∂s(ϕκ)

)
.

Any surface close enough to Dτ can be parameterized (at least locally) as a
normal graph over Dτ , that is, by

Xω = Xτ + ωNτ

for some (small) smooth function ω. The surface parameterized by Xω will
be denoted by Dτ (ω) and we define the mean curvature operator H(ω) to
be the mean curvature of Dτ (ω).

It is well known that the linearized mean curvature operator associated
with Dτ , which is usually referred to as the Jacobi operator, is given by

Lτ := ∆τ + |Aτ |2 + RicH3(Nτ , Nτ ).

where ∆τ is the Laplace–Beltrami operator, |Aτ |2 is the square of the norm
of the second fundamental form of Dτ , and RicH3 is the Ricci tensor of
(H3, ghyp).

A simple computation (see [BLR] and [KKMS]) shows that

(4.2) Lτ := A−1B−1∂t(A
−1B∂t) +B−2∂2

θ + 2(H2 − 1) + 2τ4B−4,
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with

A := (1 + (∂tψ)2)1/2(1 + tan2(ψ))1/2 and B := tan(ψ).

Using the isothermal parameterization, we express the Jacobi operator ex-
plicitly in terms of the function σ by

(4.3) τ2e2σLτ = ∂2
s + ∂2

θ + 2τ2((H2 − 1)e2σ + e−2σ).

4.1. Geometric Jacobi fields. Some Jacobi fields, i.e., solutions of the
homogeneous problem

Lτω = 0,

can be explicitly computed when they correspond to a smooth one-parameter
family of constant mean curvature surfaces Cλ, for λ ∈ (−1, 1) to which Dτ
belongs, for example C0 = Dτ . For λ small enough, the surface Cλ can be
written (at least locally) as a normal graph over Dτ , for some function ωλ.
Differentiation with respect to λ, at λ = 0, yields a Jacobi field.

In the special case where the one-parameter family of constant mean
curvature surfaces is given by the action of a one-parameter family of rigid
motions, the corresponding Jacobi field can be obtained by projecting, onto
the normal bundle of Dτ , the Killing vector field associated to the one-
parameter family of rigid motions under consideration. These Killing vector
fields arise from the isometries of (H3, ghyp) and Liouville’s theorem shows
that these isometries are the restrictions to H3 of conformal transformations
of R3 that take H3 onto itself. More details are given in [PP]. We now
describe these Jacobi fields as well as another independent Jacobi field which
arises by varying the Delaunay parameter τ .

• Translation along the axis of revolution: To begin, for τ ∈ (−∞, 0) ∪
(0, τH), we define Φ0,+

τ to be the Jacobi field corresponding to the translation
of Dτ along its axis of revolution. As explained above, this Jacobi field can
be obtained by projecting, onto the normal bundle, the Killing field

χ1 := (ϕκ cos(θ), ϕκ sin(θ), κ).

Then

(4.4) Φ0,+
τ := 〈Nτ , χ1〉H3 = κ−2〈Nτ , χ1〉R3 = ϕ−1∂sϕ

is a solution of Lτω = 0. It is easy to check that Φ0,+
τ only depends on s and

is periodic. In particular, this implies that this Jacobi field is bounded.

• Translations orthogonal to the axis of revolution: Let

χ2 := (a, 0) ∈ R2 × R
denote the constant Killing field which corresponds to the translations in
the a direction in R2. Then we have

〈Nτ , χ2〉H3 = −ϕ−1κ−2∂sκa · (cos(θ), sin(θ)).
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Taking a to be any vector of the canonical basis of R2, we get

(4.5) Φ±1,+
τ := ϕ−1κ−2∂sκe

±iθ

which are solutions of Lτω = 0.

• Composition of translation and two inversions: Let

χ3 := (1 + ϕ2)κ2(a, 0)− 2ϕκa · (cos(θ), sin(θ))χ1

denote the Killing field which corresponds to the composition of translation
in the a direction in R2 and two central inversions of the Delaunay surface
at the origin. Then we have

〈Nτ , χ3〉H3 = −(ϕ−1(1 + ϕ2)∂sκ+ 2κ∂sϕ)a · (cos(θ), sin(θ)).

Again taking a to be any vector of the canonical basis of R2, we get

(4.6) Φ±1,−
τ := (ϕ−1(1 + ϕ2)∂sκ+ 2κ∂sϕ)e±iθ

which are solutions of Lτω = 0.

•Variation of the Delaunay parameter: Finally, the Jacobi field corre-
sponding to varying the parameter τ ∈ (−∞, 0)∪ (0, τH) will be denoted by

Φ0,−
τ . It can be obtained by writing, for η small enough, the constant mean

curvature hypersurface Dτ+η as a normal graph over Dτ for some function
ωη and differentiating ωη with respect to η at η = 0. More precisely, for τ ′

close to τ there exists a local diffeomorphism Φτ ′ such that

Xτ ′ ◦ Φτ ′ = Xτ + ωτ ′Nτ .

In particular, we get

ωτ ′ = 〈Xτ ′ ◦ Φτ ′ −Xτ , Nτ 〉H3

and differentiating ωτ ′ with respect to τ ′ at τ ′ = τ we get

∂τ ′ωτ ′ |τ ′=τ = 〈∂τXτ + DXτ (∂τΦτ ), Nτ 〉H3 .

Since 〈DXτ (∂τΦτ ), Nτ 〉H3 ≡ 0, the corresponding Jacobi field takes the form

(4.7) Φ0,−
τ = κ−2(∂τϕ∂s(ϕκ)− ϕ−1∂sκ∂τ (ϕκ)).

4.2. Maximum principle for the Delaunay surface. We prove a
maximum principle for Lτ , the Jacobi operator associated with a Delaunay
surface.

Proposition 4.1. There exists τH < 0 such that for all τ ∈ (τH , 0) ∪
(0, τH ], if v is a bounded solution of Lτv = 0 in (s1, s2)×S1, with boundary
data v = 0 on {s1, s2}× S1 and if, for all s ∈ (s1, s2), the function v(s, ·) is
L2-orthogonal to Span{1, e±iθ} on S1, then v = 0.

Proof. We consider the eigenfunction decomposition of v

v =
∑
j≥2

vje
ijθ.
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Multiplying the equation Lτv = 0 by ϕ2
τvje

ijθ and integrating by parts over
(s1, s2)× S1, we obtain

(4.8)
�
(∂svj)

2 + j2
�
v2
j = 2(H2 − 1)

�
ϕ2
τv

2
j + 2τ4

�
ϕ−2
τ v2

j

where all integrals are over (s1, s2).
Due to (3.6), (3.8) and the fact that ϕτ = |τ |eστ , we have

(∂sϕτ )2 = ϕ2
τ + ϕ4

τ − (Hϕ2
τ + iτ2)2,

Multiplying this equality by ϕ−2
τ v2

j gives
�
ϕ−2
τ (∂sϕτ )2v2

j = (1− 2iHτ2)
�
v2
j + (1−H2)

�
ϕ2
τv

2
j − τ4

�
ϕ−2
τ v2

j .

Adding the last equation multiplied by 2 and (4.8), we obtain

(j2 − 2 + 4iτ2H)
�
v2
j +

�
ϕ−2
τ (∂sϕτ )2v2

j +
�
(∂svj)

2 = 0.

It is easy to see that if τ ∈ [−1/
√

2H, 0) ∪ (0, τH ] and j ≥ 2, then vj ≡ 0.

Similar results to the last proposition can be obtained if s2 = +∞ and
v decays exponentially at +∞.

As in [MP1] and [J1], the last stability result proves that the set of
constant mean curvature surfaces in hyperbolic space is “singular”. In a
forthcoming paper we will use the Crandall–Rabinowitz Theorem [CR] to
study the existence of new constant mean curvature surfaces which bifur-
cate from the family of the immersed surfaces. In particular, we will try to
generalize to H3 the results obtained in [MP2] and [J2].
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Grenoble 16 (1998), 43–79.

[BLR] P. Bérard, L. Lopes de Lima and W. Rossman, Index growth of hypersurfaces
with constant mean curvature, Math. Z. 239 (2002), 99–115.

[B] R. L. Bryant, Surfaces of mean curvature one in hyperbolic space, in: Théorie
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