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DISCRETE ABELIAN GROUPS
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Abstract. Let G be a compact abelian group with dual group Γ and let ε > 0. A set
E ⊂ Γ is a “weak ε-Kronecker set” if for every ϕ : E→ T there exists x in the dual of Γ
such that |ϕ(γ)− γ(x)| ≤ ε for all γ ∈ E. When ε <

√
2, every bounded function on E is

known to be the restriction of a Fourier–Stieltjes transform of a discrete measure. (Such
sets are called I0.)

We show that for every infinite set E there exists a weak 1-Kronecker subset F, of
the same cardinality as E, provided there are not “too many” elements of order 2 in
the subgroup generated by E. When there are “too many” elements of order 2, we show
that there exists a subset F, of the same cardinality as E, on which every {−1, 1}-valued
function can be interpolated exactly. Such sets are also I0. In both cases, the set F also
has the property that the only continuous character at which F · F−1 can cluster in the
Bohr topology is 1. This improves upon previous results concerning the existence of I0
subsets of a given E.

1. Introduction

1.1. Terminology and background. Let G denote a compact abelian
group and Γ its discrete dual group. For U ⊆ G, we let Md(U) denote
the bounded discrete measures concentrated on U , and M+

d (U) the non-
negative measures in Md(U). By `∞(E) we mean the bounded complex-
valued functions on E with supremum norm.

Definition 1.1. The subset E ⊆ Γ is said to be I0(U) if for every
ϕ ∈ `∞(E) there is a measure µ ∈Md(U) with µ̂(γ) = ϕ(γ) for every γ ∈ E.
Furthermore, E is said to be FZI0(U) if whenever ϕ ∈ `∞(E) is Hermitian
(i.e., ϕ(γ−1) = ϕ(γ) for all γ ∈ E∩E−1), then there exists µ ∈M+

d (U) with
µ̂ = ϕ on E.

Definition 1.2. Let ε > 0. The subset E is said to be ε-Kronecker(U)
if for every ϕ : E→ T there exists x ∈ U such that |ϕ(γ)− γ(x)| < ε for all
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γ ∈ E, and is called weak ε-Kronecker(U) if the weaker inequality ≤ can be
achieved.

If U = G, we omit the writing of U from these definitions.

It is known that ε-Kronecker(U) sets are FZI0(U) if ε <
√

2, FZI0(U)
sets are I0(U), and these inclusions are proper [4]. Moreover, if E is weak
ε-Kronecker and U is an open set, then a Baire category theorem argu-
ment shows that there is a finite set F ⊂ E such that E \ F is weak ε-
Kronecker(U) [3, Thm. 3.2] and thus FZI0(U). Since not even singletons
are FZI0(U) for small enough U (cf. [4]), the exclusion of a finite set is
essential.

Another interesting property of ε-Kronecker sets E with ε <
√

2 is that
E · E does not cluster in the Bohr topology at any continuous character,
and the only continuous character at which E · E−1 clusters is the identity
character 1.

Examples of infinite I0, FZI0 and ε-Kronecker sets abound. For instance,
an Hadamard set in Z of ratio q is an ε-Kronecker set with ε = |1−eiπ/(q−1)|.
Hartman and Ryll-Nardzewski [10] were the first to prove that every infinite
discrete group contains an I0 set of the same cardinality. Kunen and Rudin
[13] showed the existence of an I0 subset E with the same cardinality as Γ,
and with the additional properties that 1 was the only continuous character
which was a cluster point of E · E−1, and that E · E had no cluster point
in Γ if Γ did not contain “too many” elements of order 2. The current
authors showed in [4] that every infinite Γ contains an FZI0 set of the
same cardinality, and proofs of the existence of large ε-Kronecker sets under
various assumptions can be found in [1, 2, 8].

In this paper, our interest is in showing the existence of these and related
thin sets in every infinite subset of Γ. Our first result, Theorem 2.2, states
that an infinite set E ⊆ Γ contains an infinite subset F that is weak ε-
Kronecker for some ε ≤ 1 and of the same cardinality as E, provided that
the subgroup generated by E does not contain “too many” elements of order
two. In the next section we make “too many” precise and relate the size of
ε to the “amount” of torsion in Γ.

Elements of order two cause complications. Indeed, if E is ε-Kronecker
for some ε <

√
2, then E contains no elements of order two.

Recall that E (not containing 1) is called independent if wheneverN ∈ N,

γ1, . . . , γN ∈ E, kn ∈ Z and
∏N
n=1 γ

kn
n = 1, then γknn = 1 for all n. The set

of Rademacher functions (i.e., the projections on single coordinates) in the
dual group of Zℵ02 is an example of an independent set of characters all of
order two.

An independent set, E, of characters of order two has the property that
if ϕ : E → {−1, 1}, then there is an x ∈ G such that ϕ(γ) = γ(x) for all



EXISTENCE OF LARGE ε-KRONECKER SETS 3

γ ∈ E. Clearly, such sets are weak
√

2-Kronecker. We will see that they are
FZI0 and suitable cofinite subsets are FZI0(U).

However, translates of a Rademacher set need not have such good prop-
erties.

Example 1.3. Let E be the set of Rademacher functions and suppose
γ ∈ Z3 has order three. Then γE ∈ Z3

⊕
Zℵ02 is FZI0, but no subset is

FZI0(U) for U = {x ∈ G : γ(x) = 1} since the Fourier transform of any
positive measure concentrated on U will take on only real values on γE.
This is an instance of “too many” elements of order two.

These comments and examples motivate the following new definitions.

Definition 1.4. We say E is Rademacher if every element of E has
order two and E is independent. We say E is pseudo-Rademacher(U) if for
every ϕ : E → {−1, 1} there exists x ∈ U such that ϕ(γ) = γ(x) for all
γ ∈ E. A set is Rademacher(U) if it is both Rademacher and pseudo-Rade-
macher(U). When U = G we omit “(U)” in these definitions.

A translate of a Rademacher set by an independent character, such as
the set γE in Example 1.3, is an example of a pseudo-Rademacher set. An
independent set of characters of even order is also pseudo-Rademacher.

Clearly, pseudo-Rademacher sets are weak
√

2-Kronecker. It will be
shown that pseudo-Rademacher sets contain cofinite sets that are I0(U),
but unlike Rademacher sets, they need not contain any FZI0(U) subsets, as
the example above illustrates. Like ε-Kronecker sets, pseudo-Rademacher
sets also have the property that the only continuous character at which
E ·E−1 can cluster is 1.

Our second main result, Theorem 2.4, states that if the subgroup gen-
erated by E contains “too many” elements of order two, then E contains a
pseudo-Rademacher set of the same cardinality as E. In view of Example 1.3
this is the best that can be done; not every set contains an infinite subset
that is FZI0(U), but every infinite set contains an I0(U) set of the same
cardinality.

1.2. Outline of paper. In the next section we give precise statements
of our results and explicitly define what is meant by “too many” elements
of order two. In §3 we establish properties of Rademacher and pseudo-
Rademacher sets. Those properties complete the results of this paper and
complement known results for ε-Kronecker sets.

Preliminary lemmas for the proofs of our theorems are given in Section 4;
the new key idea arises in the proof of Lemma 4.6. In the last section we
give the proofs of our main theorems.
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2. Statement of results

2.1. “Large” sets. Before we can state our first result, we need some
notation and a definition. For a subset F ⊂ Γ we let 〈F〉 be the group
generated by F, and qF be the quotient map Γ → Γ/〈F〉. For 2 ≤ N ∈ N
we let ΓN be the subgroup of elements of Γ whose order divides N . In place
of qΓN

we write qN . Finally, Γ0 ⊂ Γ is the subgroup of elements of finite
order, and q0 the associated quotient group homomorphism.

We write |S| for the cardinality of the set S.

Definition 2.1. Let 2 ≤ N ∈ N and E ⊂ Γ. We say that E is N -large
if |qN (E)| < |E|. If E is not N -large, we say that E is N -small. We say E
is tor-large if |q0(E)| < |E|.

For example, Γ is 2-large if the index of {γ ∈ Γ : γ2 = 1} in Γ is less
than |Γ|. We note that if E is N -large and k ≥ 1, then E is kN -large, and if
E is N -large, then it is tor-large. If E generates Γ and |qN (Γ)| < |Γ|, then
E is N -large.

But E can be N -large without that last inequality holding. Take, for
instance, E to be the union of a countable Rademacher set with a singleton of
infinite order in Γ = Z⊕

⊕
Zℵ02 . Then |Γ/Γ2| is countably infinite, although

q2(E) contains only two elements.

We note that E can be tor-large yet not be N -large for any N ≥ 2 (the
method of Example 3.3 adapts easily).

2.2. Existence theorems

Theorem 2.2. Let E ⊂ Γ be infinite.

(1) If E is N -small for all N ≥ 2, then for every ε > 0, E contains an
ε-Kronecker subset, F, of the same cardinality.

(2) Suppose that E is M -large for some M . Let N be the smallest
such M , and L any prime power that divides N . Then E contains a
weak ε-Kronecker subset of the same cardinality, where ε =
|1− eπi/L|.

Remarks 2.3. (i) The example of Γ = Z shows that one has to choose
ε in Theorem 2.2(1) before finding F.

(ii) The dual of (Z3×Z5)
ℵ0 contains a union E of a countable independent

set of elements of order 3 and a countable independent set of elements of
order 5. That E is 15-large (though not 3- or 5-large). The existence of such
an E shows that L in Theorem 2.2(2) is needed.

The 2-large case being of particular importance, we give a more explicit
version of Theorem 2.2(2).
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Theorem 2.4. Let E ⊂ Γ be infinite and 2-large. Then E contains a
subset F that is pseudo-Rademacher and |F| = |E|. If E is countable, F may
be taken to be a translate of a Rademacher set.

This is best possible in the sense that a pseudo-Rademacher set E does
not always contain a translate of a Rademacher set of the same cardinality.
See Example 3.3.

2.3. Interpolation and the length of measures. The preceding the-
orems describe existence of subsets. We now make the interpolation proper-
ties of those subsets clearer.

When G is connected, every I0 set is I0(U) for all open, non-empty U .
Furthermore, when G is connected, every I0 set is a finite union of sets that
are I0(U) with bounded constants, by which we mean that there exists a
constant C such that for each open U ⊆ G there is a finite set F such that
E \ F is I0(U) and the interpolation constant from Md(U) to `∞(E \ F) is
at most C (see [7]).

A concept more useful than bounded constants is “bounded length”.

Definition 2.5. E is I0(U,N) if there exists N ∈ N such that for every
ϕ ∈ `∞(E) with ‖ϕ‖∞ ≤ 1, there exist cn ∈ C, n = 1, . . . , N, with |cn| ≤ 1

and xn ∈ U such that ‖ϕ−
∑N

n=1 cnδ̂xn‖∞ ≤ 1/2.

A Baire category theorem argument shows that every set that is I0(U)
is I0(U,N) for some N , and it is easy to see that E is I0(U,N) if and only if
it is I0(gU,N) for all g ∈ G. See [3, 12, 14, 16] for these and related results.

Definition 2.6. We will say that E is I0(U) with bounded length if
there exists a positive integer N with the property that for every open
neighbourhood U of the identity of G there exists a finite set F such that
E \ F is I0(U,N).

Note that if E is I0(U) with bounded length, then so is any translate of E.
Clearly, I0(U) with bounded length implies I0(U) with bounded constants.

We analogously define FZI0(U,N) and FZI0(U) with bounded length,
noting, however, FZI0(U) is not preserved by translation of U . The proof of
[4, Thm. 2.4], which states that FZI0(U) implies I0(U), also shows FZI0(U)
with bounded length implies I0(U) with bounded length. On the other hand,
Proposition 3.4 below implies the set γE in Example 1.3 is I0(U) with
bounded length, but not FZI0(U) with bounded length.

The proof of [7, Thm. 3.1] actually shows that every I0 set is a finite
union of sets that are I0(U) with bounded length. Furthermore, the proof
given in [4, Thm. 3.1], that an ε-Kronecker(U) set with ε <

√
2 is FZI0(U),

shows that such a set is FZI0(U,N) with N depending only on ε. Thus
ε-Kronecker sets are FZI0(U) with bounded length.
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Similar arguments (see Prop. 3.4) show that every Rademacher set is
FZI0(U) with bounded length and every translate of a pseudo-Rademacher
set is I0(U) with bounded length.

To conclude, we have the following result. Here, M0(Γ) is the set of mea-
sures on the Bohr compactification of Γ whose Fourier–Stieltjes transforms
vanish at infinity on G, when G is given the discrete topology. Items (3) and
(6) appear in [13] for the case E = Z.

Corollary 2.7. Let E ⊂ Γ be infinite. Then there exists F ⊂ E such
that:

(1) |F| = |E|;
(2) F is I0(U) with bounded length;
(3) the only continuous character at which F ·F−1 can cluster is 1; and
(4) the closure of F ·F−1 in Γ supports no non-zero measure in M0(Γ).

If, in addition, E is not 2-large, then:

(5) F is FZI0(U) with bounded length;
(6) F · F does not cluster at any continuous character.

Proof. If E is not 2-large, then Theorem 2.2 guarantees the existence of
a weak 1-Kronecker subset of E having the same cardinality as E. Weak
1-Kronecker sets are known to have properties (2)–(6) [4, 5].

If E is 2-large, then Theorem 2.4 gives a pseudo-Rademacher subset
F with |F| = |E|. Propositions 3.4–3.5 below show that F has properties
(2)–(4).

3. Rademacher and pseudo-Rademacher sets. In this section we
prove basic facts about Rademacher and pseudo-Rademacher sets. A key
observation is the following application of the Baire category theorem.

Lemma 3.1. Suppose E is a (pseudo-)Rademacher set and U ⊆ G is a
neighbourhood of the identity e ∈ G.

(1) Then there is a finite set F such that E \ F is (pseudo-)Radema-
cher(U).

(2) Suppose E is Rademacher and x ∈ G. Then there is a finite set F
such that E \ F is Rademacher(xU).

Proof. First, we recall some information about the topology of the prod-
uct space {−1, 1}E. For γ ∈ E, let Pγ be the projection on coordinate γ.
A basis for the open sets of {−1, 1}E is the collection of sets of the form
U = U(γ1, . . . , γL, ε1, . . . , εL) where 1 ≤ L, γl ∈ E, εl ∈ {−1, 1} and

Pγ(U) =

{ {εl} if γ = γl, 1 ≤ l ≤ L,

{−1, 1} otherwise.
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(1) Choose a compact neighbourhood V such that V 2 ⊆ U . By the
compactness of G, there are finitely many elements g1, . . . , gK ∈ G such
that G =

⋃K
k=1 gkV . Let

Xk = {ϕ ∈ {−1, 1}E : ∃x ∈ gkV such that ϕ(γ) = γ(x) ∀γ ∈ E}.

Those sets are closed in {−1, 1}E, and, since E is (pseudo-)Rademacher,
their union is all of the compact Hausdorff space {−1, 1}E. By the Baire
category theorem, one of the sets Xk has non-empty interior, say some
U = U(γ1, . . . , γL, ε1, . . . , εL) as above. That means there is a finite set
F = {γ1, . . . , γL} such that for each ϕ ∈ {−1, 1}E there is an x ∈ gkV such
that ϕ(γ) = γ(x) for all γ ∈ E \ F. Because the constant function 1 is also
in {−1, 1}E, there is some y ∈ gkV such that γ(y) = 1 for all γ ∈ E \ F.
But then also γ(y−1) = 1 for all such γ. Take z = xy−1 ∈ V 2 ⊆ U . Then
γ(z) = ϕ(γ) for all γ ∈ E \F. That proves E \F is pseudo-Rademacher(U).

(2) Now suppose E is Rademacher. Then E\F is pseudo-Rademacher(U)

by the preceding argument. Because E is Rademacher, δ̂x = ±1 on E. Let
ϕ : E \ F → {−1, 1}. Choose y ∈ U such that δ̂y = δ̂xϕ on E \ F. Then

δ̂yx = ϕ on E\F and yx ∈ xU . Therefore E\F is pseudo-Rademacher(xU),
so E \ F is Rademacher(xU).

Corollary 3.2. If E is Rademacher, V ⊂ G is a neighbourhood of the
identity and γ ∈ Γ, then there is a finite set F so that γ(E \ F) is pseu-
do-Rademacher(V ).

Proof. If γ has finite order, apply the lemma with U = {x : γ(x) = 1}∩V .

If γ has infinite order, then γk 6=
∏K
j=1 γ

kj
j for all choices γ1, . . . , γK ∈ E

and kj ∈ N since all γj ∈ E have order 2. Thus {γ} ∪E is still independent
so, using Lemma 4.1 below, we may assume that Γ = Z×〈E〉. Let H be the
dual of 〈E〉. Now we see that E restricted to H is pseudo-Rademacher(U),
where U = ({1} × H) ∩ V , and so Lemma 3.1 gives us a finite set F such
that E \ F is pseudo-Rademacher(U). It is now immediate that γ(E \ F) is
pseudo-Rademacher(V ).

However, a pseudo-Rademacher set need not be a translate of a single
Rademacher set.

Example 3.3. Inductively define cardinals aj by a1 = ℵ0 and aj+1 = 2aj .

Put G = T×
∏∞
j=1 Z

aj
2 and let γj ∈ Γ = Ĝ be the character γj = (j, 1, 1, . . .).

Let Ej be a Rademacher set of cardinality aj in the dual (1) of Zaj2 and set
E =

⋃∞
j=1 γjEj . It is easy to see that E is pseudo-Rademacher, but contains

no translate of a Rademacher subset of the same cardinality.

(1) We consider each such dual as a subgroup of Γ.
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Lemma 3.1 is also useful in deducing that Rademacher and pseudo-
Rademacher sets are FZI0(U) and I0(U) respectively.

Proposition 3.4.

(1) Every translate of a pseudo-Rademacher set is I0 and I0(U) with
bounded length.

(2) Every Rademacher set is FZI0 and FZI0(U) with bounded length.

Proof. (1) Suppose U is an e-neighbourhood in G. Because the prop-
erty I0(U) with length N is preserved under translation, there is no loss of
generality in assuming E is pseudo-Rademacher.

Obtain the finite set F from Lemma 3.1 such that E \ F is pseudo-
Rademacher(U) and assume ϕ ∈ `∞(E \ F) has norm at most one. Let
E+ = {γ ∈ E \ F : <ϕ(γ) ≥ 0} and E− = (E \ F) \E+. Obtain x ∈ U such
that γ(x) = 1 on E+ and γ(x) = −1 on E−. Then for all γ ∈ E \ F,∣∣∣∣<ϕ(γ)− 1

2
δ̂x(γ)

∣∣∣∣ ≤ 1

2
.

Now put ϕ1 = 2(δ̂x/2−<ϕ). This is a real-valued E\F-function, with norm
at most one, so we may repeat the argument to obtain x1 ∈ U with

ν1 =
1

2
δx +

1

4
δx1 and satisfying |<ϕ(γ)− ν̂1(γ)| ≤ 1

4

for all γ ∈ E \ F. We argue similarly with =ϕ to obtain ν2. Then for all
γ ∈ E \ F,

|ϕ(γ)− (ν̂1 + iν̂2)(γ)| ≤ 1

2
,

and thus E \ F is I0(U, 4).
(2) Since the Rademacher set E consists of only characters of order two,

to show E is FZI0(U) with bounded constants we need only interpolate
real-valued E-functions. The first step in the argument above shows that
given U open, there is a finite set F such that E \ F is FZI0(U, 1).

In either case, when U = G we can take F empty, and hence E is I0 in
the first case and FZI0 in the second.

In particular, the set γE of Example 1.3 is I0(U) with bounded length.
Being I0, a pseudo-Rademacher set will not cluster at a continuous character
[15, 18], but more can be said.

Proposition 3.5. If E is pseudo-Rademacher, then

(1) E ·E−1 does not cluster at any continuous character other than the
identity 1;

(2) for each integer k ≥ 1 the closure of (E ∪ E−1)k in Γ supports no
non-zero measure in M0(Γ).
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Unlike ε-Kronecker sets, the product of a pseudo-Rademacher set with
itself can cluster at a character, the set γE of Example 1.3 being a case in
point.

Proof. (1) If E · E−1 clusters at the continuous character γ 6= 1, then
there are disjoint E1,E2 ⊂ E such that for any finite set F, (E1\F)·(E2\F)−1

clusters at γ [3, Thm. 4.3]. Let U = {x : |γ(x)− 1| <
√

2}. By Lemma 3.1,
there is a finite set F such that E \ F is pseudo-Rademacher(U). Choose
u ∈ U such that λ(u) = 1 for all λ ∈ E1 \ F and χ(u) = −1 for all
χ ∈ E2 \ F. Because λχ(u) = −1 6= γ(u), this is a contradiction.

(2) We will use induction on k, after some preliminaries.
We write M0(X) for the elements of M0(Γ) supported on X ⊂ Γ. We use

the easily proved facts that (a) if µ ∈ M0(Γ) and ν � µ, then ν ∈ M0(Γ)
[9, 4.4.1], (b) if X ⊂ Γ is a Helson set, then M0(X) = {0} [9, p. 110], and
(c) the closure of an I0 set is Helson [11]; in particular, the closure of a
pseudo-Rademacher set is Helson. (These results may also be found in [6].)
That gives us the k = 1 case.

Now consider k = 2. Items (a)–(c) tell us that M0((E ∪E−1) · F) = {0}
for all pseudo-Rademacher sets E and finite sets F, and that if x, y ∈ G
with γ(x) = γ(y) for all but a finite number of γ ∈ E, then

(3.1) µ̂(x)− µ̂(y) =
�
(δ̂x − δ̂y) dµ = 0 for µ ∈M0((E ∪E−1)2).

Suppose µ ∈ M0((E ∪E−1)2). Because of property (a), we may assume
that µ is a probability measure. Let γ1, γ2, . . . be distinct elements of E and
let x1, x2, . . . ∈ G be such that for γ ∈ E,

γ(xj) =

{
−1 if γ = γk with k ≤ j,
1 otherwise.

The xj exist because E is pseudo-Rademacher. They are of course distinct.

By (3.1), µ̂(xj) = µ̂(e) = 1 for all j, so µ 6∈M0(Γ), a contradiction.
For general k, assume that the assertion has been proved for all 1 ≤ k

≤ K. If F ⊂ E is finite, then

(E ∪E−1)K+1 = [(E ∪E−1) \ (F ∪ F−1)]K+1 ∪X,
where X is a finite union of translates of sets of the form Em(E−1)n where
1 ≤ m+n ≤ K. That finite union supports no non-zero measures in M0(Γ)
by the induction hypothesis and (a). We now have the K+1 version of (3.1),
and so we complete the argument as in the k = 2 case.

4. Preliminaries to the proofs of the theorems. To prove our the-
orems, we will need to consider several kinds of discrete abelian groups. The
facts we need are standard and can be found in [17].

We write e = |E|, the cardinality of E.
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We start with several straightforward results, many of whose proofs we
omit.

Lemma 4.1. Let E ⊂ Γ, ε > 0, γ ∈ Γ and Λ ⊂ Γ a subgroup.

(1) Let q : Γ → Γ/Λ be the natural homomorphism. If q is one-to-one
on E and q(E) is (weak) ε-Kronecker (resp., pseudo-Rademacher),
then E is (weak) ε-Kronecker (resp., pseudo-Rademacher).

(2) Suppose E ⊂ Λ. Then E is (weak) ε-Kronecker (resp., pseudo-
Rademacher) as a subset of Γ if and only if it is (weak) ε-Kronecker
(resp., pseudo-Rademacher) as a subset of Λ.

(3) Let N ≥ 2. Then E is N -large (resp., tor-large) if and only if γE is
N -large (resp., tor-large).

Lemma 4.2. Suppose E is infinite, tor-large and generates Γ. Then there
exists F ⊂ E such that the image qF(E) has the same cardinality as E and
Γ/ΓF is a torsion group.

Proof. Let F′ be a maximal independent subset of Γ/Γ0. Because q0(E)
generates Γ/Γ0 and E is tor-large and generates Γ,

|F′| ≤ |Γ/Γ0| = |q0(E)| < |E| = |Γ|.

Use the axiom of choice to find F ⊂ Γ such that q0 : F→ F′ is one-to-one.
Cardinal arithmetic says

|Γ| = |Γ/〈F〉| |〈F〉| = |qF(E)| |F|,
so |qF(E)| = |E|.

Let p be a prime and denote by C(p∞) the discrete p-subgroup of T,
i.e., the group of all pn-roots of unity. An important fact [17] is that every
abelian group is isomorphic to a subgroup of

(4.1)
⊕
α

Qα ⊕
⊕
β

C(p∞β ),

where the Qα are copies of the rationals and the pβ are primes.

We begin with Q and C(p∞β ).

Proposition 4.3 ([4, Prop. 3.4]). Let ε > 0. Each infinite subset of
C(p∞) (resp. Q) contains an infinite ε-Kronecker set.

Proposition 4.4 ([4, proof of Prop. 3.5]). Suppose that E ⊂ Γ is inde-
pendent and consists of elements of orders all greater than N ≥ 2. Then E
is (at least) weak |1− eiπ/(N+1)|-Kronecker.

Notation 4.5. Let Γ ⊂
⊕

β∈B C(p∞β ) for some index set B. For each
β ∈ B and γ ∈ Γ we let πβ(γ) be the projection of γ on the β-coordinate
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and let
B(γ) = {β ∈ B : πβ(γ) 6= 1}.

Note that each B(γ) is finite.

Lemma 4.6. Let Γ ⊂
⊕

β∈B C(p∞β ), where B is uncountable. Suppose
N ≥ 2 and E ⊂ Γ is such that for every β there exists γ ∈ E such that πβ(γ)
has order at least N . Then there exists F ⊂ E such that |F| = |B| = |E|
and:

(1) If N > 2, then F is weak |1− eπi/N |-Kronecker.
(2) If N = 2 and all the πβ(γ) have order exactly 2, then F is pseu-

do-Rademacher.

Cardinal arithmetic shows that |B| = |E|, since otherwise |B| = |E|ℵ0
= |E| < |B|.

Proof of Lemma 4.6. The finding of F is the same in both (1)–(2). We
will use transfinite induction. Let I be a well-ordered index set of cardinality
B with 1, 2, . . . the first elements of I.

Let λ1 ∈ E and β(1) ∈ B be such that the order of πβ(1)(λ1) is at least N .
That starts our induction.

Suppose i > 1 and that we have found λi′ ∈ E for all 1 ≤ i′ < i such
that B(λi′) 6⊂

⋃
k<i′ B(λk). If |{λi′ : 1 ≤ i′ < i}| = e, we stop. Otherwise, we

note that A =
⋃
i′<iB(λi′) also has cardinality less than e and there exist

λ(i) ∈ E and β(i) ∈ B such that β(i) 6∈
⋃
i′<iB(λβ(i′)) and πβ(i)(λi) has

order at least N . That completes the inductive step.
Because |B| = e, the set F = {λβ(i) : 1 ≤ i} must have the same

cardinality.
That completes the finding of F. We now turn to the specific assertions

about F.
(1) We claim that F is weak ε-Kronecker if N > 2, where ε = |1−eπi/N |.

We use transfinite induction again. It will be convenient to assume that
G =

∏
β∈B Gβ, where Gβ is the dual of C(p∞β ), β ∈ B. That is justified

by Lemma 4.1. We shall abuse notation by using πβ(x) to denote the β-
coordinate of x ∈ G.

Let ϕ : F→ T. Choose x1 ∈ Gβ(1) such that |ϕ(λ1)− λ1(x1)| ≤ ε. That
can be done because πβ(1)(λ1) has order at least N .

Suppose that i ≥ 1 and xi′ ∈
∏
k≤i′ Gβ(k) have been chosen for 1 ≤ i′ < i

so that for 1 ≤ k ≤ i′ < i, |ϕ(λk)− λk(xi′)| ≤ ε and

(4.2) πβ(k)(xk) = πβ(k)(xi′).

If i has an immediate predecessor, i′, we choose x ∈ Gβ(i) such that |ϕ(λi)−
λi(xi′x)| ≤ ε. Set xi = xi′x. Then (4.2) holds for 1 ≤ k ≤ i′ ≤ i.

If i is a limit ordinal, let x0 be the limit point of the xi′ as i′ → i. Such
a limit point exists because of (4.2).
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That all ensures (4.2) holds with x0 in place of xi′ for all i′ < i. Now
choose x ∈ Gβ(i) such that |ϕ(λi)−λi(x0x)| ≤ ε and set xi = x0x. It is clear
that (4.2) now holds with i′ ≤ i. We now let z = limi xi and observe that
|ϕ(λ)− λ(z)| < ε for all λ ∈ F.

(2) Let ϕ : F → {−1, 1}. Choose x1 ∈ Gβ(1) such that ϕ(λ1) = λ1(x1).
That can be done because πβ(1)(λ1) has order 2. We continue as in the proof
of (1).

Lemma 4.7. Suppose that E generates Γ and is uncountable and that Γ
is torsion-free. Then E contains an independent subset F with |F| = |E|.

Proof. Let F be the set of independent subsets of E, ordered by inclu-
sion. Zorn’s lemma gives us a maximal element, F, of F . If |E| > |F|, then
by cardinal arithmetic,

(4.3) |qF(E)| = |Γ/〈F〉| = e.

Suppose there exists γ ∈ E such that qF(γ) has infinite order. Then F∪{γ}
is independent and F is not maximal, a contradiction. Therefore, qF(γ) has
finite order for all γ ∈ E. Since e > ℵ0, there is an integer n ≥ 2 and e
elements of qF(E) which are of order n. Thus, γn belongs to the group, 〈F〉,
generated by F for at least e elements of E. Because |F| < e, there is some
ρ ∈ 〈F〉 such that E′ = {γ ∈ E : γn = ρ} has cardinality e. If γ1 6= γ2 ∈ E′,
then (γ1γ

−1
2 )n = 1, contradicting the assumption that Γ is torsion-free.

The hypotheses of no torsion and |E| > ℵ0 cannot be relaxed, as Exam-
ple 1.3 and Z, respectively, show.

5. Proof of Theorems 2.2 and 2.4. When convenient, we will assume
that E generates Γ. We will often assume Γ ⊆

⊕
β∈B C(p∞β ) and in this case

we will use Notation 4.5.

5.1. Proof of Theorem 2.2(1). We adapt [1, proof of Lem. 3.4]. Let
ε > 0 be given, and let N > 1 with |1 − eiπ/N | = ε′ < ε. For each finite
F ⊂ E and ϕ : E→ T let

Xϕ(F) = {x ∈ G : |ϕ(γ)− γ(x)| ≤ ε′ for all γ ∈ F}.

Let A = {F ⊂ E : |F| <∞ and Xϕ(F) 6= ∅ for all ϕ : E→ T}. It is evident
that each F ∈ A is a weak ε′-Kronecker set and hence an ε-Kronecker set.
Because E is N !-small, there exists γ ∈ E with {γ} ∈ A. Order A by
inclusion (2). An application of Zorn’s lemma shows that A has a maximal
element, S. If |S| = |E|, we are done.

(2) Because we depart from [1] by specifying that ϕ is defined on E rather than just F,
inclusion is sufficient.
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Assume that |S| < |E|. This will lead to a contradiction. First note that
because |E| is infinite and that because E is `-small for all ` ≥ 2,

|E| = |〈E〉/〈S〉| = |q`(E)| > |S| ≥ |q`(S)|, and therefore(5.1)

|E| = |〈q`(E)〉/〈q`(S)〉| > |S|.(5.2)

Use the axiom of choice to find a subset E′ ⊆ E such that qN ! is one-to-one
on E′ and qN !(E

′) = qN !(E). That is possible because E is N !-small. We
note that the mapping MN ! : λ 7→ λN ! identifies the quotient qN !(Γ) with
MN !(Γ). Therefore, MN ! is one-to-one on E′.

We claim that (5.1)–(5.2) tell us that there exists ρ ∈ E \ S such that
either

(5.3)
(a) 〈{ρ}〉 ∩ 〈S〉 = {1}, or

(b) there exists k ≥ N with 〈{ρ}〉 ∩ 〈S〉 = 〈{ρk}〉.

To see the claim, we note that the cardinalities of MN !(E
′) and 〈S〉 tell us

that 〈MN !(E
′)〉/(〈MN !(E

′)〉 ∩ 〈S〉) is a non-trivial group (we do not need to
know more than that!). So there exists γ ∈ E′ \ S such that γl 6∈ 〈S〉 for all
1 ≤ l ≤ N .

Let ϕ : S ∪ {ρ} → T be given. Since S ∈ A, there exists x1 ∈ G with
|ϕ(γ)−γ(x1)| ≤ ε′ for all γ ∈ S. Use (5.3) to find x2 ∈ 〈S〉⊥ such that either
(case (a)) ρ(x2) = ϕ(ρ)ρ(x1), or (case (b)) |ρ(x2) − ϕ(ρ)ρ(x1)| ≤ ε′. Then
|ϕ(γ)− γ(x1x2)| ≤ ε′ for all γ ∈ S. That shows S ∪ {ρ} ∈ A, contradicting
the maximality of S. Therefore |S| = |E|.

5.2. Proof of Theorem 2.2(2). Let N be the minimal integer such
that E is N -large and K = pk for a prime p with k the maximal exponent for
which pk |N . (Increasing the power of p will give a stronger version of (2).)
Since E is N -large, it is tor-large, and so, by Lemmas 4.1 and 4.2, we may
assume that Γ is a torsion group. We also assume that Γ =

⊕
β∈B C(p∞β )

and no longer suppose that E generates Γ. However, we can still assume
that πβ(E) 6= 1 for all β ∈ B.

Case I: E is uncountable. Consider

B′ = {β ∈ B : pβ = p and ∃γ ∈ E with order πβ(γ) ≥ K}.

Since E is N -large, if N is prime, then B′ has cardinality e. If N = pk for
some k ≥ 2, or N is divisible by two or more primes, then the minimality
of N ensures B′ has cardinality e. By mapping Γ →

⊕
β∈B′ C(p∞β ), we

may apply Lemma 4.6 and conclude that E has a weak ε-Kronecker set of
cardinality e.

Case II: E is countable. Then we may assume that Γ =
⊕

j∈B C(p∞j ),
where B is countable or finite. But if B is finite, then the direct sum contains
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only a finite number of elements of order ≤ N , so E cannot be N -large.
Similarly, there must be an infinite number of j with pj = p.

The maximality of k implies that

{β ∈ B : pβ = p and ∃γ ∈ E with order πβ(γ) = pk}
is countably infinite. We now appeal to Lemma 4.6.

5.3. Proof of Theorem 2.4. As in the proof of Theorem 2.2, we may
assume that Γ =

⊕
β∈B C(p∞β ) for an appropriate index set B.

The set E would not be 2-large if

{β ∈ B : ∃γ ∈ E with order πβ(γ) > 2}
had cardinality e. But then

{β ∈ B : pβ = 2 and ∃γ ∈ E with order πβ(γ) = 2}
must have cardinality e, or |E| < e.

Case I: E uncountable. We call on Lemma 4.6(2).
Case II: E countable. When E is countable and 2-large, q2(E) is finite,

so there must exist ρ ∈ Γ/Γ2 such that E′ = q−12 (ρ) ∩ E is infinite. Let
ρ′ ∈ E′. Then (E′ \ {ρ})ρ−1 ⊂ Γ2, that is, every element of the infinite set
(E′ \ {ρ})ρ−1 has order 2. Induction gives us an infinite independent subset
F′ ⊂ (E′ \ {ρ})ρ−1. Then F = ρF′ is a translate of the Rademacher set F′

and hence is pseudo-Rademacher.
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